Математички Билтен 15 (XLI) 1991 (17-21) Скопје, Југославија

ON THE STRICTLY PARALLEL SUBBUNDLES OF VECTOR BUNDLES

K. Trenčevski

Abstract. In this paper are considered four propositions about strictly parallel subbundles of vector bundles. In propositions 1 and 2 are generalized some results of Walker [1] and Wong [2] in case of an arbitrary vector bundle, instead of tangent bundle. Proposition 3 generalizes one Wong's result [2] in global case. In proposition 4 are given necessary and sufficient conditions for existence of a connection in a vector bundle ξ such that given r linearly independent vector fields and s linearly independent 1-forms in ξ are parallel. That condition is given by (3).

Suppose that $\xi=(\varepsilon,\pi,M_n)$ is a vector bundle of rank m and that it is endowed with connection. A subbundle $\xi'=(\varepsilon',\pi',M_n)$ of ξ with rank r is said to be parallel, if for any two points A,BeM_n a vector in $(\pi')^{-1}(A)$ is displaced into a vector in $(\pi')^{-1}(B)$ by parallel transport along any curve from A to B. A subbundle $\xi'=(\varepsilon',\pi',M_n)$ of ξ with rank r is said to be strictly parallel, if it contains a basis of r parallel differentiable vector fields.

<u>Proposition 1.</u> A necessary and sufficient condition for a vector subbundle ξ' of rank r to be parallel, is that its basis of parallel vector fields $\{\lambda_{(\alpha)}^i\}$ (α e{1,...,r}, ie{1,...,m}) satisfies the recurent relations of the form

$$\nabla_{\mathbf{k}}(\lambda_{(\alpha)})^{\mathbf{i}} = \mathbf{A}_{\alpha \mathbf{k}}^{\beta} \lambda_{(\beta)}^{\mathbf{i}}$$
 (1)

where $A_{\alpha k}^{\beta}$ ($\alpha, \beta \in \{1, ..., r\}$, $k \in \{1, ..., n\}$) are components of co-vector field for fixed α and β .

In a special case when $\xi=(\epsilon,\pi,M_n)$ is the tangent bundle,—the proof is given in [1]. The proof of proposition 1 is analogous to that proof.

The components

$$A^{\beta}_{\alpha k \ell} = \partial A^{\beta}_{\alpha k} / \partial x^{\ell} - \partial A^{\beta}_{\alpha \ell} / \partial x^{k} + A^{\delta}_{\alpha k} A^{\beta}_{\delta \ell} - A^{\delta}_{\alpha \ell} A^{\beta}_{\delta k}$$
 (2)

 $(\alpha,\beta,\delta\in\{1,\ldots,r\}$, $k,\ell\in\{1,\ldots,n\}$) for fixed α and β transform as a tensor skew-symmetric in k and ℓ . Furthermore, for fixed k and ℓ $A^{\beta}_{\alpha k \ell}$ has tensor character with respect to α and β under the change of the basis ([2]). So $A^{\beta}_{\alpha k \ell}$ is called double tensor.

In the case when $\xi=(\epsilon,\pi,M_n)$ is the tangent bundle, Wong ([2], theorem 6.1) has proved the following proposition.

<u>Proposition 2</u>. If the vector subbundle $\xi' = (\epsilon', \pi', M_n)$ is strictly parallel, then the double tensor associated with ξ' identically vanishes. Conversely, if the double tensor associated with a vector subbundle ξ' identically vanishes, then for each point peM_n there exists a neighbourhood U of p such that the restriction of ξ' on U is a strictly parallel vector subbundle, i.e. ξ' is locally strictly parallel vector subbundle.

In general case the proof of theorem 2 is analogous to the Wong's proof.

Now we shall give an improvement of the second part of the proposition 2 in global case.

<u>Proposition 3</u>. Assume that M_n is simply-connected differentiable manifold. If the double tensor which is associated with a vector subbundle ξ' vanishes identically, then ξ' is strictly parallel vector subbundle.

<u>Proof.</u> We can suppose that M_n is connected manifold. Let $x\in M_n$, and we choose r linearly independent vectors $X_{(1)},\dots,X_{(r)}\in (\pi')^{-1}(x)$. For arbitrary point $y\in M_n$ there exists a path z(t) which connects x and y, and the vectors $X_{(i)}$ $(i=1,\dots,r)$ can parallelly be transported to the point y. Using the lemma of factorization and the second part of the proposition 2, it can be verified that the transported vectors at y do not depend on the choice of the path z(t) from x to y. It also can be verified that these r vector fields are parallel, and thus we obtain a basis of r linearly independent parallel vector fields for the vector subbundle ξ' .

Further we shall consider vector bundles without connection and our aim is to endow them with connections such that given vector fields and 1-forms be parallel.

Proposition 4. Assume that M_n is paracompact differentiable manifold and assume that $X_{(1)},\ldots,X_{(r)}$ are linearly independent vector fields and $\mathbf{w}^{(1)},\ldots,\mathbf{w}^{(s)}$ are linearly independent 1-forms on the vector bundle $\boldsymbol{\xi}=(\epsilon,\pi,M_n)$. Then there exists a connection on $\boldsymbol{\xi}$ such that $X_{(p)}$ and $\mathbf{w}^{(q)}$ be parallel vector fields and 1-forms (pe{1,...,r}, qe{1,...,s}), iff for each pe{1,...,r} and for each qe{1,...,s}

$$w^{(q)}(X_{(p)}) = c_p^q = const.$$
 (3)

<u>Proof.</u> Let us suppose that $X_{(p)}$ has components $\lambda_{(p)}^i$, (ie{1,...,m}, pe{1,...,r}) and $w^{(q)}$ has components $\mu_j^{(q)}$, (je{1,...,m}, qe{1,...,s}) with respect to the local coordinates. Then 73) is equivalent to

$$\lambda_{(p)}^{\mathbf{i}}\mu_{\mathbf{i}}^{(q)} = C_{p}^{q} = \text{const.}$$
 (4)

If there exists a connection such that $X_{(p)}$ and $w^{(q)}$ (pe $\{1,\ldots,r\}$, $qe\{1,\ldots,s\}$) are parallel, then it is obvious that (4) is satisfied.

Conversely, let us suppose that the matrix $\begin{bmatrix} \lambda^i & (q) \\ (p)^\mu i \end{bmatrix}$ has constant components and its rank is t. Then there exist invertible matrices $\begin{bmatrix} c^p_\alpha \end{bmatrix}_{r\times r}$ and $\begin{bmatrix} d^\beta_q \end{bmatrix}_{s\times s}$ with constant elements such that

$$\begin{bmatrix} c_{\alpha}^{p} \lambda_{(p)}^{i} d_{q}^{\beta \mu_{i}}^{(q)} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{t} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}.$$

Since $\lambda_{(p)}^{\mathbf{i}} \mu_{\mathbf{i}}^{(q)}$ do not depend on the coordinate system, then it follows that $\left[c_{\alpha}^{p}\right]$ and $\left[d_{q}^{\beta}\right]$ also do not depend on the coordinate system.

We can define new vector fields $\lambda_{(\alpha)}^{i}$ and 1-forms $\mu_{i}^{\prime(\alpha)}$ by $\lambda_{(\gamma)}^{\prime i} = c_{\gamma}^{p} \lambda_{(p)}^{i}$ for $\gamma \in \{1, \ldots, r\}$, and $\mu_{j}^{\prime(\alpha)} = d_{\beta}^{\alpha} \mu_{j}^{(\beta)}$ for $\alpha \in \{1, \ldots, t\}$ and $\mu_{j}^{\prime(\beta)} = d_{\gamma}^{\beta - (n-s)} \mu_{j}^{(\gamma)}$ for $\beta \in \{m-s+t+1, \ldots, m\}$. Since the vector

fields and 1-forms are linearly independent, it can be verified that $r \le m-s+t$. The new vector fields and 1-forms satisfy

$$w'^{(\alpha)}(x'_{(\beta)}) = \delta^{\alpha}_{\beta}$$
 (5)

 $(\beta \in \{1,...,r\}, \alpha \in \{1,...,t,m-s+t+1,...,m\}).$

Since M_n is a paracompact manifold, then there exists a locally finite open covering of coordinate neighbourhoods $\{U_i\}$, and let $\{f_i\}$ be the corresponding decomposition of the unit.

In arbitrary coordinate neighbourhood U_i can be chosen m-r vector fields $X'_{(\gamma)}$ ($\gamma \in \{r+1,...,m\}$) such that

$$w'^{(\alpha)}(X'_{(k)}) = \delta^{\alpha}_{k}$$
 (6)

(ke{1,...,m}, α e{1,...,t,m-s+t+1,...,m}) and X'₍₁₎,...,X'_(m) to be linearly independent vector fields. Then X'₍₁₎,...,X'_(m) generate flat connection Γ _(i) on U_i such that X'₍₁₎,...,X'_(m) are parallel vector fields on U_i. Since X'₍₁₎,...,X'_(m) are linearly independent, it follows from (6) that w'⁽ⁱ⁾ (ie{1,...,t,m-s+t+1,...,m}) are parallel 1-forms. Let us define a connection Γ on ξ by

$$\Gamma_{k\ell}^{j} = \sum_{i} f_{i} \Gamma_{k\ell(i)}^{j}$$

(j,ke{1,...,m}, le{1,...,n}). Then using that $\nabla_Y K = \sum_i f_i(\nabla_Y)_{(i)} K$ for arbitrary tensor field K, where ∇_Y and $(\nabla_Y)_{(i)}$ are covariant derivatives with respect to the connections Γ and Γ (i) respectively, we obtain that $X'_{(1)}, \ldots, X'_{(r)}, w'^{(1)}, \ldots, w'^{(t)}, w'^{(m-s+t+1)}, \ldots, w'^{(m)}$ are parallel vector fields and 1-forms with respect to the connection Γ . So $X_{(1)}, \ldots, X_{(r)}$ and $w^{(1)}, \ldots, w^{(s)}$ are parallel vector fields and 1-forms with respect to the connection Γ .

REFERENCES

- [1] Walker A.G.: On parallel fields of partially null vector spaces, Quart. J. of Math. (Oxford) (1) 20 (1949), 135-145
- [2] Wong Y.C.: Fields of parallel planes in affinely connected spaces, Quart. J. of Math. (Oxford) (2) 4 (1953), 241-253
- [3] Kobayashi S., and K. Nomizu: Foundations of differential geometry, Volume I, Interscience publishers, New York, 1963
- [4] Trenčevski K.: Spaces with flat linear connection, Prilozi, VII 1 Oddelenie za mat.-téh. nauki MANU, Skopje 1986, 5-16
- [5] Постников М.М.: Дифференциальная геометрия, Лекции по геометрии, Семестр IV, Наука, Москва 1988

ЗА СТРИКТНО ПАРАЛЕЛНИТЕ ПОДРАСЛОЈУВАЊА НА ВЕКТОРСКИТЕ РАСЛОЈУВАЊА

к. Тренчевски

Резиме

Во овој труд се дадени четири тврдења. Во тврдењата 1 и 2 се обопштени некои резултати на Walker [1] и Wong [2] во случај на произволно векторско раслојување, наместо во тангентното раслојување. Тврдењето 3 генерализира еден резултат на Wong [2] во глобален случај. Во тврдењето 4 се дадени потребни и доволни услови за постоење на конексија во едно векторско раслојување ξ , така што дадени r линеарно независни векторски полиња и дадени r линеарно независни r бидат паралелни. Тој услов е даден со r