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SUFFICIENT EQUIVALENCES IN A SAMPLING SPACE

ZANETA POPESKA

Abstract. For a sampling design of an ordered sample on a finite popula-
tion we defing the induced sampling space, and the notion of consistency of
a data with an unknown parameter Y = (Y1,Y2,...,Yy), which is some
characteristic of the units in the population. We examine the sufficient sta-
tistics for Y. The sufficiency of a statistic is connected with the kernel of
the statistic. We introduce sufficient equivalences on the sampling space and
give a complete description of a maximal clements in the set of all sufficient
equivalences.

1. SAMPLING DESIGN OF AN ORDERED SAMPLE

Let B = {by,ba,...,by} be a finite set (called population) and let U(B) be
the free semigroup generated by B. Any finite sequence o = (b1, b2, ..., b,) with
elements (units) in B is called an ordered sample on B. The number n = L(o) is
called the length, the set {b1,b2,...,b,} = C(o) the content of & and the number
n(o) = |C(0)| the effective size of o. If b € C(c) we will write b € o and say that
the unit b is in the sample o. The set of all ordered samples on B is U(B), which
will be denoted only by U if B is a given population. To simplify the notation the
first N positive integers will be used as notations for B, and we will use the word
sample instead of ordered sample.

Definition 1.1. Sampling design is an ordered triple S = (B,U,p), where
p:U — R is a mapping from U to the set of real numbers (R) such that

i) p(o) > 0,Vo € U,

i) Yople)=1

oelU

In 4i) we have in mind that U is an infinite countable set. The subset
U, = {o|p(¢) > 0} of U is called the support of the design S. The mapping
p is called a probability function of the design S, and p(o) is said to be the proba-
bility of ¢ in the design S.

2000 Mathematics Subject Classification. 62B05, 94A20.
Key words and phrases. sample, sampling design, smpling space, statistics, sufficient statistic,
sufficient equivalence.
69



70 ZANETA POPESKA

1.1.° The probability function of the design, p, induces a probability measure on
the set of all subsets of U, B(U), defined by

P(4)=> plo), YACU. O
ocEA

In this way, to any design S = (B,U,p) corresponds a probability space
(U,B(U), P). From the fact that U is countable set, and the o-algebra is B(U),
we have that any real function X : U — R is a random variable on (U, B(U), P).

2. SAMPLING SPACE INDUCED BY A SAMPLING DESIGN

For a given population B = {1,2,...,N} and a real function Y : B — R, we
denote Y (i) by Y;, for i € B. The variable Y is a characteristic of the population.
Let the vector Y = (Y1,Ys,...,Yn) be the unknown parameter of the population.
Let S(B,U,p) be a given sampling design, Y € R", and let the components of
Y be fixed, i.e. if a unit from B is available, then the corresponding component
of Y is completely determined. So, the randomness in the model is introduced
only by the definition of the sampling design. Since Y € R can be considered
as a mapping Y : i — Y; from B to R and ¢ € U as a mapping ¢ : i — o (7)
from N, = {1,2,...,n} to B, where n = L(o), we have that Yo : i — Yoy is a
mapping from N,, to R. Then y = Yo € RE(),

One of the main notions in the theory of sampling design is the notion of data
obtained by a given sample.

We define the sets A’ and A'* by

A ={(0,Yo)lo €U, Y eRV} and A'* = {(0,Yo)|oc € Up, Y € RV}

The pair (0,y) = ((si,52,---,5n), (¥1,¥2,..-,Yn)) can be observed as a sequence

of pairs ((s1,y1), -+, (Sns¥Yn))-
Using the previous definitions the following proposition holds:

21"
N ={(o,y)lc €U,y € RX9) 3y € RN for whichy = Yo}
= {(0,y)lo €U,y € RX ker o C kery},

where in the second notation we consider o andy aso : N, — B andy : N, —
R. O

The set A’ is a subset of the set A = {(0,y)|o € U,y € R}, We will call
the set A a sampling space. We also define AT = {(o,y)|o € Up,y € RE(}.

Definition 2.1. We say that the data d = (0,y) € A is consistent with the
parameter Y € RY if and only if (iff) y = Yo and'we writed ~ Y.

Definition 2.2. For VY € RY we define a mapping py : & — R by:

(0) #f y=Yo
py((o,y)) = { 8 otherwise
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Then the following proposition holds:
2.2 The triple (A, B(A\), Py) is a probability space, where VA C A,
Py(4)=- > py((o.y)). O

(o,y)EA

3. SUFFICIENT STATISTIC

Let Q CR™ and f : A — Q be a statistic.
Definition 3.1. The statistic [ : N — Q is called a sufficient statistic for the
parameter Y € RN if for given wo € Q and Y',Y", € RN the following equation
holds

Py/(D =d|f(D) = wq) = Py»(D =d|f(D) = wo).

From the definition of a conditional probability we have

_ Py({d} 05~ (fuo})) o
Py (f~'({wo}))

when there exists d* = (o*,y*) € f~!({wo}) for which Yo* = y* and p(c*) =
py(d#) > 0. Otherwise, Py (D = d|f(d) = wp) = 0 when f(d) # wo or py(d) =0
for each d such that f(d) = wy.

Py(D = d|f(d = wo)

Theorem 3.1. If f : A — § is a statistic, the following statements are equivalent:

i) f is sufficient for Y, _

i) Ifd’, d” € A'F, YY" € R™ are such that f(d’) = f(d”),d' ~Y’',d" ~Y",
thend ~Y",d" ~Y’,

i) If Y, Y € RY | wo € Q are such that Py.(f~'({wo})) > O,
Py (£~ ({wo})) > 0, then py:(d) = py~(d) for each d € f~1({wo}),

i) Under the conditions as in iii), py'(d) = py~(d), ford € f~ ({wo})NA*.

Proof. (1) Let f be a sufficient for Y and the conditions in ii) hold. Then from
£(d) = f(d"”) = wg, py+(d’) > 0 and py~(d”) > 0 it follows that

Py:(f7 ({wo})) > 0, Py»(f7'({wo})) > 0, and
Py:(D = d’|f(D) = wg) = Py»(D = d"|f(D) = wy) i.e.
py:(d’) py~(d’)

Py:(f7'({wo})) Py~ (f7'({wo}))
Since d’ ~ Y’ it follows that py/(d’) > 0, which means that py~(d’) > 0, i. e.
d’ ~ Y”. By symmetry it follows that d” ~ Y’. So we have that i)=>ii).

(2) Let ii) holds and the conditions from iii) are satisfied. Let d € A be such
that d € f~1({wo}), or f(d) = wo. If d € A\A'*, then py/(d) = 0 = py~(d).
Solet d € f~'({wo}) N AF. If py.(d) = 0 and py~(d) = O then they are
equal. So let py/(d) > 0. Then d ~ Y’. Since Py~(f~*({wo})) > 0, there exists
d” € f 1 ({wo})N A" for which py~(d”) > 0, so d” ~ Y”. The above discussion
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shows that for d = d’, d” and Y’, Y” € R", the conditions from ii) holds, which
implies that d ~ Y. Then the definition of py implies that py~(d) = py-(d) > 0.
So we proved that ii)=riii).

(3) It is obvious that iii)< iv), so we have to prove that iii)=1i).

(4) Let iii) holds and let dg € A, wg € Q and Y’, Y” € R¥ are such that
Py (f7*({wo})) > 0, and Py~ (f~1({wo})) > 0. Then, for each d € (FY({wo);
according to iii), we have that py~(d) = py/(d). We have to prove that if

A= Py (f7'({wo})) > 0, and p = Py»(f~'({wo})) > 0, then Apy~(dg) =
npy(do)-

Ifdo ¢ f~'({wo}), then py~(dg) = py/(dg) = 0 and the equality hoids. So, ...
do € f7'({wo}). Then iii) implies that py~(dg) = py-(do).
So A = Z py(d) = Z pyr(d) = p U

def~1({wo}) def-1({wo})
Corollary 3.1.1. If a statistic f : A — Q is injection, then f is sufficient fo:

Theorem 3.2. Let f : A — Qq, g : &N — Qo be such that ker f C kerg. I, .
sufficient for Y then f is sufficient for Y.

Proof. Let g be sufficient for Y. By the theorem 3.1 it is sufficient to show tna
f satisfies the condition ii). Let d’ = (¢’,y"), d” = (¢”,y") € A" and Y,
Y” € R, are such that f(d’) = f(d”), d’ ~ Y’, d” ~ Y”. Then, ker f C kera
implies that ¢g(d’) = g(d”). Since g is sufficient , ii) holds for g, which means «:

d' ~Y"” d"~ Y’ So, we proved that condition ii) from Theorem 3.1 is satisfied
for f, which implies that f is sufficient for Y. O

Corollary 3.2.1. Let f : A — Qq, g : & — Qg be such that ker f = kerg. Then
f s sufficient for Y iff g is sufficient for Y.

Theorem 3.3. Let f : A — Qp, g : A — Qo be statistics such that
ker fary Ckergary . If g is sufficient for Y, then f is sufficient for Y.

4. SUFFICIENT EQUIVALENCE IN A

In the previous section we have seen that for a statistic f : A — €, its sufficiency
depends of the kernel of f, which is an equivalence relation on A. Let ker f = «. 1}
we take €} to be the factor set A/, and define f(d) = d* we have an onto m=;-" _
- from A to A/, and ker f = ker f . From the previous discussion it followe tn-
if f is sufficient so is f .

This construction is possible for any equivalence w on A. Let nat w : «y — _
be the natural mapping, i.e. nat w(d) = d“. The previous discussion sugz::- -
definition of a sufficient equivalence on A.

y o~

Definition 4.1. We say that an equivalence w on A is sufficient iff the noture’
mapping nat w : A — A, is a sufficient statistic.

Theorem 4.1. An equivalence w on A is sufficient iff the following haéa’s: :
Ifd’,d” A" and Y',)Y" € R™ are such thatd’ ~Y', d" ~Y" andd“ =d"¥,
thend' ~Y"d"~Y'. 0O
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Let Eq(A) be the set of all equivalences on A, and SEq(A) be the set of all
sufficient equivalences on A\.

In the family of all equivalences on A, the smallest element is #, and the largest
element is ¢, where d’ = {d} and d* = A, for d € A.

As a direct interpretation of the results in previous section we get the following
results.

4.2° For any design S, 0 is sufficient equivalence.

Proof: For given d’ = (¢’,y’) and d” = (¢”,y"”) in A, Py(d = d’ | nat w = {d"})
exists iff 0 < Py((nat w)™'{d"”}) = py(d”). The latest is true iff p(¢”) > 0 and
Yo" = y”. Then

e , oy o0 i dt e dl
Pea=d nao@=@p={} § $Z3
which means that @ is sufficient equivalence. [J

4.3% The equivalence € is not sufficient.

Proof. Since, for each d € A, d¥ = A, it follows that

L W A gl 0o.0v_ [ p(@® for YoO=yO
Py(d=(c",y") |natw(d) = &) =py(o",y") = { 0 otherwise

To show that the condition for sufficiency is not satisfied, we have to show that
there are (¢°,y°) € A and Y’, Y” € R™ such that Y0¥ = y° Y”60 # y° and
p(c”) > 0. If we choose d° = (¢0,y?) such that kers® C kery® and p(c?) > 0, it
is enough to choose Y’ such that for each i € N,, and Y” such that YZ?‘) #yY for

at least one i € N,,. O

Theorem 4.4 Let a,8 € Eq(A) be such that « C B. If B € SEq(A), then
a € SEq(A). O

Theorem 4.5 If o, 8 € Eq(A) are such that o nre S Bypre then:
a € SEq(A) if and only if B € SEq(A). O

It is well known that the set Eg(A) is a complete lattice, (i.e., for each subset
I' € Eq(A), supl and infI' are elements in Eq(A)). In this lattice inf " is the
intersection of the relations on I', and sup I' is the transitive product of the relations
in I'. As a consequence of Theorem 4.5 we obtain the following

Corollary 4.5.1 If T C SEq(A) then infT' € SEq(A). (More generally, if T' N
SEq(A) # 0 then infT € SEq(A)). O

It is natural to ask the question if an analogous result holds for supI’. To
consider this question we have to define the notion of chain in Fq(A). Namely,
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we say that ' is a chain in Eq(A) iff T is a subset of Eq(A) such that for each
a,B€Tl,aCporpC a Inasimilar way we define a chain in SEq(A).

Theorem 4.6 If T is a chain in SEq(A) then supT, denoted by v, is a union of
the relations in T’ and v € SEq(A).

Proof. We will show that sup I is v, a union of the relations in T'. Let v = U B .

Ber
1) 7 is reflexive iff at least one relation of T is reflexive;

2) Since all elements in T' are symmetric, so is ~v;

3) Let (dy,d3), (d2,d3) € v. Then, there exist o, 8 € T, such that (d;,d2) € «
and (dg,d3) € 8. But, « C 8 or 8 C a. Let o C 8. Then (d;,d2), (d2,d3) € 3,
and since § is transitive, (d;,d3) € 8. So (d;,d3) € v, which means that g is
transitive.

From 1), 2) and 3) it follows that v is an equivalence and for each d € A,

d*=| }p=4¢? 2)

per

Using the last equation and Theorem 4.1 we will show that v € SEq(A).

Let d',d” € A and Y, Y” € R" be such that d’ ~ Y’, d’ ~ Y” and
d’” = d"”. From d’7 = d"” it follows that d’vd”, which means that there exists
B € T, such that d’gd”, i.e., d’? = d". Since g € SEq(A), the equation (2)
and Theorem 4.1 imply that d’ ~ Y” d” ~ Y’, and (again by Theorem 4.1) that
v € SEq(AD). 0O

As a consequence of theorem 4.7 and the lemma of Zorn, we get the following
result:

Theorem 4.7 For any sufficient equivalence a there is a mazimal sufficient equiv-
alence vy, such that a C v. In other words, for Va € SEq(A) there is a mazimal
element v € SEq(A) such that o C ~. O

At the end we will define a sufficient equivalence x which will enable a complete
description of SEq(A), and by that the class of all sufficient statistics.

For each d = (0,y) € A define a set A(o,y) = A(d) by

z € A(o,y) iff z = (s;,y;) for some i € N,,,

where (a,y) = ((s1,---»5n), W1,---,¥n)), e d = ((51,91),---, (5n,Yn))-

Let [A] = {A(d)|d € A}. Define a statistic k : A — [A] by

k(d) = A(d). ' (3)

Theorem 4.8 The statistic k is sufficient statistic.

Proof. Suppose that the conditions from theorem 4.1 (ii) hold, i.e.: d’' = (o,y),
d” = (r,2z) and Y’,Y” € R¥ are such that k(d’) = k(d”), Y'o =y and Y"1 = z.
We have to show that Y”o =y and Y'7 = z.
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From the equation A(d’) = A(d") it follows that for each i € N, thereisi € Ny,
such that o; = 7; and y; = z;. Then from Y'oc =y and Y7 = z, it follows that
YITI]- =zj=yi=Y,,. S0, Y, = Y.’,’j = z; = y; , which means that Yo = y. By
symmetry it follows that Y'r = z. O

Theorem 4.9 A statistic f : A — Q is sufficient for the parameter Y iff :

ker fA/+ C ker kA"‘" (4)

Proof. If the relation (4) holds, theorem 3.3 implies that f is sufficient statistic.

Suppose that (4) is not satisfied. This means that there are d’ = (o,y);
d” = (r,2) € A'" such that f(d’) = f(d”), but k(d’) # k(d”). From the in-
equality k(d’) # k(d”), by symmetry, we can suppose that there is i € N,,, such
that (o4,y:) # (75, 2;5) for each j € N,,,. Two cases are possible: 1) ¢; € 7 and 2)
o, ¢ .

Let Y/, Y” € RN be such that d’ ~ Y’ and d” ~ Y”, i.e. let Yo =y and
Y'r = z.

In case 1), there is j € N,, such that o; = 7;, but since (o4,y:) # (75, 2;),
yi # z;. But then y; # z; = Y’T’j =Y. . This means that Y”o # y, or d is not
consistent with Y.

In case 2), o; # 7j for each j € N,,, . Let Y* € RY be such that Y = Y for
all k except for k = o4, namelyY # y; and all other components of Y* and Y"”
are equal. Then Y*7 = z, but Y*o # y, i.e. d” is consistent with Y*, but d’ is
not consistent with Y*.

In both cases theorem 4.1 (i7) implies that f is not sufficient statistic for Y. O

The Theorem 4.9 can be formulated in the following manner, where x = ker k.
Theorem 4.9" The equivalence a € Eq(A) is sufficient iff apt. O

Let us note that the theorems 4.7 and 4.8 are consequences of theorem 4.9 or
4.9'. At the end we will describe the maximal elements in SEq(A).

Theorem 4.10 If w is mazimal sufficient equivalence, then wa+ = K a/+.

Proof. Let w be maximal and sufficient equivalence and let d’,d” € A’" be such
that d’kd”, but (d’,d”) ¢ w. Let @be the equivalence generated by w U (d’,d”).
Then d’* D d'* U d””, and &is defined by:

if d¢d“ud” then d®* =d“ and
if ded“ud” then d“ =d“ud"”.

By the definition of & it follows that w C @ and that @a+ € ka/+ Theorem
4.9" implies that @ is sufficient equivalence for Y. But this together with w C @
contradicts the fact that w is a maximal equivalence. O
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The condition wa:,+ = kas+ is not a sufficient condition for maximallity of w.
This is shown by the following example. Let p be the equivalence defined by :

forde A", d?=d""NA"" andfor d¢ A'T, d? = A\A'™.

Then p € SEq(A) and pa+ = K+ - But p is not a maximal element, since
it is a proper subset of 5 € SEq(A) defined as follows. Fix d’ € A’" and let
d"” = (A\A'T)Ud’”, and for all other d € A, let d’” = d’? . Since, ppr+ = kpr+,
p € SEq(A) and p C 5.

The previous discussion gives in fact the description of maximal elements of
SEq(A), given by following theorem:

Theorem 4.11 An equivalence w € SEq(A) is a mazimal element in SEq(A) if
and only if the following conditjons hold

i) wark = Ka+ and

ii) for each d € A, there is d’ € A'+, such that d* =d'*. O
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