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THE SPECIAL ROLE OF THE g -FUNCTIONS

Dhurata Valera®, Ivi Dylgjeri?

Abstract. The class of g -functions by the g -generator of the system of pseudo-

operations, apply a special role on functional equations and their solutions. More
properties may be found in this class and by some elementary ¢ -functions are given

further studies to the entropy of @ - ( decomposable) measure.

1. INTRODUCTION

The function corresponding to a function f introduced by the g —calculus ( called
g —functions and denote by fy in general and then g -function for special case) are
derived as solutions of some functionals equations using several results of Aczél [1]. To

the creation of function are shown the role of the consistent sistem of pseudo-
arithmetical operations generating by generator g, by obtain directly the rational

function [2], [3] but g -Transform is a further development of g -calculus [5], [6], [9],

[12], [17]. That is why are introduce some elementary function as solutions of
corresponding functional equations [2], [6], [20]. A wide class of some elementary
modified function ( fg) is investegated [2] and some rules for crossings into different

parameterized classes of functional equations is obtained.
The study of entropy and further the g -entropy for @ -decomposable probability

measure are encouraged more by the role of g -function and found links by ¢ -

Transform [2], [3], [16]. Reasonable, is raised the issue of the modification of the
measure by g -Transform and the some relation between Mg and Py are given.

2. MODIFICATION OF FUNCTIONS BY g -TRANSFORM
2.1. MODIFICATION OF FUNCTION AND SOME IMPORTANT ¢ -FUNCTIONS

Two binary operation (®,0) on [0,+o] are respectively, pseudo-addition and
pseudo-multiplication corresponding to the pseudo-addition @ (introduced first on
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[0,+00] interval and then to the whole extended real line [—oo,+<0] ), if and only if there
is a generator g (a continuous monotone strictly increasing unbounded odd function)

g:]—o0,+0] =>]—o00,+oc], such that g(0)=0g, g(1)=15,9(+)=+c so for all
X,y e [oo4o0] itis x®y=g"(g(x)+g(y)) and xOy=g""(g(x)-g(y)), with the
convention 0-(+w0) =0 [2], [4], [7], [6]. [9], [16].

If the generator g is increasing (decreasing), then the pseudo-operation @, through
it's generator g induces the usual order (opposite to the usual order), on the interval
[—o0,+00] in the following way: x<y if and only if g(x) <g(y). We will work with the
real function f, which is continuous on Ja,b[ and ]a,b[ <]—o0,+o[ .

The pseudo-arithmetical operation (©,©) are introduce on [—oo,+o0] in [9], [16] as
pseudo-operations consistent with the pseudo-addition by formulas:

xoy=g"{g()- g(y)) and x@y= g7 (g(x)/g(¥)).
Definition 2.1 ([2]). Let f be a function on ]a,b[ <]—o0,+oc[ and the function g be a
generator of the consistent system of pseudo-arithmetical operations {®,®,©,®}. The
function fy given by fg (x)zg_l(f(g(x))) for every x e (g 1(a),g (b)) is said to

be g -function corresponding to the function f .

Definition 2.2 ([2]). Let f be a function on Ja,b[ <] —o0,+oc[ and the function g be a
generator of the consistent system of pseudo-arithmetical operations {®,,5,@}. The
function f, given by fy(x,y)=g " (f(g(x).a(y))). for every x,y e(g*(a),g (b))
is said to be g -function corresponding to the function f.

Definition 2.3 ([2]). A continuous function fq such that is a solution of the functional
equations f, (x)® fy(y) = fg(xoy) and f4(g ’1(a)) =1, where a>0,a=1

will be called g-logarithmic function and denoted by fy_j jog-

Definition 2.4 ([2]). A continuous function fy such that is a solution of the functional

equations fy(x) O fg(y)=fg(x®y) and fg(l):g_l(a), wherea>0,a=1 will be

called g-exponencial functions and denoted by fy_j exp -

Definition 2.5 ([2]). A continuous function f, such that is a solution of the functional
equations  fg(x)© fg(y)=fg(xOy) where r>0,xe(0,+x) will be called g-power

functions and denoted by fy_, sower -
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This function is given by fq_r nower (X) =9 ’1((g(x))r) , r>0 where xe[0,+o0] .
Theorem 2.6 ([2]). For every X €]0,+oo[ it holds fy_g0q(X)=9 _1(Ioga a(x)) .

Theorem 2.7 ([2]). For every X €]—oo,+oo[ itholds fy_ exy(X) = g_l(ag(x)) .

Theorem 2.8 ([2]). The fy_aexp is an inverse function of a fg-alog-

By the definition 2.3 and 2.4 the g-logarithmic and g-exponencial function
respectively are given by the formulas:

fg_atog(¥) =9 (1094 (g(X))) and Ty gexp(¥) =g 1(@9™)
SO

- f —a,lo - -
fg-aexn( fg-atog(X)) = g (@ o200y = g1 9(8 (2% 30

=g 7}(a'®=90) = g (g(x)) = x.
Also, conversely we can write:

fg-aog(fg-aexp (X)) =0 (1005 9( Fy_aexp () =9 (l0g, 9(g (@?™)))

= g7 (log, a®™) = g (g () =x.
From the two equations we have:
fy—aexp(fg—alog (X)) = fg_alog(fg-a,exp (X)) =X.
By Theorem 4 and Corollary 1 in [2] can generalize the conditions of theorem 4 for
some values &, A €]—oo,4+0[ and a=A=1. Easily are controllable the following
assertions.

Theorem 2.9. Let g be be a generator of the consistent system of pseudo-arithmetical
operations {®,0,5,@}. Let f and h be continuous function on Ja,b[c ]—oo,+e[ and

a, A €] -, +oo[ are constants. Then for every x €]g (a), g *(b)[ we have:
L (a+1)g=97(2)® fg =@ (37 (@) fy)
2. (@ F)g =g (@) © fg =0 (97 H(a). fy)
3. (a0 f+4-h)g =(a7H(@)© f)®(g 7 (2)Ohg) =(ar- ) @ (4-h)g
o (f +h)]g = g 7H @) O (fg ®hy) =0(g (@) (fy @hy))
(e f=2-h)g =(g7H(@)O fg)O(g (A Ohy)

e (F=h)y =g @) 0 (fy ohy)=0(g (), (f; ©hy))

SN

o
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7. (459 = (0 M@ O Ty 2(g (D) Ohg), @ A#1 A#0
8. (f-h)g =fy©hy =0 (fg,hg)

9. (fM)g =0l fq

n
10. (X f)g =0 fg
i=1

11 (X f)g =B (fi)g
i=1

For certain values of a,4 (e¢=A1=1 or ¢ =1 #1) we have again the conditions of
Theorem 4, [2]:

a=2=1, (f+h)y=fy®hy =@ (fg,hy)
a=2#0, (D)g=fy@hy: (2)g =97 M) @hy =10hy, (if g-normed)
a=1, 1+ f)y =97 D) ® fy =1 fy, (if g-normed)

a=1, (1-f)4= gfl(l)e fg =10 fg, (if g-normed)
3. LINEAR AND PSEUDO-LINEAR FUNCTIONAL EQUATIONS

3.1. FUNCTIONAL EQUATIONS AND THEIR PARAMETERIZED BY g- TRANSFORM

fy (%), if ¢=1,g—normed,
(c-f)g(x)=7c-f(x) if g—id,

97 (c)O fy(x), forc—other

1 (9-TR),g—normed, c=1 L
fg(X):].@ fg(X)Zg_ (1)Ofg(X) = g (C)Qfg(X)

] (g-TR).g—normed,c=-1
—fg(X)=(=1)g(x)=9""(-1) O fy(x) o g71(0) 0 fy(x)

Table 1: parameterized Linear and Pseudo-Linear Functional Equation by g-Transform

Cl | Linear Functional Equation (L.F.Eq.— f) Parameterized of (L.F.Eg.— f)and
and pseudo-linear Functional Equation (LF.Eq.— fy) by g-Transform and their
(LF.Eq.—fy) solutions

| c-f(x+y)=c-f(x)+c- f(y) (LF.Eq—c- f){+)-ca)

I f(x+y)=T(x)+f(y) (LF.Eq.— f)((+,+)m1,a)

N fa(x@y) =g ()@ fy(y) (PLF.Eq — f,)(@®)019 (@)

Vol (e fg(x@y)=(c- f)g()@(c- f)g(y) (PLF.Eq.—(c- f)g)(@D0e (g7 (@)
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3.2. SOME APPLICATIONS FOR f(x) =log, X

hg (x) = (loga X 1) = (loga L)g = (- F)g (x) = ()¢ (X)

= 9711094 (9(0 (29 2)))) = g L(log, 516 X)) = fy_a 01O %)

fg—alog(X), if ¢ =1,g — normed
hg (x) = (loga X*)g = (¢ F)g(X) =1 fg_alog 1O X), if ¢ =—1,g —normed

7€) © fy_ajog(X), for c—other

XO fy_alog(X), if ¢=1,9-normed
hg (X) = (logy x™)g =c-(x- ) (X) =1 XO fg_a 0g (1O X), if ¢=-1,g-normed

g ‘1(c)o X0O fg,a’mg(x), or ¢ —other.

3.3. RELATIONS BETWEEN CLASSES OF (L.F.Eq.) AND (PL.F.Eq.) BY

0-TRANSFORM AND PARAMETERS

* Relations between f-solutions and f, -pseudo-solutions by g-Transform ([2]):

fx)=a-x f400=0" @O
(9-TR) -
f(x) =log, x - fg_alog(X)=0 Llog, g(x))
Heo=a (9—TR<),:g(x):x fy_a, exp(X)=0 @9y

g =x" fo—r,power ) =9 7 (GO)")

o Relations between (L.F.Eq.) and (PL.F.Eq.) by g-Transform
e fxry)=c FO0+e f W) o1y (e fg(x@y)=(c- Fg(x)@(c- fg(y)
c-f(x-y)=c- f(x)+c-f(y) - (c-flg(xoy)=(c-f)g(x)®(c- f)g(y)
c-f(x+y)=c-f(x)-f(y) (C'f)g(X®y)=gfl(C)®(fg(X)Ofg()’))

—
_ (9-TR).g(x)=
Cf(XY)—Cf(X)f(Y) g 900=x (Cf)g(XQy):g_l(C)O(fg(X)Qfg(y))

(- Dg(x®y)=(c-1)g()@(c- Fg(y) romeqeut 1K@V =T (0@ f4(1)

(c Hg(xoy)=(c- ()@ (e Fg(y) m f(x0Y) = () @ fy(y)

(€ Hg(x®y) =971 0) O (fg () © fg(y)) oG | 0@N=T00 T
g (c

(¢ F)g(x0y)=g7H() O (fg(x) @ fg(y)) fg(xoy)=fg ()0 fg(y)
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¢ f(x+y) = F00+¢- 1)) (g_1R). g-nomedot fg(x®@y) =g ()@ fg(y)
c-f(x-y)=c- f(x)+c- f(y) fg(xoy)=fg(x)® fg(y)
¢ f(x+y)=c- F(x)-f(y) fg(x@y)=fg(x)© fg(y)
¢ f(x-y)=c-f(x)-f(y) fg(x@y) = fg(x)© fg(y)

=

=
(9-TR), g(x)=x, (-c)

3.4. ABOUT f -SOLUTIONS OF (L.F.EQ.) AND f, - PSEUDO-SOLUTIONS
OF (PL.F.EQ) BY g-TRANSFORM

A wide class of some elementary modified function (f;) is investegated by showing
the important role of sistem of pseudo-arithmetical operations {{®,©,8,@} in treating
and solving of pseudo-linear problems [2], [6], [12]. Bellow are presented the
parameterized Linear and Pseudo-Linear Functional Equation with f — solution and
fg — solution respectively.

Table 2: Parameterized Linear and Pseudo-Linear Functional Equation with fand £, solutions respectively

Cl

Linear Functional Equations (L.F.Eq.— f) and
Pseudo-Linear Functional Equations
(L.F.Eq.— fg) by g-Transform

f -solutions of (L.F.Eq.) and f; - pseudo-
solutions of (PL.F.Eq.) by g-Transform

(LF.Eq.—c- f)+nea)

(c- F)(¥)=c-(a-x)=c- fain(x)

(L.E.Eq. — f){=+tan)

f(x)=a-x= fa,lin(x)

EVN
(PL.F.Eq.— fg)((@@),o,l,g (a).-)

fg(X) = gil(a)e X= fg,gfl(a),"n(x)

(PL.F.Eq.—(c- f )g )((69:@)10: g7(c).g7"(a),-)

(c-f)g(x)= g0 fgfg’l(a),lin(x)

(LF.Eq.—c- fa,log)(("+)"'c'a'_)

(c- f)(x) =log, x° =c-log, x

(LF.EQ. — o 1oq) €227

f(x)=log, x

(PLF.EQ.~ fy_a 109 )((Q@),O,l,a,—)

fy_atog(X) =9 '(l0g, g(x))

(PLF.EQ.—(C- F)g_g 1) @D @8 @2

(C F)g_aig(X)=097C) O fy_ajq(X)

(LF.EG.—C- fy gp) 027

(c- H)(x)=c-(@*)

(LF.Eq.—f, exp)(“")"’l'a")

f(x)=a*

(PLF.Eq.—fy_5 exp)((@o),o,l,a,_)

fy—a, exp(¥)=0 —1(ag(x))

(PLFEG— (" F)g_g, o) @O0 @20

(c f)g—a, exp(X) = gil(c) (O] fg—a, exp(X)

(L- F-Eq- —C- fr, power)((*)"’cmr)

(c- ) =c-(x)

(L.F.Eq.— fr, poWer)((»,-),-,1,—,r)

f(x)=x"

(PLF.EQ.— fy ¢ poyer) (@O0

for power (X) =9 ((9(x))")

(PL.F.EQ.—(c-f )g—r, power)((oye)oygil(c)mr)

(c-f )g—r,power(x) =9 71(C) © fg—r,power(x)
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More about fg(c-x); fy(c+x); fgl—x); fg(N(x)); fy(a-x+b) etc. Imple-

mented to each functions of classes shown above, will be presented further.
4, MODIFICATION OF MEASURE BY ¢-TRANSFORM
41. (®-P)-m)

Let (X,.4,m) be a ® - measure space. Let m be a fixed @ - probability measure. Let

X be a non-empty set and let A be a o —algebra of subsets of X, [5], [8], [9], [13],
[14].

Definition 4.1.1. A set function m:.A4—[0,+] will be called a @®- probability

measure ((©—P)—m) if for any sequence (A)ney Of pairwise disjoints sets from A
holds:
P1. m(Q)=0, m(A)=1
P2. mM(UA) =@{1m (A)
1=
So shall write @', a; =a; ®a, ®...®a, and B8 =sup, (B a). If @ is an

idempotent operation (@®—1D), then disjointness of sets and condition (1) can be
omitted.

Definition 4.1.2 ([3]). A finite collection B={B;,B,,...,B,}c A, issaidtobea &©-

measurable partition of X iff it satisfies the following conditions:
Cl. Bi ﬁBJ 2@, i# j, i, J 21,2,...,n,

C2. &, B =X.

Definition 4.1.3. A finite collection By ={g(B,),9(B,),...,9(By)}= A, is said to be a

g —®—measurable partition of X iff it satisfies the following conditions:
Cl 9(B)ng(Bj)=9,i=ji,j=12..,n,

C2. &, 9(B)=X.
9(Bj wBj)=9(B;)wg(B;) because g is a continuous monotone strictly increasing

unbounded odd function.
Remark 4.14. If finite collection B={B,,B,,...,B,}< .4 isa ©— measurable partition

n
then @[ m(B;) =1 because 1=m(X)=m(UB;)=®[m(B;).
i=1
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Remark 4.1.5 ([3]). If finite collection By ={g(B;),9(B,)..-.,9(By)}=A is a

g —®—measurable partition then ®]';m(g(B;)) =1 because:

1=m(X) =m(Cg(B) = ©{m(g(8,)).

=1

Example 4.1.6. For function f(m(A)) =m(4)- log, (m(A4)) compute fg .
fg (M(A)) = g (g(M(A))-loga (g(M(A)))) = g " (g(M(A))- g(g ~*(loga (g(M(A))))
=g (9(M(A)- 9( fg_ajog(M(A))) = M(A)© fy_g jog (M(A))
fg (M(A) =g~ (g(M(A))-log, (g(M(AN))=g (T (g(m(A)))
=97 (F(P(A)) = g ((P(A)-log, (P(A)))
. f (P(A)) = P(A)-l0g, (P(A)) = g( o (M(A))) =g(M(A) ® fg_a 1og(M(A)))
o« fg(M(A) =g (P(A)-logs (P(A)) = M(A) © fy_g jog (M(A))
o« 9(fg(M(A)) = g(M(A) O fg_a 10g(M(A)) = P(A)-log, (P(A))

4.2. RELATIONS BETWEEN ENTROPY AND g-ENTROPY BY g-FUNCTION

Following the example above and the definition of entropy immediately established
relations between entropy and g-entropy by g-Transform [3], [8], [11], [15], [18], [19].

Definition 4.2.1 ([3]). Let B={B,,B,,...,B,}= A is a ©— measurable partition of X.
Then g-entropy is defined by
H{G (B) =-@fLy hy (M(B;)

where

e (m(8)) 0, ifm(B;)=0

m = .
9 m(B;) © fy_a log(M(B;)) ifm(B;)=0
and
fg-alog (M(B;)) = 9 " (loga (g(m(8;))))

is the g-logarithmic function.

Theorem 4.2.2 ([3], [4], [13], [16]). Let a (©—P)— decomposable measure m on the
measurable space (X,.A) be of type (NSA). Then there exist such an induced

probability measure P on A that ng‘loP where g is the normalized additive

generator of @ =®g (&5 —t—conorm) and
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Héf?ﬁO)(B) =g 7H(H{ (®))
for every @ — measurable partition B
The quantity H(+ )(B) is an entropy of the partition B on the probability space
(X, A,P),ie.

H (B) =- 2h<P(B ),

Where
H(P(B if P(B;)=0
(P(B)) = {P(B) log, P(B;) if P(B;)=0

Proof. We have

HE = 2P(8)-oga (P(B) =~ XN(P(®) =~ Yol (m(®))

:—Z(g m)(B;)-log, ((g °m)(B;))

i=1

= —_Zg(m(Bi )-9(9 " (log, (9(M(AB))))

- _zg(m(B ))-9(fg_a 1og(M(B;)))

i=1

= —Zg(g “HgM(B1))- 9( fg_a tog (M(B))))

i=1

— - 3G(M(B)O fy_a joq (M(E))
i=1

=—-g(®L1M(B) © fy_a 10g(M(B;)))

= g(-@.1m(B) O fy_a109(M(B)))) = (H{H(B)).
The rest of theorem is proving is the text [3].
« HGD®) =g7(HER () or g(H{HY (B)=H{P(B)

e HED(A) =-@Y M(A)O fy_aiog(M(A)) =g (HED(A)

HIZO)(A) =~ &Ly M(A) O fy_p 100 (M(A)) = grl(H(+ (M)
= SH{PO) (A) = SH{) (A)
o SHPO (M) =H{EO) (A) = g‘l(H(+ ) (A) =g (SHTD ()

Example 4.2.3 ([11], [18], [19], [20]). Change of base for logarithmic function (a —b):
logy, P(B) =logy, a-log, P(B)
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logs g(M(B)) = (logj, a) - (log, g(M(B)))
log, g(m(B)) = (9(9 " (logy @))) - (9(g " (log, g(M(B))))
g~ (log, g(M(B))) = g ((9(9 " (logp a))) - (9(g " (log, g(M(B)))))
o fgpiog(M(B)) = 97100 8) © fy_a jog(M(B))
Rules for crossings in different entropy during the change of bases (a —>b):
H{S®)(B) =g (logy a) @ (B[ M(B;) © fy_g 1og(M(B;)))
“log,a)0 g (H{') (B))
H{>®)(B) =—g*(logy a) © (B M(B;) © fg_a 1og(M(B;)))
=-g7*(logy ) © (H{5®) (B))
e SHp (®.0) (B)= gfl(logb 2)O(Hsm (® ©) (B)) (Shannon entropy)
e H®O)(B)=—g(logya) O (H (@ ) (8)) =—g " (logy 2) O (H{H) (B))

o H®O(B)=—g(logy2) ©SH ) (B).
4.3. MODIFIED @ — MEASURE BY g— TRANSFORM

For (®—P)—m by definition 4.1.1, based on the definition 2.2 for g-function ([2],

[31, [5], [14], [16]) and on the sistem of the pseudo-arithmetical operations generated by
generator g, can modified the measure by g-Transform in the following form:

Definition 4.3.1. Let m be a set function (®—-P)—m: .4 —[0,+] and the function g be
a generator of the consistent system of pseudo-arithmetical operations {®,0,©,0}. The

function my given by mg(B)zg’l(m(g(B))) , for every Be{g’l(Bl),..., g‘l(Bn)}

is said to be g—(®—P) measure function (mg) corresponding to the set function m.

Definition 4.3.2 Let P be a induced probability measure (P =gom) and the function g
be a generator of the consistent system of pseudo-arithmetical operations {®,0,0,}.

The function Py given by Pg(B):g_l(P(g(B))), for every Be {g‘l(Bl),...,

‘1(Bn)} is said to be g-induced probability measure function (P,) corresponding to
the set function P (P=gom).
By g-calculus and definition of (©—P)—m hold:

m(A) ®m(B) = g~ (g(m(A) +g(m(B))).
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If apply for finite collection BgcA (g—®—measurable partition with conditions
of definition 4.1.3) the definition of (®—P)—-m its hold:
m(g(A)) ®m(g(B)) =m(g(AwB)) or m(g(A)) ®m(g(B)) =m(g(A)wg(B)).

Proposition 4.3.3. For finite collections B and BycA with conditions of definition

4.1.2 and 4.1.3 respectively, (®—P)—m and induced probability measure P on A
satisfy the following conditions by g-Transform:

1. mg(B) =g (Py(B))

2. Py(AUB) =Py (A)®P,(B)

3. g(mg (AUB)) = g(mgy (A)) @ g(mgy (B))

Easily can prove the truth of these equations by applied g-transform.

 Pe®=g “H(P(g(B))) =g " (a(m(g(B)))) = g(g " (m(g(B))))

=m(g(B)) = g(mg (B))
« my(B)=g ' (Py(B))
2. For induced probability measure P, to the equation
P(AuB)=P(A)+P(B)
we get g-Transform both sides:

9 (P(g(AUB)) =g (P(3(A) + P(g(B)))
g~ (P(a(AUB)) =g (a(g " (P(a(A)) +a(g " (P(a(B))))
g (P(g(AUB)) =g (P(a(A) @ g (P(a(B)))

s Py(AUB)=Py(A)®P,(B)

« Py(AUB)=g ' (P(g(AUB)) =g 1 (P(g(A)Ug(B)))
3. By the definition 4.1.1 to the equation
m(AUB) =m(A) ®m(B)
we get g-Transform both sides:
my (AU B) =g (m(g(AUB))) = g~ (m(g(A) U g(B)))
my (AU B) =g " (g(mgy (A)) ® g(my (B)))
«  g(mg(AUB)) = g(my(A)) @ g(my(B))

e my(AUB) =g N (g(my(A)®g *(a(my(B)))
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CONCLUSION

1. Relations between classes of (L.F.Eq.) and (PL.F.Eq.) by g-Transform

(9-TR)
- -1
(PL.F.Eq.—(c- f)g)((@O),O,g (c),a,r)

(LF.Eq.—c-f )((+,~),~,c,a,r)
=
(9-TR),g(x)=x
g—normed,c=1
(PL.F.Eq.—(c- f)g)((@,O)w(Dvg’l(C)xa,l’) = (PLF.Eq- f,)(@0)01an
—
©g74(c)
(g-TR), g—normed,c=1

(LF.Eq.—c- f){)nearn) =

(PLF.Eq.— fy)(®@0Lan
— g
(9-TR),g(x)=x, (-c)

e Implemented to each functions presented above the cases for fy(c-X),
fg(c+x), fg1-x), fg(N(x)), fq(a-x+b) etc. it will be expanded more the classes
of functional equations by fy —solutions.

2. Modified @ — probability measure (mg) and induced probability measure ( Py )

by g-Transform
« mg(B)=g H(M(g(B))) and Py(B)=g (P(4(B))

.« mg(B)=g7"(Py(B)).
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