Math. Maced. Vol. 1 (2003) 69-76

SUFFICIENT EQUIVALENCES IN A SAMPLING SPACE

ŽANETA POPESKA

Abstract. For a sampling design of an ordered sample on a finite population we define the induced sampling space, and the notion of consistency of a data with an unknown parameter $\mathbf{Y} = (\mathbf{Y}_1, \mathbf{Y}_2, \dots, \mathbf{Y}_N)$, which is some characteristic of the units in the population. We examine the sufficient statistics for \mathbf{Y} . The sufficiency of a statistic is connected with the kernel of the statistic. We introduce sufficient equivalences on the sampling space and give a complete description of a maximal elements in the set of all sufficient equivalences.

1. Sampling design of an ordered sample

Let $B = \{b_1, b_2, \ldots, b_N\}$ be a finite set (called population) and let U(B) be the free semigroup generated by B. Any finite sequence $\sigma = (b_1, b_2, \ldots, b_n)$ with elements (units) in B is called an ordered sample on B. The number $n = L(\sigma)$ is called the length, the set $\{b_1, b_2, \ldots, b_n\} = C(\sigma)$ the content of σ and the number $n(\sigma) = |C(\sigma)|$ the effective size of σ . If $b \in C(\sigma)$ we will write $b \in \sigma$ and say that the unit b is in the sample σ . The set of all ordered samples on B is U(B), which will be denoted only by U if B is a given population. To simplify the notation the first D positive integers will be used as notations for B, and we will use the word sample instead of ordered sample.

Definition 1.1. Sampling design is an ordered triple S = (B, U, p), where $p: U \to \mathbb{R}$ is a mapping from U to the set of real numbers (\mathbb{R}) such that

$$i) p(\sigma) \ge 0, \forall \sigma \in U;$$

$$ii) \sum_{\sigma \in U} p(\sigma) = 1$$

In *ii*) we have in mind that U is an infinite countable set. The subset $U_p = \{\sigma | p(\sigma) > 0\}$ of U is called the support of the design S. The mapping p is called a *probability function* of the design S, and $p(\sigma)$ is said to be the probability of σ in the design S.

²⁰⁰⁰ Mathematics Subject Classification. 62B05, 94A20.

Key words and phrases. sample, sampling design, smpling space, statistics, sufficient statistic, sufficient equivalence.

1.1.⁰ The probability function of the design, p, induces a probability measure on the set of all subsets of U, B(U), defined by

$$P(A) = \sum_{\sigma \in A} p(\sigma), \quad \forall A \subseteq U. \quad \Box$$

In this way, to any design S = (B, U, p) corresponds a probability space (U, B(U), P). From the fact that U is countable set, and the σ -algebra is B(U), we have that any real function $X : U \to \mathbb{R}$ is a random variable on (U, B(U), P).

2. Sampling space induced by a sampling design

For a given population $B = \{1, 2, ..., N\}$ and a real function $\mathbf{Y} : B \to \mathbb{R}$, we denote $\mathbf{Y}(i)$ by Y_i , for $i \in B$. The variable \mathbf{Y} is a characteristic of the population. Let the vector $\mathbf{Y} = (Y_1, Y_2, ..., Y_N)$ be the unknown parameter of the population. Let S(B, U, p) be a given sampling design, $\mathbf{Y} \in \mathbb{R}^N$, and let the components of \mathbf{Y} be fixed, i.e. if a unit from B is available, then the corresponding component of \mathbf{Y} is completely determined. So, the randomness in the model is introduced only by the definition of the sampling design. Since $\mathbf{Y} \in \mathbb{R}^N$ can be considered as a mapping $\mathbf{Y} : i \to Y_i$ from B to \mathbb{R} and $\sigma \in U$ as a mapping $\sigma : i \to \sigma(i)$ from $\mathbb{N}_n = \{1, 2, ..., n\}$ to B, where $n = L(\sigma)$, we have that $\mathbf{Y}\sigma : i \to Y_{\sigma(i)}$ is a mapping from \mathbb{N}_n to \mathbb{R} . Then $\mathbf{y} = \mathbf{Y}\sigma \in \mathbb{R}^{L(\sigma)}$.

One of the main notions in the theory of sampling design is the notion of *data* obtained by a given sample.

We define the sets \triangle' and \triangle'^+ by

$$\triangle' = \{(\sigma, \mathbf{Y}\sigma) | \sigma \in U, \ \mathbf{Y} \in \mathbb{R}^N\} \text{ and } \triangle'^+ = \{(\sigma, \mathbf{Y}\sigma) | \sigma \in U_p, \ \mathbf{Y} \in \mathbb{R}^N\}$$

The pair $(\sigma, \mathbf{y}) = ((s_i, s_2, \dots, s_n), (y_1, y_2, \dots, y_n))$ can be observed as a sequence of pairs $((s_1, y_1), \dots, (s_n, y_n))$.

Using the previous definitions the following proposition holds:

 2.1^{0}

$$\Delta' = \{(\sigma, \mathbf{y}) | \sigma \in U, \mathbf{y} \in \mathbb{R}^{L(\sigma)}, \exists \mathbf{Y} \in \mathbb{R}^N \text{ for which } \mathbf{y} = \mathbf{Y}\sigma\}$$
$$= \{(\sigma, \mathbf{y}) | \sigma \in U, \mathbf{y} \in \mathbb{R}^{L(\sigma)}, \text{ ker } \sigma \subseteq \text{ ker } \mathbf{y}\},$$

where in the second notation we consider σ and y as $\sigma : \mathbb{N}_n \to B$ and $y : \mathbb{N}_n \to \mathbb{R}$. \square

The set \triangle' is a subset of the set $\triangle = \{(\sigma, \mathbf{y}) | \sigma \in U, \mathbf{y} \in \mathbb{R}^{L(\sigma)}\}$. We will call the set \triangle a sampling space. We also define $\triangle^+ = \{(\sigma, \mathbf{y}) | \sigma \in U_p, \mathbf{y} \in \mathbb{R}^{L(\sigma)}\}$.

Definition 2.1. We say that the data $\mathbf{d} = (\sigma, \mathbf{y}) \in \triangle$ is consistent with the parameter $\mathbf{Y} \in \mathbb{R}^N$ if and only if (iff) $\mathbf{y} = \mathbf{Y}\sigma$ and we write $\mathbf{d} \sim \mathbf{Y}$.

Definition 2.2. For $\forall \mathbf{Y} \in \mathbb{R}^N$ we define a mapping $p_{\mathbf{Y}} : \Delta \to \mathbb{R}$ by:

$$p_{\mathbf{Y}}((\sigma, \mathbf{y})) = \begin{cases} p(\sigma) & \text{if } \mathbf{y} = \mathbf{Y}\sigma \\ 0 & \text{otherwise} \end{cases}$$

Then the following proposition holds:

2.2º The triple $(\triangle, B(\triangle), P_{\mathbf{Y}})$ is a probability space, where $\forall A \subseteq \triangle$,

$$P_{\mathbf{Y}}(A) = \sum_{(\sigma, \mathbf{y}) \in A} p_{\mathbf{Y}}((\sigma, \mathbf{y})). \quad \Box$$

3. Sufficient statistic

Let $\Omega \subseteq \mathbb{R}^m$ and $f : \Delta \to \Omega$ be a statistic.

Definition 3.1. The statistic $f: \triangle \to \Omega$ is called a sufficient statistic for the parameter $\mathbf{Y} \in \mathbb{R}^N$ if for given $\mathbf{w}_0 \in \Omega$ and $\mathbf{Y}', \mathbf{Y}'', \in \mathbb{R}^N$ the following equation holds

$$P_{\mathbf{Y}'}(\mathbf{D} = \mathbf{d}|f(\mathbf{D}) = \mathbf{w}_0) = P_{\mathbf{Y}''}(\mathbf{D} = \mathbf{d}|f(\mathbf{D}) = \mathbf{w}_0).$$

From the definition of a conditional probability we have

$$P_{\mathbf{Y}}(\mathbf{D} = \mathbf{d}|f(\mathbf{d} = w_0) = \frac{P_{\mathbf{Y}}(\{\mathbf{d}\} \cap f^{-1}(\{w_0\}))}{P_{\mathbf{Y}}(f^{-1}(\{w_0\}))}$$
(1)

when there exists $\mathbf{d}^* = (\sigma^*, \mathbf{y}^*) \in f^{-1}(\{\mathbf{w}_0\})$ for which $\mathbf{Y}\sigma^* = \mathbf{y}^*$ and $p(\sigma^*) = p_{\mathbf{Y}}(\mathbf{d}^*) > 0$. Otherwise, $P_{\mathbf{Y}}(\mathbf{D} = \mathbf{d}|f(\mathbf{d}) = \mathbf{w}_0) = 0$ when $f(\mathbf{d}) \neq \mathbf{w}_0$ or $p_{\mathbf{Y}}(\mathbf{d}) = 0$ for each \mathbf{d} such that $f(\mathbf{d}) = \mathbf{w}_0$.

Theorem 3.1. If $f: \triangle \to \Omega$ is a statistic, the following statements are equivalent:

i) f is sufficient for Y,

ii) If \mathbf{d}' , $\mathbf{d}'' \in \triangle'^+$, $\mathbf{Y}' \cdot \mathbf{Y}'' \in \mathbb{R}^n$ are such that $f(\mathbf{d}') = f(\mathbf{d}'')$, $\mathbf{d}' \sim \mathbf{Y}'$, $\mathbf{d}'' \sim \mathbf{Y}''$, then $\mathbf{d}' \sim \mathbf{Y}''$, $\mathbf{d}'' \sim \mathbf{Y}''$,

iii) If $\mathbf{Y}', \mathbf{Y}'' \in \mathbb{R}^N$, $\mathbf{w}_0 \in \Omega$ are such that $P_{\mathbf{Y}'}(f^{-1}(\{\mathbf{w}_0\})) > 0$, $P_{\mathbf{Y}''}(f^{-1}(\{\mathbf{w}_0\})) > 0$, then $p_{\mathbf{Y}'}(\mathbf{d}) = p_{\mathbf{Y}''}(\mathbf{d})$ for each $\mathbf{d} \in f^{-1}(\{\mathbf{w}_0\})$,

iv) Under the conditions as in iii), $p_{\mathbf{Y}'}(\mathbf{d}) = p_{\mathbf{Y}''}(\mathbf{d})$, for $\mathbf{d} \in f^{-1}(\{\mathbf{w}_0\}) \cap \triangle'^+$.

Proof. (1) Let f be a sufficient for \mathbf{Y} and the conditions in ii) hold. Then from $f(\mathbf{d}') = f(\mathbf{d}'') = \mathbf{w}_0$, $p_{\mathbf{Y}'}(\mathbf{d}') > 0$ and $p_{\mathbf{Y}''}(\mathbf{d}'') > 0$ it follows that

$$P_{\mathbf{Y'}}(f^{-1}(\{\mathbf{w}_0\})) > 0, \ P_{\mathbf{Y''}}(f^{-1}(\{\mathbf{w}_0\})) > 0, \text{ and}$$

$$P_{\mathbf{Y'}}(\mathbf{D} = \mathbf{d'}|f(\mathbf{D}) = \mathbf{w}_0) = P_{\mathbf{Y''}}(\mathbf{D} = \mathbf{d''}|f(\mathbf{D}) = \mathbf{w}_0) \text{ i.e.}$$

$$\frac{p_{\mathbf{Y'}}(\mathbf{d'})}{P_{\mathbf{Y'}}(f^{-1}(\{\mathbf{w}_0\}))} = \frac{p_{\mathbf{Y''}}(\mathbf{d'})}{P_{\mathbf{Y''}}(f^{-1}(\{\mathbf{w}_0\}))}$$

Since $\mathbf{d'} \sim \mathbf{Y'}$ it follows that $p_{\mathbf{Y'}}(\mathbf{d'}) > 0$, which means that $p_{\mathbf{Y''}}(\mathbf{d'}) > 0$, i. e. $\mathbf{d'} \sim \mathbf{Y''}$. By symmetry it follows that $\mathbf{d''} \sim \mathbf{Y'}$. So we have that i) \Rightarrow ii).

(2) Let ii) holds and the conditions from iii) are satisfied. Let $\mathbf{d} \in \Delta$ be such that $\mathbf{d} \in f^{-1}(\{\mathbf{w}_0\})$, or $f(\mathbf{d}) = \mathbf{w}_0$. If $\mathbf{d} \in \Delta \backslash \Delta'^+$, then $p_{\mathbf{Y}'}(\mathbf{d}) = 0 = p_{\mathbf{Y}''}(\mathbf{d})$. So let $\mathbf{d} \in f^{-1}(\{\mathbf{w}_0\}) \cap \Delta'^+$. If $p_{\mathbf{Y}'}(\mathbf{d}) = 0$ and $p_{\mathbf{Y}''}(\mathbf{d}) = 0$ then they are equal. So let $p_{\mathbf{Y}'}(\mathbf{d}) > 0$. Then $\mathbf{d} \sim \mathbf{Y}'$. Since $P_{\mathbf{Y}''}(f^{-1}(\{\mathbf{w}_0\})) > 0$, there exists $\mathbf{d}'' \in f^{-1}(\{\mathbf{w}_0\}) \cap \Delta'^+$ for which $p_{\mathbf{Y}''}(\mathbf{d}'') > 0$, so $\mathbf{d}'' \sim \mathbf{Y}''$. The above discussion

shows that for $\mathbf{d} = \mathbf{d}'$, \mathbf{d}'' and \mathbf{Y}' , $\mathbf{Y}'' \in \mathbb{R}^N$, the conditions from ii) holds, which implies that $\mathbf{d} \sim \mathbf{Y}''$. Then the definition of $p_{\mathbf{Y}}$ implies that $p_{\mathbf{Y}''}(\mathbf{d}) = p_{\mathbf{Y}'}(\mathbf{d}) > 0$. So we proved that ii) \Rightarrow iii).

(3) It is obvious that iii) \Leftrightarrow iv), so we have to prove that iii) \Rightarrow i).

(4) Let iii) holds and let $\mathbf{d}_0 \in \Delta$, $\mathbf{w}_0 \in \Omega$ and \mathbf{Y}' , $\mathbf{Y}'' \in \mathbb{R}^N$ are such that $P_{\mathbf{Y}'}(f^{-1}(\{\mathbf{w}_0\})) > 0$, and $P_{\mathbf{Y}''}(f^{-1}(\{\mathbf{w}_0\})) > 0$. Then, for each $\mathbf{d} \in (f^{-1}(\{\mathbf{w}_0\}))$ according to iii), we have that $p_{\mathbf{Y}''}(\mathbf{d}) = p_{\mathbf{Y}'}(\mathbf{d})$. We have to prove that if

 $\lambda = P_{\mathbf{Y}'}(f^{-1}(\{\mathbf{w}_0\})) > 0$, and $\mu = P_{\mathbf{Y}''}(f^{-1}(\{\mathbf{w}_0\})) > 0$, then $\lambda p_{\mathbf{Y}''}(\mathbf{d}_0) = \mu p_{\mathbf{Y}'}(\mathbf{d}_0)$.

If $\mathbf{d}_0 \notin f^{-1}(\{\mathbf{w}_0\})$, then $p_{\mathbf{Y}''}(\mathbf{d}_0) = p_{\mathbf{Y}'}(\mathbf{d}_0) = 0$ and the equality holds. So, let $\mathbf{d}_0 \in f^{-1}(\{\mathbf{w}_0\})$. Then iii) implies that $p_{\mathbf{Y}''}(\mathbf{d}_0) = p_{\mathbf{Y}'}(\mathbf{d}_0)$.

So
$$\lambda = \sum_{\mathbf{d} \in f^{-1}(\{\mathbf{w}_0\})} p_{\mathbf{Y}'}(\mathbf{d}) = \sum_{\mathbf{d} \in f^{-1}(\{\mathbf{w}_0\})} p_{\mathbf{Y}''}(\mathbf{d}) = \mu$$

Corollary 3.1.1. If a statistic $f: \triangle \to \Omega$ is injection, then f is sufficient for Σ

Theorem 3.2. Let $f: \triangle \to \Omega_1$, $g: \triangle \to \Omega_2$ be such that $\ker f \subseteq \ker g$. Ly sufficient for Y then f is sufficient for Y.

Proof. Let g be sufficient for Y. By the theorem 3.1 it is sufficient to show that f satisfies the condition ii). Let $\mathbf{d}' = (\sigma', \mathbf{y}')$, $\mathbf{d}'' = (\sigma'', \mathbf{y}'') \in \triangle^{'+}$ and Y', $Y'' \in \mathbb{R}^N$, are such that $f(\mathbf{d}') = f(\mathbf{d}'')$, $\mathbf{d}' \sim Y'$, $\mathbf{d}'' \sim Y''$. Then, $\ker f \subseteq \ker a$ implies that $g(\mathbf{d}') = g(\mathbf{d}'')$. Since g is sufficient, ii) holds for g, which means to $\mathbf{d}' \sim Y''$, $\mathbf{d}'' \sim Y'$. So, we proved that condition ii) from Theorem 3.1 is satisfied for f, which implies that f is sufficient for f.

Corollary 3.2.1. Let $f : \triangle \to \Omega_1$, $g : \triangle \to \Omega_2$ be such that $\ker f = \ker g$. Then f is sufficient for Y iff g is sufficient for Y.

Theorem 3.3. Let $f: \triangle \to \Omega_1$, $g: \triangle \to \Omega_2$ be statistics such that $\ker f_{\triangle'+} \subseteq \ker g_{\triangle'+}$. If g is sufficient for \mathbf{Y} , then f is sufficient for \mathbf{Y} .

4. Sufficient equivalence in \triangle

In the previous section we have seen that for a statistic $f:\Delta\to\Omega$, its sufficiency depends of the kernel of f, which is an equivalence relation on Δ . Let ker $f=\alpha$. It we take Ω to be the factor set $\Delta_{/\alpha}$ and define $\bar{f}(d)=d^{\alpha}$ we have an onto many from Δ to $\Delta_{/\alpha}$ and ker $f=\ker\bar{f}$. From the previous discussion it follows that if f is sufficient so is \bar{f} .

Definition 4.1. We say that an equivalence ω on Δ is sufficient iff the natural mapping nat $\omega: \Delta \to \Delta_{/\omega}$ is a sufficient statistic.

Theorem 4.1. An equivalence ω on \triangle is sufficient iff the following holds: If \mathbf{d}' , $\mathbf{d}'' \triangle'^+$ and \mathbf{Y}' , $\mathbf{Y}'' \in \mathbb{R}^n$ are such that $\mathbf{d}' \sim \mathbf{Y}'$, $\mathbf{d}'' \sim \mathbf{Y}''$ and $\mathbf{d}^{'\omega} = \mathbf{d}^{''\omega}$, then $\mathbf{d}' \sim \mathbf{Y}''$, $\mathbf{d}'' \sim \mathbf{Y}'$. \square

Let $Eq(\Delta)$ be the set of all equivalences on Δ , and $SEq(\Delta)$ be the set of all sufficient equivalences on Δ .

In the family of all equivalences on \triangle , the smallest element is θ , and the largest element is ε , where $\mathbf{d}^{\theta} = \{\mathbf{d}\}$ and $\mathbf{d}^{\varepsilon} = \triangle$, for $\mathbf{d} \in \triangle$.

As a direct interpretation of the results in previous section we get the following results.

 4.2° For any design S, θ is sufficient equivalence.

Proof: For given $\mathbf{d}' = (\sigma', \mathbf{y}')$ and $\mathbf{d}'' = (\sigma'', \mathbf{y}'')$ in \triangle , $P_{\mathbf{Y}}(\mathbf{d} = \mathbf{d}' \mid \text{nat } \omega = \{\mathbf{d}''\})$ exists iff $0 < P_{\mathbf{Y}}((\text{nat } \omega)^{-1}\{\mathbf{d}''\}) = p_{\mathbf{Y}}(\mathbf{d}'')$. The latest is true iff $p(\sigma'') > 0$ and $\mathbf{Y}\sigma'' = \mathbf{y}''$. Then

$$P_{\mathbf{Y}}(\mathbf{d} = \mathbf{d}' \mid \text{nat } \omega(\mathbf{d}) = \{\mathbf{d}''\}) = \begin{cases} 0 & \text{if } \mathbf{d}' \neq \mathbf{d}'' \\ 1 & \text{if } \mathbf{d}' = \mathbf{d}'' \end{cases}$$

which means that θ is sufficient equivalence. \square

4.3° The equivalence ε is not sufficient.

Proof. Since, for each $\mathbf{d} \in \triangle$, $\mathbf{d}^{\omega} = \triangle$, it follows that

$$P_{\mathbf{Y}}(\mathbf{d} = (\sigma^0, \mathbf{y}^0) \mid \text{nat } \omega(\mathbf{d}) = \Delta) = p_{\mathbf{Y}}(\sigma^0, \mathbf{y}^0) = \begin{cases} p(\sigma^0) & \text{for } \mathbf{Y}\sigma^0 = \mathbf{y}^0 \\ 0 & \text{otherwise} \end{cases}$$

To show that the condition for sufficiency is not satisfied, we have to show that there are $(\sigma^0, \mathbf{y}^0) \in \Delta$ and $\mathbf{Y}', \mathbf{Y}'' \in \mathbf{R}^n$ such that $\mathbf{Y}'\sigma^0 = \mathbf{y}^0, \mathbf{Y}''\sigma^0 \neq \mathbf{y}^0$ and $p(\sigma^0) > 0$. If we choose $\mathbf{d}^0 = (\sigma^0, \mathbf{y}^0)$ such that $\ker \sigma^0 \subseteq \ker \mathbf{y}^0$ and $p(\sigma^0) > 0$, it is enough to choose \mathbf{Y}' such that for each $i \in \mathbb{N}_n$ and \mathbf{Y}'' such that $\mathbf{Y}''_{\sigma^0_{(i)}} \neq \mathbf{y}^0_i$ for at least one $i \in \mathbb{N}_n$.

Theorem 4.4 Let $\alpha, \beta \in Eq(\Delta)$ be such that $\alpha \subseteq \beta$. If $\beta \in SEq(\Delta)$, then $\alpha \in SEq(\Delta)$. \square

Theorem 4.5 If $\alpha, \beta \in Eq(\triangle)$ are such that $\alpha_{/\triangle'+} \subseteq \beta_{/\triangle'+}$ then:

$$\alpha \in SEq(\triangle)$$
 if and only if $\beta \in SEq(\triangle)$. \square

It is well known that the set $Eq(\Delta)$ is a complete lattice, (i.e., for each subset $\Gamma \subseteq Eq(\Delta)$, sup Γ and inf Γ are elements in $Eq(\Delta)$). In this lattice inf Γ is the intersection of the relations on Γ , and sup Γ is the transitive product of the relations in Γ . As a consequence of Theorem 4.5 we obtain the following

Corollary 4.5.1 If $\Gamma \subseteq SEq(\Delta)$ then $\inf \Gamma \in SEq(\Delta)$. (More generally, if $\Gamma \cap SEq(\Delta) \neq \emptyset$ then $\inf \Gamma \in SEq(\Delta)$). \square

It is natural to ask the question if an analogous result holds for $\sup \Gamma$. To consider this question we have to define the notion of chain in $Eq(\Delta)$. Namely,

we say that Γ is a chain in $Eq(\Delta)$ iff Γ is a subset of $Eq(\Delta)$ such that for each $\alpha, \beta \in \Gamma$, $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$. In a similar way we define a chain in $SEq(\Delta)$.

Theorem 4.6 If Γ is a chain in $SEq(\Delta)$ then $\sup \Gamma$, denoted by γ , is a union of the relations in Γ and $\gamma \in SEq(\Delta)$.

Proof. We will show that $\sup \Gamma$ is γ , a union of the relations in Γ . Let $\gamma = \bigcup_{\beta \in \Gamma} \beta$.

- 1) γ is reflexive iff at least one relation of Γ is reflexive;
- 2) Since all elements in Γ are symmetric, so is γ ;
- 3) Let $(\mathbf{d}_1, \mathbf{d}_2)$, $(\mathbf{d}_2, \mathbf{d}_3) \in \gamma$. Then, there exist $\alpha, \beta \in \Gamma$, such that $(\mathbf{d}_1, \mathbf{d}_2) \in \alpha$ and $(\mathbf{d}_2, \mathbf{d}_3) \in \beta$. But, $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$. Let $\alpha \subseteq \beta$. Then $(\mathbf{d}_1, \mathbf{d}_2)$, $(\mathbf{d}_2, \mathbf{d}_3) \in \beta$, and since β is transitive, $(\mathbf{d}_1, \mathbf{d}_3) \in \beta$. So $(\mathbf{d}_1, \mathbf{d}_3) \in \gamma$, which means that g is transitive.

From 1), 2) and 3) it follows that γ is an equivalence and for each $\mathbf{d} \in \Delta$,

$$\mathbf{d}^{\gamma} = \bigcup_{\beta \in \Gamma} \beta = \mathbf{d}^{\beta} \tag{2}$$

Using the last equation and Theorem 4.1 we will show that $\gamma \in SEq(\Delta)$.

Let $\mathbf{d}', \mathbf{d}'' \in \Delta$ and $\mathbf{Y}', \mathbf{Y}'' \in \mathbb{R}^N$ be such that $\mathbf{d}' \sim \mathbf{Y}'$, $\mathbf{d}'' \sim \mathbf{Y}''$ and $\mathbf{d}'^{\gamma} = \mathbf{d}''^{\gamma}$. From $\mathbf{d}'^{\gamma} = \mathbf{d}''^{\gamma}$ it follows that $\mathbf{d}'\gamma\mathbf{d}''$, which means that there exists $\beta \in \Gamma$, such that $\mathbf{d}'\beta\mathbf{d}''$, i.e., $\mathbf{d}'^{\beta} = \mathbf{d}''^{\beta}$. Since $\beta \in SEq(\Delta)$, the equation (2) and Theorem 4.1 imply that $\mathbf{d}' \sim \mathbf{Y}'' \mathbf{d}'' \sim \mathbf{Y}'$, and (again by Theorem 4.1) that $\gamma \in SEq(\Delta)$.

As a consequence of theorem 4.7 and the lemma of Zorn, we get the following result:

Theorem 4.7 For any sufficient equivalence α there is a maximal sufficient equivalence γ , such that $\alpha \subseteq \gamma$. In other words, for $\forall \alpha \in SEq(\Delta)$ there is a maximal element $\gamma \in SEq(\Delta)$ such that $\alpha \subseteq \gamma$. \square

At the end we will define a sufficient equivalence κ which will enable a complete description of $SEq(\Delta)$, and by that the class of all sufficient statistics.

For each $\mathbf{d} = (\sigma, \mathbf{y}) \in \Delta$ define a set $A(\sigma, \mathbf{y}) = A(\mathbf{d})$ by $x \in A(\sigma, \mathbf{y})$ iff $x = (s_i, y_i)$ for some $i \in \mathbb{N}_n$, where $(\sigma, \mathbf{y}) = ((s_1, \dots, s_n), (y_1, \dots, y_n))$, i.e. $\mathbf{d} = ((s_1, y_1), \dots, (s_n, y_n))$. Let $[\Delta] = \{A(\mathbf{d}) | \mathbf{d} \in \Delta\}$. Define a statistic $k : \Delta \to [\Delta]$ by

$$k(\mathbf{d}) = A(\mathbf{d}). \tag{3}$$

Theorem 4.8 The statistic k is sufficient statistic.

Proof. Suppose that the conditions from theorem 4.1 (ii) hold, i.e.: $\mathbf{d}' = (\sigma, \mathbf{y})$, $\mathbf{d}'' = (\tau, \mathbf{z})$ and $\mathbf{Y}', \mathbf{Y}'' \in \mathbb{R}^N$ are such that $k(\mathbf{d}') = k(\mathbf{d}'')$, $\mathbf{Y}'\sigma = \mathbf{y}$ and $\mathbf{Y}''\tau = \mathbf{z}$. We have to show that $\mathbf{Y}''\sigma = \mathbf{y}$ and $\mathbf{Y}'\tau = \mathbf{z}$.

From the equation $A(\mathbf{d}') = A(\mathbf{d}'')$ it follows that for each $i \in \mathbb{N}_n$ there is $i \in \mathbb{N}_m$ such that $\sigma_i = \tau_j$ and $y_i = z_j$. Then from $\mathbf{Y}'\sigma = \mathbf{y}$ and $\mathbf{Y}''\tau = \mathbf{z}$, it follows that $\mathbf{Y}''_{\tau_j} = z_j = y_i = \mathbf{Y}'_{\sigma_i}$. So, $\mathbf{Y}''_{\sigma_i} = \mathbf{Y}''_{\tau_j} = z_j = y_i$, which means that $\mathbf{Y}''\sigma = \mathbf{y}$. By symmetry it follows that $\mathbf{Y}'\tau = \mathbf{z}$.

Theorem 4.9 A statistic $f: \triangle \to \Omega$ is sufficient for the parameter Y iff:

$$\ker f_{\triangle'^+} \subseteq \ker k_{\triangle'^+}. \tag{4}$$

Proof. If the relation (4) holds, theorem 3.3 implies that f is sufficient statistic.

Suppose that (4) is not satisfied. This means that there are $\mathbf{d}' = (\sigma, \mathbf{y})$, $\mathbf{d}'' = (\tau, \mathbf{z}) \in \triangle'^+$ such that $f(\mathbf{d}') = f(\mathbf{d}'')$, but $k(\mathbf{d}') \neq k(\mathbf{d}'')$. From the inequality $k(\mathbf{d}') \neq k(\mathbf{d}'')$, by symmetry, we can suppose that there is $i \in \mathbb{N}_n$, such that $(\sigma_i, y_i) \neq (\tau_j, z_j)$ for each $j \in \mathbb{N}_m$. Two cases are possible: 1) $\sigma_i \in \tau$ and 2) $\sigma_i \notin \tau$.

Let $\mathbf{Y}', \mathbf{Y}'' \in \mathbf{R}^N$ be such that $\mathbf{d}' \sim \mathbf{Y}'$ and $\mathbf{d}'' \sim \mathbf{Y}''$, i.e. let $\mathbf{Y}'\sigma = \mathbf{y}$ and $\mathbf{Y}''\tau = \mathbf{z}$.

In case 1), there is $j \in \mathbb{N}_m$ such that $\sigma_i = \tau_j$, but since $(\sigma_i, y_i) \neq (\tau_j, z_j)$, $y_i \neq z_j$. But then $y_i \neq z_j = \mathbf{Y}''_{\tau_j} = \mathbf{Y}''_{\sigma_i}$. This means that $\mathbf{Y}''\sigma \neq \mathbf{y}$, or **d** is not consistent with \mathbf{Y}'' .

In case 2), $\sigma_i \neq \tau_j$ for each $j \in \mathbb{N}_m$. Let $\mathbf{Y}^* \in \mathbb{R}^N$ be such that $\mathbf{Y}_k^* = \mathbf{Y}_k''$ for all k except for $k = \sigma_i$, namely $\mathbf{Y}_{\sigma_i}^* \neq y_i$ and all other components of \mathbf{Y}^* and \mathbf{Y}'' are equal. Then $\mathbf{Y}^*\tau = \mathbf{z}$, but $\mathbf{Y}^*\sigma \neq \mathbf{y}$, i.e. \mathbf{d}'' is consistent with \mathbf{Y}^* , but \mathbf{d}' is not consistent with \mathbf{Y}^* .

In both cases theorem 4.1 (ii) implies that f is not sufficient statistic for \mathbf{Y} . \square

The Theorem 4.9 can be formulated in the following manner, where $\kappa = \ker k$.

Theorem 4.9' The equivalence $\alpha \in Eq(\Delta)$ is sufficient iff $\alpha_{\Delta'^+}$. \square

Let us note that the theorems 4.7 and 4.8 are consequences of theorem 4.9 or 4.9'. At the end we will describe the maximal elements in $SEq(\Delta)$.

Theorem 4.10 If ω is maximal sufficient equivalence, then $\omega_{\triangle'} = \kappa_{\triangle'}$.

Proof. Let ω be maximal and sufficient equivalence and let $\mathbf{d}', \mathbf{d}'' \in \triangle'^+$ be such that $\mathbf{d}'\kappa\mathbf{d}''$, but $(\mathbf{d}', \mathbf{d}'') \notin \omega$. Let $\tilde{\omega}$ be the equivalence generated by $\omega \cup (\mathbf{d}', \mathbf{d}'')$. Then $\mathbf{d}'^{\tilde{\omega}} \supseteq \mathbf{d}'^{\omega} \cup \mathbf{d}''^{\tilde{\omega}}$, and $\tilde{\omega}$ is defined by:

if
$$\mathbf{d} \notin \mathbf{d'}^{\omega} \cup \mathbf{d''}^{\omega}$$
 then $\mathbf{d}^{\tilde{\omega}} = \mathbf{d}^{\omega}$ and if $\mathbf{d} \in \mathbf{d'}^{\omega} \cup \mathbf{d''}^{\omega}$ then $\mathbf{d}^{\tilde{\omega}} = \mathbf{d'}^{\omega} \cup \mathbf{d''}^{\omega}$.

By the definition of $\tilde{\omega}$ it follows that $\omega \subset \tilde{\omega}$ and that $\tilde{\omega}_{\triangle'^+} \subseteq \kappa_{\triangle'^+}$ Theorem 4.9' implies that $\tilde{\omega}$ is sufficient equivalence for **Y**. But this together with $\omega \subset \tilde{\omega}$ contradicts the fact that ω is a maximal equivalence.

The condition $\omega_{\Delta'^+} = \kappa_{\Delta'^+}$ is not a sufficient condition for maximallity of ω . This is shown by the following example. Let ρ be the equivalence defined by:

for
$$\mathbf{d} \in \triangle'^+$$
, $\mathbf{d}^{\rho} = \mathbf{d''}^{\kappa} \cap \triangle'^+$ and for $\mathbf{d} \notin \triangle'^+$, $\mathbf{d}^{\rho} = \triangle \setminus \triangle'^+$.

Then $\rho \in SEq(\Delta)$ and $\rho_{\Delta'^+} = \kappa_{\Delta'^+}$. But ρ is not a maximal element, since it is a proper subset of $\bar{\rho} \in SEq(\Delta)$ defined as follows. Fix $\mathbf{d}' \in {\Delta'}^+$ and let $\mathbf{d}'^{\bar{\rho}} = (\Delta \backslash {\Delta'}^+) \cup \mathbf{d}'^{\rho}$, and for all other $\mathbf{d} \in \Delta$, let $\mathbf{d}'^{\bar{\rho}} = \mathbf{d}'^{\rho}$. Since, $\bar{\rho}_{\Delta'^+} = \kappa_{\Delta'^+}$, $\bar{\rho} \in SEq(\Delta)$ and $\rho \subset \bar{\rho}$.

The previous discussion gives in fact the description of maximal elements of $SEq(\Delta)$, given by following theorem:

Theorem 4.11 An equivalence $\omega \in SEq(\triangle)$ is a maximal element in $SEq(\triangle)$ if and only if the following conditions hold

- i) $\omega_{\wedge'^+} = \kappa_{\wedge'^+}$ and
- ii) for each $\mathbf{d} \in \Delta$, there is $\mathbf{d}' \in {\Delta'}^+$, such that $\mathbf{d}^{\omega} = {\mathbf{d}'}^{\omega}$. \square

REFERENCES

- Cassel, Claes-Magnus, Foundations of inference in survey sampling, 1977, John & Sons, Inc.
- [2] A.S.Hedajat, B.K.Sinha, Design and inference in a finite population sampling, Wiley series in probability and mathematical statistics, 1990.
- [3] Ž. Popeska, Algebarsko kombinatorni metodi vo teorija na primerok i eksperimentalen dizajn - doktorska disertacija, Skopje, 1998.
- [4] Ž. Popeska, Quotient sampling design, Prilozi, Odd.mat.teh.nauki, MANU, 15,1, (1994), 37-48.
- [5] Ž. Popeska, Sample as an element of a semigroup, Bulletin of the International Statistical Institute, Tome LVII, Book 3, Helsinki, 1999, 139-140.
- [6] Ž. Popeska, Sampling Space and Statistics on a Sample as an Element of a Semigroup, Bulletin of the International Statistical Institute, 53rd Session, Tome LIX -Book 2, Seoul, 2001, 375-377.

FACULTY OF NATURAL SCIENCES AND MATHEMATICS, INSTITUTE OF INFORMATICS, SKOPJE, MACEDONIA

E-mail address: zaneta@pmf.ukim.edu.mk