FREE GRUPOIDS WITH $x^2x^2 = x^3x^3$

VESNA CELAKOSKA-JORDANOVA¹⁾

Abstract. A description of free objects in the variety $\mathcal V$ of groupoids defined by the identity $x^2x^2=x^3x^3$ is obtained. The following method is used: one of the sides of the identity is considered as "suitable" and the other as "unsuitable" one. First, the left-hand side x^2x^2 is chosen as "suitable" and the set of elements of F ($\mathbf F$ being an absolutely free groupoid with a basis B) containing no parts that have the form x^3x^3 is taken as a "candidate" for the carrier of the desired free object in $\mathcal V$. Continuing this procedure, a $\mathcal V$ -free object is obtained. Another construction of $\mathcal V$ -free object is obtained by choosing the right-hand side x^3x^3 as "suitable" one.

0. Introduction

First, we introduce some notations.

Throughout the paper, $F = (F, \cdot)$ will denote a given absolutely free groupoid²⁾ (i.e. groupoid free in the class of all groupoids) with the basis B. The following two properties characterize F([1]; L.1.5):

- a) **F** is injective (i.e. $ab = cd \Rightarrow a = c, b = d$);
- b) The set B of primes³⁾ is nonempty and generates \mathbf{F} .

For every $w \in F$, a set P(w) (called the *set of parts* of w) and the *length* |w| of w are defined by:

$$P(b) = \{b\}, \ P(uv) = \{uv\} \cup P(u) \cup P(v), \ |b| = 1, \ |uv| = |u| + |v|,$$

for every $b \in B$ and $u, v \in F$.

The subject of this paper is a construction of free groupoids in the variety $\mathcal V$ of groupoids defined by the identity

$$x^2x^2 = x^3x^3.$$
 (0.1)

In order to construct V-free objects (i.e. free objects in the variety V) we will recall the corresponding procedure given in [2] for the variety V_1 of groupoids defined by the identity

$$xx^2 = x^2x^2 \tag{0.2}$$

¹Research supported in part by MANU within the project "Free algebraic structures". I am grateful to Professor Gorgi Čupona, the project manager.

²Notions as: groupoid, free groupoid, homomorphism . . . have the usual meanings.

³In a groupoid $G = (G, \cdot)$, $a \in G$ is prime iff $a \neq xy$, for all $x, y \in G$.

⁴Here, x^n is defined by: $x^1 = x$, $x^{k+1} = x^k x$.

Key words and phrases. groupoid, variety, free groupoid.

Namely, choose first x^2x^2 as the "suitable" (i.e. xx^2 as the "unsuitable") side of (0.2). As a "candidate" for the carrier of a \mathcal{V}_1 -free groupoid, define the set

$$R = \{ t \in F : (\forall \alpha \in F) \ \alpha \alpha^2 \notin P(t) \},\$$

and then define an operation * on R by

$$t, u \in R \Rightarrow \{t * u = tu \text{ if } tu \in R \& t * u = (t^2)^2 \text{ if } u = t^2\}.$$

The obtained groupoid $\mathbf{R} = (R, *)$ is a \mathcal{V}_1 -free groupoid with the basis B.

Next, we choose xx^2 as the "suitable" (i.e. x^2x^2 as the "unsuitable") side and define a "candidate" for the carrier of a \mathcal{V}_1 -free groupoid to be the set

$$F_1 = \{ t \in F : (\forall \alpha \in F) \ (\alpha^2)^2 \notin P(t) \},\$$

and then an operation $*_1$ on F_1 by

$$t, u \in F_1 \Rightarrow \{t *_1 u = tu \text{ if } tu \in F_1 \& t *_1 u = \alpha \alpha^2 \text{ if } t = u = \alpha^2 \}.$$

Then $F_1 = (F_1, *_1)$ is a groupoid that is not in \mathcal{V}_1 . As a consequence of the identity $xx^2 = x^2x^2$, we come to a new identity $\alpha^2(\alpha\alpha^2) = (\alpha\alpha^2)^2$. This suggests a definition of a new "candidate" $F_2 = (F_2, *_2)$:

$$F_2 = \{ t \in F_1 : (\forall \alpha \in F_1)(\alpha \alpha^2)^2 \notin P(t) \},$$

We obtain that $F_2 \notin \mathcal{V}_1$ and come to a new identity in \mathcal{V}_1 :

$$(\alpha \alpha^2)(\alpha^2(\alpha \alpha^2)) = ((\alpha^2(\alpha \alpha^2))^2.$$

Continuing this procedure, we see regularity in the consequences of (0.2) that suggests introducing a special kind of groupoid powers $x \mapsto x^{< n>}$ defined by:

$$x^{<0>} = x, \quad x^{<1>} = x^2, \quad x^{< k+2>} = x^{< k>} x^{< k+1>}.$$
 (0.3)

Using this, we have: $(\alpha^2)^2 = (\alpha^{<1>})^2$, $(\alpha\alpha^2)^2 = (\alpha^{<2>})^2$ etc. and a sequence of groupoids $F_n = (F_n, *_n)$, $n \ge 0$, defined by: $F_0 = F = (F, \cdot)$,

$$F_1 = \{ t \in F_0 : (\forall \alpha \in F_0) (\alpha^{<1>})^2 \notin P(t) \},$$

$$F_n = \{ t \in F_{n-1} : (\forall \alpha \in F_n) (\alpha^{})^2 \notin P(t) \},$$

$$t, u \in F_n \Rightarrow \{t *_n u = t *_{n-1} u \text{ if } t *_{n-1} u \in F_n \& t *_n u = \alpha^{< n+1 >} \text{ if } t = u = \alpha^{< n >} \}$$

The groupoids F_n are not in \mathcal{V}_1 . However, the fact that $F \supseteq F_1 \cdots \supseteq F_n \supseteq \ldots$ and that F_n is "better" than F_{n-1} enables us to define a carrier R' of a free object in \mathcal{V}_1 by:

$$R' = \{t \in F : (\forall \alpha \in F, \ k \ge 1) \ (\alpha^{< k >})^2 \notin P(t)\} \ (= \bigcap \{F_n : n \ge 1\})$$

and an operation *' on R' by:

$$t, u \in R' \Rightarrow \{t *' u = tu \text{ if } tu \in R' \text{ \& } t *' u = \alpha^{< k+1>} \text{ if } t = u = \alpha^{< k>}, \ k \ge 1\}.$$

Then $\mathbf{R}' = (R', *')$ is a \mathcal{V}_1 -free groupoid with the basis B and it is isomorphic to \mathbf{R} .

We use below the same method for constructing free objects in the variety $\mathcal V$ of groupoids with $x^2x^2=x^3x^3$.

1. Construction of \mathcal{V} -free objects by choosing x^2x^2 as the "suitable side"

Choosing the left-hand side of (0.1) as "suitable", we define the first "candidate" for the carrier of a V-free groupoid by:

$$F_1 = \{ t \in F : (\forall \alpha \in F) \ (\alpha^3)^2 \notin P(t) \}$$
 (1.1)

By (1.1) we obtain:

- 1) $t, u \in F_1 \Rightarrow \{tu \notin F_1 \Leftrightarrow t = u \text{ is a cube }^5\}$
- 2) $t, u \in F_1 \Rightarrow \{tu \in F_1 \Leftrightarrow [t \neq u \text{ or } (t = u \text{ is not a cube}]\}$
- 3) $t^2 \in F_1 \Leftrightarrow \{t \in F_1 \& t \text{ is not a cube}\}$
- 4) $t^3 \in F_1 \Leftrightarrow t^2 \in F_1$

Define an operation $*_1$ on F_1 by:

$$t, u \in F_1 \Rightarrow t *_1 u = \begin{cases} tu, & \text{if } tu \in F_1 \\ (\alpha^2)^2, & \text{if } t = u = \alpha^3. \end{cases}$$

By a direct verification we obtain that $F_1 = (F_1, *_1)$ is a groupoid. However, the equality (0.1), which has the form here

$$(t *1 t) *1 (t *1 t) = ((t *1 t) *1 t) *1 ((t *1 t) *1 t)$$
(1.2)

is not satisfied in F_1 . Namely, for $t=\alpha^3$, the left-hand side of (1.2) is $((\alpha^2)^2)^2$ and the right-hand side is $((\alpha^2)^2\alpha^3)^2$. Thus, $F_1\notin\mathcal{V}$. Therefore, as a consequence of (1.2), we obtain that: $((\alpha^2)^2)^2=((\alpha^2)^2\alpha^3)^2$ is an identity in \mathcal{V} .

This suggests a definition of a new "candidate" $F_2 = (F_2, *_2)$:

$$F_{2} = \{ t \in F_{1} : (\forall \alpha \in F_{1}) \ ((\alpha^{2})^{2} \alpha^{3})^{2} \notin P(t) \},$$

$$t, u \in F_{2} \Rightarrow t *_{2} u = \begin{cases} t *_{1} u, & \text{if } t *_{1} u \in F_{2} \\ ((\alpha^{2})^{2})^{2}, & \text{if } t = u = (\alpha^{2})^{2} \alpha^{3}. \end{cases}$$

Checking (1.2) (when $*_1$ is substituted by $*_2$), we obtain that $F_2 \in \mathcal{V}$ and one more identity in \mathcal{V} : $(((\alpha^2)^2)^2)^2 = (((\alpha^2)^2)^2((\alpha^2)^2\alpha^3))^2$. Continuing this procedure, we can see "regularity" in the consequences of the identity (1.2). This suggests introducing the following notations:

$$x^{(0)} = x, \quad x^{(k+1)} = (x^{(k)})^2;$$

 $x^{[0]} = x, \quad x^{[k+1]} = x^{(k+1)}x^{[k]}.$ (1.3)

It is easily seen, by induction on n, that:

 $^{{}^5}a\in G$ is a *cube* in a grupoid $\mathbf{G}=(G,\cdot)$ iff $(\exists \alpha\in G)a=\alpha^3;$ if \mathbf{G} is injective then α is unique.

Proposition 1.1. If $G = (G, \cdot)$ is any groupoid, then for each $x \in G$ and $m, n \geq 0$:

$$x^{(m+n)} = \left(x^{(m)}\right)^{(n)}.$$

By induction on p, one can show the following propositions:

Proposition 1.2. If $x, y \in F$ and $p, q \ge 0$, then:

a)
$$|x^{(p)}| = 2^p |x|$$
; b) $|x^{[p]}| = (2^{p+1} - 1)|x|$

c)
$$x^{(p)} = y^{(p)} \Leftrightarrow x = y$$
; d) $x^{(p)} = y^{(p+q)} \Leftrightarrow x = y^{(q)}$;

e)
$$(\forall x \in F)$$
 $(\exists !(y,p) \in F \times \mathbb{N}_0)[x = y^{(p)} \& (\forall z \in F)y \notin z^2]^{-6})$

$$f) x^{[p+1]} = y^{[q+1]} \Rightarrow p = q, x = y.$$

Proposition 1.3. If $G = (G, \cdot) \in V$, then for each $x \in G$ and $p, q \ge 0$:

$$(x^{[p]})^2 = (x^{(p)})^2.$$

More generally: $(x^{[p]})^{(r)} = x^{(p+r)}$, for any $r \ge 1$.

Proof. Clearly, the above equality holds for p = 0. Suppose that it is true for p = k. Then, considering the identity (0.1) and the inductive hypothesis, we have:

$$(x^{[k+1]})^2 = (x^{(k+1)}x^{[k]})^2 = ((x^{(k)})^2x^{[k]})^2 = ((x^{[k]})^2x^{[k]})^2 = ((x^{[k]})^3)^2 = ((x^{[k]})^2)^2 = ((x^{(k)})^2)^2 = (x^{(k+1)})^2.$$

Using (1.3), we can define the following infinite set of groupoids:

$$F_1 = \{ t \in F : (\forall \alpha \in F) \ (\alpha^{[1]})^2 \notin P(t) \},$$

$$t, u \in F_1 \Rightarrow t *_1 u = \begin{cases} tu, & \text{if } tu \in F_1 \\ \alpha^{(2)}, & \text{if } t = u = \alpha^{[1]}. \end{cases}$$

$$F_{n+1} = \{ t \in F_n : (\forall \alpha \in F_n) \ (\alpha^{[n+1]})^2 \notin P(t) \},$$

$$t, u \in F_{n+1} \Rightarrow t *_{n+1} u = \begin{cases} t *_n u, & \text{if } t *_n u \in F_{n+1} \\ \alpha^{(n+2)}, & \text{if } t = u = \alpha^{[n+1]}. \end{cases}$$

One can show that F_{n+1} is a groupoid and $F_{n+1} \notin \mathcal{V}$.

The fact that $F \supseteq F_1 \supseteq \cdots \supseteq F_n \supseteq \cdots$ and that F_{n+1} is "better" than F_n suggests to define the carrier of a free groupoid in \mathcal{V} in the following way:

$$R = \{ t \in F : (\forall \alpha \in F, k \ge 1) \ (\alpha^{[k]})^2 \notin P(t) \}. \tag{1.4}$$

(Note that it is not necessary to define the whole sequence, since the desired "good candidate" can be noticed after several steps.)

⁶N₀ is the set of nonnegative integers.

By (1.4) we obtain:

- 0) $B \subset R \subset F$
- i) $t, u \in R \Rightarrow \{tu \notin R \Leftrightarrow (\exists \alpha \in F, k \ge 1) \ t = u = \alpha^{[k]}\}$
- ii) $t, u \in R \Rightarrow \{tu \in R \Leftrightarrow [t \neq u \text{ or } (t = u \& (\forall \alpha \in R, k \geq 1) t \neq \alpha^{[k]})]\}$
- iii) $t^{(p+1)} \in R \Leftrightarrow t \in R \& t \neq \alpha^{[k]}, k \geq 1.$

Theorem 1. Let R be defined by (1.4) and an operation * on R by:

$$t, u \in R \Rightarrow \{t * u = tu \ if \ tu \in R \ \& \ t * u = \alpha^{(k+1)} \ if \ t = u = \alpha^{[k]}\}.$$

Then $\mathbf{R} = (R, *)$ is a \mathcal{V} -free groupoid with the basis B.

Proof. It follows that, for every $u \in F$, there is at most one pair $(\alpha, k) \in F \times \mathbb{N}_0$, such that $u = \alpha^{[k]}$. By a direct verification of (0.1) we obtain that $R \in \mathcal{V}$. Furthermore, B is a generating set of R and for any groupoid $G \in \mathcal{V}$ and a mapping $\lambda : B \to G$ there is a homomorphism $\varphi : R \to G$ that extends λ .

2. Construction of \mathcal{V} -free objects if x^3x^3 is the "suitable side"

Now, choose the right-hand side of (0.1) as "suitable" and define:

$$F_1' = \{ t \in F : (\forall \alpha \in F) \ (\alpha^2)^2 \notin P(t) \}. \tag{2.1}$$

By (2.1) we obtain:

- 1') $t, u \in F_1' \Rightarrow \{tu \notin F_1' \Leftrightarrow t = u \text{ is a square }\}^{7}$
- $2') \ t,u \in F_1' \Rightarrow \{tu \in F_1' \Leftrightarrow [t \neq u \ \text{ or } \ (t=u \ \text{ is not a square }]\}$
- $3') \ t^2 \in F_1' \Leftrightarrow \{t \in F_1' \ \& \ t \ \text{ is not a square}\}$
- 4') $t^2 \in F_1' \Leftrightarrow t^n \in F_1', n \ge 3.$

Define an operation $*'_1$ on F'_1 by:

$$t, u \in F_1' \Rightarrow t *_1' u = \begin{cases} tu, & \text{if } tu \in F_1' \\ (\alpha^3)^2, & \text{if } t = u = \alpha^2. \end{cases}$$

By a direct verification we obtain that $F_1' = (F_1', *_1')$ is a groupoid. However, the equality

$$(t *'_1 t) *'_1 (t *'_1 t) = ((t *'_1 t) *'_1 t) *'_1 ((t *'_1 t) *'_1 t)$$
(2.2)

is not satisfied in F_1 '. Namely, for $t=\alpha^2$, the left-hand side of (2.2) is $((\alpha^3)^2\alpha^2)^2$ and the right-hand side is $((\alpha^3)^3)^2$. Thus, F_1 ' $\notin \mathcal{V}$. Therefore, as a consequence of (0.1), we obtain that: $((\alpha^3)^2\alpha^2)^2=((\alpha^3)^3)^2$ is an identity in \mathcal{V} .

This suggests a definition of a new "candidate" $F_2' = (F_2', *_2')$:

$$F_2'=\{t\in F_1': (\forall \alpha\in F_1')\; ((\alpha^3)^2\alpha^2)^2\notin P(t)\}$$

 $^{{}^7}a \in G$ is a square in a groupoid $G = (G, \cdot)$ iff $(\exists \alpha \in G)$ $a = \alpha^2$; if G is injective, then α is unique.

$$t, u \in F_2' \Rightarrow t *_2' u = \begin{cases} t *_1' u, & \text{if } tu \in F_1' \\ ((\alpha^3)^3)^2, & \text{if } t = u = (\alpha^3)^2 \alpha^2. \end{cases}$$

Checking (2.2) (when $*'_1$ is substituted by $*'_2$), we obtain that $F_2 \not\in \mathcal{V}$ and one more identity in \mathcal{V} : $(((\alpha^3)^3)^2((\alpha^3)^2\alpha^2))^2 = (((\alpha^3)^3)^3)^2$.

Continuing this procedure, we can see a "regularity" in the consequences of the identity (2.2). This suggests introducing the following notations:

$$x^{<0>} = x,$$
 $x^{< k+1>} = (x^{< k>})^3;$ $x^{< 0]} = x^2,$ $x^{< k+1]} = (x^{< k+1>})^2 x^{< k]}$ (2.3)

It is easily seen, by induction on n, that:

Proposition 2.1. If $G = (G, \cdot)$ is any groupoid, then for each $x \in G$ and $m, n \geq 0$:

 $x^{< m+n>} = (x^{< m>})^{< n>}.$

By induction on p, one can show the following propositions:

Proposition 2.2. If $x, y \in F$ and $p, q \ge 0$, then:

- a) $|x^{}| = 3^p |x|$
- b) $x^{} = y^{< p+q>} \Leftrightarrow x = y^{< q>};$
- c) $(\forall x \in F)(\exists !(y,p) \in F \times \mathbb{N}_0)[x = y^{} \& y \text{ is not a cube }].$

Proposition 2.3. If $x, y \in F$ and $p, q \ge 0$, then:

- a) $|x^{< p}| = (3^{p+1} 1)|x|$; b) $|x^{< p}| < |x^{< p+1}|$; c) $|x^{< p}| \neq |x^{< p+m}|$, $|x^{< p}| \neq |x^{< p+m}|$
- d) $x^{< p+1>} \neq y^{< q}, p \ge 0, q \ge 1;$ e) $x^{< p} = y^{< q} \Rightarrow p = q, x = y.$

Proposition 2.4. If $G = (G, \cdot) \in V$, then for each $x \in G$ and $p, q \ge 0$:

$$(x^{< p]})^2 = (x^{< p+1>})^2.$$

More generally: $(x^{< p})^{< r>} = x^{< p+r>}$, for any $r \ge 1$.

As in (1.4), we define the carrier of a free groupoid in V in the following way:

$$R' = \{ t \in F : (\forall \alpha \in F, k \ge 0) \ (\alpha^{< k})^2 \notin P(t) \}.$$
 (2.4)

By (2.4) we obtain:

- 0') $B \subset R' \subset F$
- $i') \ t,u \in R' \Rightarrow \{tu \notin R \Leftrightarrow (\exists \alpha \in F) \ t=u=\alpha^{< k]}, k \ge 0\}$
- ii') $t, u \in R' \Rightarrow \{tu \in R' \Leftrightarrow [t \neq u \text{ or } (t = u \& (\forall \alpha \in F, k \ge 0) t \neq \alpha^{< k]})]\}$

Theorem 2. Let R' be defined by (2.4) and an operation *' on R' by:

$$t, u \in R' \Rightarrow \{t *' u = tu \ if \ tu \in R' \& t *' u = (\alpha^{< k+1>})^2 \ if \ t = u = \alpha^{< k}]\}.$$

Then $\mathbf{R}' = (R', *')$ is a \mathcal{V} -free groupoid with the basis B .

Proof. It follows that, for every $u \in F$ there is at most one pair $(\alpha, k) \in F \times \mathbb{N}_0$, such that $u = \alpha^{\langle k |}$. By a direct verification of (0.1) we obtain that $R' \in \mathcal{V}$. Furthermore, B generates R' and, for any $G \in \mathcal{V}$ and a mapping $\lambda : B \to G$, there is a homomorphism $\varphi : R \to G$ that extends λ .

(Note that R and R' are isomorphic with the same basis B.)

3. Some remarks

Remark 3.1: The method used above is not applicable in some varieties of groupoids. Namely, consider the variety of groupoids with the identity $x^2 = x^3$. If we choose x^2 as the "suitable side" of the identity and define

$$R = \{ t \in F : (\forall \alpha \in F) \ \alpha^3 \notin P(t) \},\$$

$$t, u \in R \Rightarrow \{t * u = tu \text{ if } tu \in R \& t * u = u^2 \text{ if } t = u^2\},$$

then we obtain that $\mathbf{R} = (R, *)$ is a free object in this variety. However, if we choose the right-hand side as the "suitable" one, then by

$$R' = \{ t \in F : (\forall \alpha \in F) \ \alpha^2 \notin P(t) \},$$

$$t, u \in R' \Rightarrow \{ t *' u = tu \text{ if } tu \in R' \& t *' u = t^3 \text{ if } t = u \},$$

$$R' = (R', *')$$
 is not a groupoid. (Namely, if $t = u$, then $t *' t = t^3 = t^2 t \notin P(t)$!)

Thus, the procedure used for the variety \mathcal{V} is not applicable in one of the cases for the variety of groupoids with the identity $x^2 = x^3$ and in any variety of groupoids with the identity such that one hand-side of the identity is a part of the other one.

Remark 3.2: It is natural to consider the "shorter" side of the identity $x^2x^2 = x^3x^3$ as a "suitable" one (as we did in Section 1) and to expect a "shorter" (or a "less complicated") construction of a free groupoid in this variety. However, comparing the constructions in Section 1 and Section 2 we can see that they are nearly equal, although one can say that the groupoid powers (1.3) are a "little simpler" than (2.3). Moreover, the situation with the variety defined by $xx^2 = x^2x^2$ is quite different. Namely, the choice of the "shorter" side xx^2 as "suitable" leads to a longer and more complicated construction than the choice of the "larger" side x^2x^2 (the construction in this case finishes at once, at the first step!). (Probably, the "symmetry" in x^2x^2 plays a certain role.)

Remark 3.3: The free groupoids R and R' obtained in Theorems 1 and 2 are \mathcal{V} -canonical groupoids. (A groupoid H=(H,*) is said to be \mathcal{V} -canonical groupoid in a given variety $\mathcal{V}([3])$ iff:

$$(c_0)$$
 $B \subset H \subset F$ (c_1) $tu \in H \Rightarrow t, u \in H \& tu = t * u;$ (c_2) H is V -free

(i.e. $H \in \mathcal{V}$; B generates H; for any $G \in \mathcal{V}$ and any mapping $\lambda : B \to G$, there is a homomorphism φ from F into G such that $\varphi_B = \lambda$).

For a given variety V of groupoids, a set R is said to be *representative* for V ([4]) iff the following conditions are satisfied:

$$(j_0)$$
 $R \subseteq F$;

- (j_1) for every $w \in F$ there is exactly one $u \in F$ such that $u \in R$ and the equation (w, u) is satisfied in \mathcal{V} ;
- (j_2) if $t \in R$, then $P(t) \subseteq R$.

Proposition 3.1. The carrier of any V-canonical groupoid is a representative set for V.

Proof. Let \mathcal{V} be a variety of groupoids and R = (R, *) be a \mathcal{V} - canonical groupoid (with a basis B). If F is an absolutely free groupoid with a basis B, then there is a unique homomorphism φ from F into R such that $\varphi(b) = b$, for any $b \in B$. Therefore, for every $w \in F$, $\varphi(w)$ is a uniquely determined element of R and clearly the equation $(w, \varphi(w))$ is satisfied in \mathcal{V} . Thus, (j_1) holds. The condition (j_2) can be shown by induction on length of t. Namely, if |t| = 1, i.e. $t \in B$, then $P(t) = \{t\} \subseteq R$. Suppose that $P(t) \subseteq R$ for every $t \in R$ with $|t| \le k$. Let $t \in R$ be such that |t| = k+1. Then t = uv, $|u| \le k$, $|v| \le k$ and since $\{uv\}$, P(u), $P(v) \subseteq R$, it follows that $P(t) \subseteq R$.

REFERENCES

- [1] R.H.Bruck: A Survey of Binary Systems, Springer-Verlag 1958
- [2] G. Čupona, V.Celakoska-Jordanova: On a variety of groupoids of rank 1; Proceed. 2nd Congress of Math. and Inf. of R.Macedonia, Ohrid 2000, 17-23
- [3] G. Čupona, N. Celakoski, B. Janeva: Injective Groupoids in some Varieties of Groupoids, Proceed. 2nd Congress of Math. and Inf. of R.Macedonia, Ohrid 2000, 47-55
- [4] Ježek: Free Groupoids In Varieties Determined by a Short Equation, Acta Universitatis Carolinae Math. et Phys., Vol.23. No.1 (1982), 3-24

СЛОБОДНИ ГРУПОИДИ СО $x^2x^2 = x^3x^3$

Весна Целакоска-Јорданова

Резиме

Во работава е даден опис на слободните објекти во многуобразието $\mathcal V$ од групоиди дефинирано со идентитетот $x^2x^2=x^3x^3$. Користена е следнава постапка: едната од двете страни на идентитетот ја сметаме за "соодветна", а другата за "несоодветна". Разгледани се двата можни случаи. Прво, левата страна x^2x^2 е земена за "соодветна". Во тој случај, множеството елементи од F (каде што F е апсолутно слободен групоид со база B) коишто не содржат дел од обликот x^3x^3 , земено е како "кандидат" за носител на слободен објект во $\mathcal V$. Продолжувајќи ја таа постапка, добиен е $\mathcal V$ -слободен групоид. Друг $\mathcal V$ -слободен групоид е конструиран со земање на десната страна x^3x^3 како "соодветна". (Добиените $\mathcal V$ -слободни групоиди се изоморфни.) Меѓутоа, оваа постапка не е применлива во некои многуобразија групоиди, како на пример во многуобразието дефинирано со идентитетот $x^2=x^3$, а и во секое многуобразие групоиди со идентитет во кој едната страна е дел од другата

(Remark 3.1). Добиените V-слободни групоиди R и R' (Theorem 1 и Theorem 2) се V-канонични. Се покажува (Proposition 3.1) дека носителот на V-каноничен групоид е репрезентативно множество за V (Remark 3.3)

"St. Cyril and Methodius University", Faculty of Natural Sciences and Mathematics, Institute of Mathematics, P.O. Box 162

E-mail address: vesnacj@iunona.pmf.ukim.edu.mk