
Math. Maced.
Vol. 8 (2010)
95-106

PARALLEL ALGORITHMS FOR TRANSITIVE REDUCTION

FOR WEIGHTED GRAPHS

DRAGAN BOŠNAČKI, WILLEM LIGTENBERG, MAXIMILIAN ODENBRETT∗, ANTON
WIJS∗, AND PETER HILBERS

Dedicated to Academician Ǵorǵi Čupona

Abstract. We present a generalization of transitive reduction for weighted
graphs and give scalable polynomial algorithms for computing it based on the
Floyd-Warshall algorithm for finding shortest paths in graphs. We also show
how the algorithms can be optimized for memory efficiency and effectively

parallelized to improve the run time. As a consequence, the algorithms can be
tuned for modern general purpose graphics processors. Our prototype imple-
mentations exhibit significant speedups of more than one order of magnitude
compared to their sequential counterparts.

Transitive reduction for weighted graphs was instigated by problems in
reconstruction of genetic networks. The first experiments in that domain
show also encouraging results both regarding run time and the quality of the
reconstruction.

1. Introduction

0

The concept of transitive reduction for graphs was introduced in [1] and a similar
concept was given previously in [8]. Transitive reduction is in a sense the opposite
of transitive closure of a graph. In transitive closure a direct edge is added between
two nodes i and j, if an indirect path, i.e., not including edge (i, j), exists between
i and j. In contrast, the main intuition behind transitive reduction is that edges
between nodes are removed if there are also indirect paths between i and j.

In this paper we present an extension of the notion of transitive reduction to
weighted graphs. The idea was triggered by applications in bioinformatics, in
particular, in reconstruction of genetic networks from perturbation experiments.
In this kind of experiments usually one gene is disabled and the effects on the
other genes are monitored. Based on the data, interactions between genes can be
deduced.

The problem of incorrectly inferring non-exisiting direct interactions between
genes is inherent to such experiments, as illustrated by the following example:

2000 Mathematics Subject Classification. 68R10;05C85.
Key words and phrases. transitive reduction, weighted graphs, algorithms.
0∗ Supported by the Netherlands Organisation for Scientific Research (NWO) project

612.063.816 Efficient Multi-Core Model Checking

95

96 BOŠNAČKI ET AL.

Suppose that gene a directly activates gene b and gene b activates gene c, but
there is no direct influence between gene a and gene c. Also, let us assume that
genes b and c cannot be activated by any other gene factor. Now, if we disable gene
a, for instance by deleting it from the genome, this would deactivate gene b, but
also indirectly gene c. Thus, our measurement of the expression of genes a, b, and
c will show that a influences both b and c. However, since we are usually interested
only in direct influences, the influence of a on c transitively via b is obsolete and
it can be considered as a side effect of the measurement method. Thus, it would
be useful if we could systematically remove such spurious indirect interactions
from the reconstructed network. This translates to the aforementioned concept of
transitive reduction. Assuming that the nodes of the network are genes and the
edges are interactions, the rule is to remove a direct interaction between each gene
pair g and g′, if there is an alternative chain of interactions between g and g′.

Using transitive reduction for filtering out indirect influences was first proposed
in [10]. There are several other relevant publications on this subject [6, 5]. In all
previous works on transitive reduction the networks were represented as directed
graphs without weights on the edges. However, in the network inference algorithms
interaction strengths between genes usually play an important role. Motivated by
this fact, we work with the concept of transitive reduction of weighted graphs,
where the weights correspond to interaction strengths (influences).

In this paper we present two algorithms for transitive reduction of weighted
graphs. The algorithms are based on the Floyd-Warshall algorithm for finding
paths between all pairs of nodes in a graph. As a consequence, the algorithms
are of polynomial complexity and can be efficiently parallelized. Moreover, we
also show how memory requirements of the algorithms can be lowered. These
algorithms are developed for general purpose graphics processing units (GPUs).
GPUs have been extensively used outside the computer graphics area for various
applications, including bioinformatics and systems biology. Since GPUs are stan-
dard in modern computers, parallel algorithms become an attractive possibility to
speed up computations. In that sense our algorithms are already beyond the state
of the art regarding the biological applications for gene network reconstruction.
With the current version one can tackle full genome (all genes of the organism
disabled one by one) perturbation experiments which will be important in the
future.

With regard to the definition of transitive closure for weighted graphs and the
general theoretical background probably the closest to our work is [3]. Their paper
is also motivated by a biological application, in particular, analysis of protein-
protein interaction networks. The authors define the notion of transitive closure
of weighted graphs, but stop short of introducing transitive reduction. We reuse
some of their ideas about transitive affinity to define transitive influence on a path
in the network. We extend their work by introducing the restricted transitive
influence and showing its properties which were necessary for the development
and correctness proof of the algorithm.

The only work that we could find in the literature that deals explicitly with
parallel algorithms for transitive reduction of unweighted graphs is [2]. Although

PARALLEL ALGORITHMS FOR TRANSITIVE REDUCTION 97

parallel versions of the Floyd-Worshall algorithm [4, 11] are well known, to the
best of our knowledge, besides ours, there does not exist an implementation of a
transitive reduction algorithm on GPUs.

After the work from this paper was presented on the conference to which this
special issue is dedicated, we learned about a very similar concept of weighted
transitive reduction that was introduced in [7] and which was published almost
simultaneously. The main difference with our definition of transitive reduction is
that they use signs in the interactions. As a consequence, in presence of negative
cycles, the algorithm becomes NP-complete, which might lead to poor scalability.
Our experiments indicate that our approach without signs produces the same qual-
ity of results with the advantage of seamless scalability because of the polynomial
complexity and the parallelization of our algorithms.

In [9] transitive reduction for weighted graphs is briefly discussed together with
several other methods for discrimination between direct and indirect interactions in
networks. Similarly to our approach, they use a Floyd-Warshall based algorithm
for pruning the obsolete interactions. Compared to our approach, the authors
introduce quite different method to extend the notion of edge weights to paths
in the graph based on probabilities. This method takes also the signs of the
interactions into account.

Paper layout. In the next section we present the basic definitions and properties
that are used in the paper. The definition of transitive reduction is given in
Section 3. Section 4 deals with the algorithms. The last section concludes with
some directions for future work.

2. Preliminaries

2.1. Graphs, Transitive Closure, and Transitive Reduction. A directed
graph G = (V,E) is a pair of sets of nodes V and edges E ⊆ V × V . With-
out loss of generality, in what follows we identify the set of nodes V with the
set of numbers n = {1, 2, . . . , n}, where n is the number of nodes in V . The
graph can be equivalently represented by an adjacency matrix A. For unweighted
graphs, the elements aij of the matrix have value 1, if there is an edge between
nodes i and j, and 0, otherwise. A path from node i to node j is a sequence
Pij = (k0, k1, k2 . . . km−1, km), where k0 = i, km = j and (kl−1, kl) ∈ E, for
0 < l ≤ m. Nodes kl, where 1 ≤ l ≤ m − 1 are called intermediate nodes. We
denote the set of edges of Pij with Edges(Pij). A cycle is a path Pij for which the
first and the last node coincide, i.e., i = j. A cycle that consists of only one edge
is called a self loop. A graph is acyclic if it does not contain cycles. The set of all
paths in the graph G is denoted as Π. Similarly, Πij ⊆ Π is the set of all paths
between i and j.

The transitive closure of a graph G is the graph GT = (V,ET) with (i, j) ∈ ET

if and only if there exists a path from i to j in G. The transitive reduction of an
acyclic graph G is the unique [1] smallest (i.e., with the least number of edges)
graph Gt = (V,Et) such that (Gt)T = GT .

98 BOŠNAČKI ET AL.

For an acyclic graph G it can also be shown [1] that the transitive reduction Gt

can be obtained by removing each edge (i, j) ∈ E from the original graph G for
which there is an indirect path, i.e., not including (i, j), between i and j in G.

The definition of transitive reduction can be extended in a natural way to graphs
with cycles. However, the reduced graphs are not unique and in general cannot
be generated by deleting edges from the graph. To solve this, in [1] the strongly
connected components of the graph are shrunk to single nodes and transitive
reduction is applied on the resulting acyclic graph.

In genetic networks sometimes both direct and indirect influences can exist at
the same time. Unfortunately, in such cases, the transitive reduction as defined
above, will still remove the direct influence. To avoid this anomaly, we introduce
the notion of transitive reduction on weighted graphs where the weights correspond
to the strengths of influences between the nodes. Knowing the influence strengths
allows us to refine the edge removal criterion compared to the unweighted case:
an edge (i, j) is removed from the original graph only if there exists a stronger
indirect influence of i to j along some path Pij . In other words, if an edge is at
least as strong as all indirect influences, then it is kept in the graph.

To formally capture the above concepts, we associate with the graph a function
w : E → R which maps each edge to a real number. The adjacency matrix A is
replaced by a matrix of weights W in which each element wij = w(i, j) gives the
direct influence between nodes i and j. A special value denotes the absence of
a direct influence/edge between two nodes. In our case this value is 0. In what
follows we use interchangeably wij and w(i, j) to denote edge weights.

2.2. Transitive Influence. Since the above mentioned informal criterion of edge
removal operates with influence strengths along paths, we use transitive influ-
ence [3] as a measure of the influence strength along the path. As shown in [3]
in many applications – including genetic networks – a natural requirement is that
the transitive influence is associative. In the sequel we work with the transitive
influence Tmin which is determined by the minimal edge influence of all edges in
the path.

Definition 1. Given a path Pij, its transitive influence Tmin is defined as

Tmin(Pij) = min
(k,l)∈Edges(Pij)

{wkl}.

Intuitively, Tmin expresses the weakest link principle which states that the influ-
ence along the path is as strong as its weakest direct influence. Later we discuss
also some alternative influences on which the algorithms of this paper can also be
applied. In what follows we omit the subscript min whenever it is clear from the
context that we use Tmin.

In general, there can exist many paths between two given nodes i and j. Since
we are interested in the strongest influence between i and j this leads to the
following definition:

PARALLEL ALGORITHMS FOR TRANSITIVE REDUCTION 99

Definition 2. For two fixed nodes i and j in n we define maximal transitive
influence between i and j as

hij = max
Pij∈Πij

T (Pij),

if there exists a path Pij between i and j. Otherwise, hij = 0

Assuming the weakest link influence Tmin the definition becomes

hij = max
Pij∈Πij

(
min

(k,l)∈Edges(Pij)
{wkl}

)
.

For a given graph G the maximal transitive influence between any pair of nodes
is uniquely defined. It follows directly from Def. 2 that for all i, j ∈ n

hij ≥ wij . (2.1)

since Pij = (i, j) ∈ Πij .
For the design of the algorithms that we introduce in the sequel, as well as for
showing their correctness, we need some more definitions and properties related
to transitive influence. We aim at iteratively computing the maximal transitive
influence by systematically enlarging the set of considered paths, until we have
included all paths and have found the optimal one.

In this context, for fixed nodes i, j, k, we consider paths which pass only through
a given subset of V . We define Πk

ij ⊆ Πij as the set that consists of all paths Pij

for which it holds: if l is an intermediate node of Pij , then l ≤ k. All edges
(i, j) are also in Πk

ij , since as direct paths they do not contain any intermediate

nodes. The paths in Πk
ij can begin and/or end in nodes greater than k, however all

intermediate nodes are less than or equal to k. Now we can introduce k-restricted
transitive influence hk which is defined only on paths in Πk

ij :

Definition 3. For all i, j ∈ n and k > 0 k-restricted transitive influence hk
ij is

defined as

hk
ij = max

Pij∈Πk
ij

T (Pij)

It is convenient to define also h0
ij . Then we can formulate the following relation

which makes it possible to recursively/iteratively compute hk
ij and it is a basis for

the Floyd-Warshall like algorithm that we present later.

Proposition 2.1. Let h0
ij = wij, for all (i, j) ∈ n× n. Then, for all i, j, k ∈ n

hk
ij = max(hk−1

ij ,min(hk−1
ik , hk−1

kj)).

Proof. We observe that we can reuse the computation of hk−1 in the sense that to
find the optimal path for hk

ij we have to consider only some extra paths which are

in Πk
ij , but not in Πk−1

ij . To this end, using also properties of the max function,

we rewrite the equation which defines hk
ij in Def. 3 as:

100 BOŠNAČKI ET AL.

hk
ij = max

Pij∈Πk
ij

T (Pij) = max(max
Pij∈Πk−1

ij

T (Pij), max
Pij∈Πk

ij\Π
k−1
ij

T (Pij)) (2.2)

Term maxPij∈Πk−1
ij

T (Pij) is computed taking into account only the paths which

contain intermediate nodes l ≤ k − 1 and it is actually the definition of hk−1
ij .

Hence, we need to show that the second argument of the outer max function
equals min(hk−1

ik , hk−1
kj). As emphasized above, the set of paths Πk

ij \Π
k−1
ij contains

exactly the paths which are not taken into account in the computation of hk−1.
Each of these paths have node k as an intermediate node.

It is sufficient to consider only paths between i and j that contain only one
occurrence of k as an intermediate node. This is because the presence of cyclic
paths Pkk as a part of a path Pij does not change T (Pij). To see this, consider
a path Pij which contains a cycle Pkk. Let T (Pkk) < T (P ′

ij), where P ′
ij is the

path which is obtained by removing Pkk from Pij . Since we are looking for a path
with maximal transitive influence we can always disregard Pkk since P ′

ij is a better
candidate path in the computation of the maximal T . In case T (Pkk) > T (P ′

ij),
T (Pkk) again does not play a role in the computation of T (Pij) since P ′

ij cannot
be omitted from Pij . Hence, each considered path Pij between nodes i and j
can be split into two parts Pik between nodes i and k and Pkj , between k and

j. Notice that both Pik and Pkj are in Πk−1
ij since they do not feature k as an

intermediate node. Thus, the paths in Πk
ij\Π

k−1
ij can be covered in the computation

by considering all concatenations of pairs of such paths (Pik, Pkj), which gives:

max
Pij∈Πk

ij\Π
k−1
ij

T (Pij) = max
(Pik,Pkj)∈Πk−1

ij ×Πk−1
ij

T ((Pik, Pkj)) (2.3)

Since we assume Tmin, we have T ((Pik, Pkj)) = min(T (Pik), T (Pkj)). Using
the fact that set of transitive affinities T (Pij together with max and min form a
distributive lattice, the right hand side of 2.3 can be rewritten as:

max
(Pik,Pkj)∈Πk−1

ij ×Πk−1
ij

T ((Pik, Pkj)) = max
(Pik,Pkj)∈Πk−1

ij ×Πk−1
ij

min(T (Pik), T (Pkj))

= min(max
Pik∈Πk−1

ij

T (Pik), max
Pkj∈Πk−1

ij

T (Pkj))

= min(hk−1
ik , hk−1

kj)

By putting the last equalities together with 2.2 and 2.3 we obtain the desired
result.

�

The next two propositions ensure that each new iteration in the computation of
hij is an improvement with regard to the previous one:

Proposition 2.2. For all i, j, k ∈ n

hk−1
ij ≤ hk

ij .

PARALLEL ALGORITHMS FOR TRANSITIVE REDUCTION 101

Proof. This inequality follows directly from Prop. 2.1, since one of the arguments
of the max function is hk−1

ij . �

Sequence {hk
ij}k=1,...,n converges to hn

ij , i.e.

Proposition 2.3. For all i, j ∈ n

hn
ij = hij .

This holds since all nodes are allowed to occur in the paths along which we compute
hn
ij .
The next property plays an important role in the parallelization of the algo-

rithms that we present in the next sections:

Proposition 2.4. For all i, j, k ∈ n: hk
ik = hk−1

ik and hk
kj = hk−1

kj .

Proof. By Prop. 2.1 and the properties of max we have:

hk
ik = max(hk−1

ik ,min(hk−1
ik , hk−1

kk)) = hk−1
ik

and
hk
kj = max(hk−1

kj ,min(hk−1
kk , hk−1

kj)) = hk−1
kj .

�

3. Transitive Reduction of a Weighted Graph

For weighted graphs, the informal criterion for preserving an edge (i, j) in the
reduced graph, that we mentioned above, was that the direct influence is at least
as strong as the maximal indirect transitive influence, which is formally expressed
as:

hij ≤ wij . (3.1)

Together inequalities 2.1 and 3.1 imply hij = wij . Hence, we have the following
definition:

Definition 4. The transitive reduction of a weighted graph G = (V,E,w) is the
graph Gt = (V,Et, wt) with Et = {(i, j) ∈ E|wij = hij } and wt(i, j) = w(i, j),
for all (i, j) ∈ Et.

In other words, edge (i, j) is preserved in the reduced graph Et if and only if
its weight equals the maximal transitive influence between nodes i and j. The
edge weights remain unchanged in the reduced graph. Unlike its counterpart
for unweighted graphs, the above definition includes also cyclic graphs and their
reduced graph Gt is unique.

In general, also the refined notion of transitive reduction with weights does not
completely resolve the anomaly of removing an edge from the graph which corre-
sponds to an influence that actually exists in the real network. One way to further
improve the filtering of the edges is to introduce thresholds. We introduce an up-
per threshold tu determining that any edge (i, j) with wij ≥ tu is unconditionally
kept in Et, i.e., regardless of the transitive influence between i and j. In this way
we ensure that direct influences with sufficiently high strengths are not removed

102 BOŠNAČKI ET AL.

from the network. Similarly, we use a lower threshold tl such that any edge (i, j)
with wij ≤ tl is unconditionally removed from the network. Provided we use the
transitive influence Tmin, such a filtering with lower threshold tl is actually inde-
pendent of the transitive reduction concept and it can be done as a preprocessing
step before the transitive reduction.

In presence of thresholds the definition of transitive reduction needs to be ad-
justed:

Definition 5. The transitive reduction of a weighted graph G = (V,E,w) with
an upper threshold tu and a lower threshold tl is the graph Gt = (V,Et, wt) with
Et = {(i, j) ∈ E|(w(i, j) = hij∧¬w(i, j) ≤ tl)∨w(i, j) ≥ tu}, and for all (i, j) ∈ Et

it holds wt(i, j) = w(i, j).

By setting tu = 0 or tl = 0 we obtain transitive reduction without upper or lower
threshold, respectively.

4. Algorithms for Transitive Reduction

In this section we present algorithms for transitive reduction of weighted graphs.
They are based on the Floyd-Warshall algorithm [4, 11] and as such they can be
efficiently parallelized. Although the algorithms are of polynomial complexity for
practical applications this parallelization is important since it allows scalability.
For instance, in the applications to genetic networks, whole genome knockout
experiments with tens of thousands of nodes can be processed with modern desktop
computers.

4.1. Straightforward Algorithm for Transitive Reduction of Weighted
Acyclic Graphs. The first algorithm that we present is a direct implementation
of Def. 4. The input of the algorithm is the weight matrix W of the graph. The
output is the modified weight matrix of the reduced graph in which the weights of
the removed edges are set to 0. The core of Algorithm 1 consists of the nested for
loops in lines 3-5 and is borrowed from [3]. It computes the transitive influences
between each pair of nodes in the matrix {gij}. This is done by direct application
of Prop. 2.1 which is implemented by the assignment in line 5. After that, in lines
6-7 the edges are removed for which the weights are smaller than the transitive
influences.

Since in the second part of Alg. 1 only the edges (i, j) are removed for which
wij < gij , for the correctness of the algorithm as a whole it is sufficient to show that
after the termination of the for loop in line 3, for each pair i, j it holds gij = hij .
To this end we show by induction that after the execution of the k-th iteration of
the line 3 loop, it holds gij = hk

ij . This is in fact a loop invariant that is valid before
entering the line 3 loop, since after the initialization done in the line 1 for loop we
have gij = wij = h0

ij . By the induction hypothesis the invariant holds also before
entering the line 4 loop in the (k + 1)-th iteration. By Prop. 2.1 the invariant is
preserved by the assignment in line 5. Because of Prop. 2.4 these assignments can
be performed in an arbitrary order since the value of gik and gkj remains the same
in iterations k and k + 1. As a consequence, the loop in line 4 can be executed in

PARALLEL ALGORITHMS FOR TRANSITIVE REDUCTION 103

Algorithm 1 Transitive reduction for weighted acyclic graphs (straightforward)

Input: Weight matrix {wij}i,j∈n

Output: Weight matrix {gij}i,j∈n of the reduced graph
1: for (i, j) ∈ n× n do in parallel
2: gij := wij

3: for k = 1, . . . , n do sequentially
4: for (i, j) ∈ n× n do in parallel
5: gij := max(gij ,min(gik, gkj))
6: for (i, j) ∈ n× n do in parallel
7: if wij < gij then
8: wij := 0

parallel, which we exploit to improve the efficiency of the algorithm. Finally, by
Prop. 2.3 after the last n-th iteration we have gij = hn

ij = hij .

4.2. A Memory Efficient Algorithm. Algorithm 1 needs two matrices: the
weight matrix plus the auxiliary matrix gij to store the (restricted) transitive
influences. This can be a drawback if one is confronted with limited memory, which
can be the case if we use GPUs. To alleviate this problem we give a version of
the algorithm which requires less memory. Conceptually, it still uses two matrices:
the input matrix of weights (in this case it is assumed that this is given directly as
the auxiliary matrix {gij}) and Boolean matrix {rij}, which indicates if an edge
(i, j) should be removed. The advantage of the Boolean matrix is that it needs
only one bit per element. Actually, in practice this bit can be implemented as a
sign of the values in {gij}, which are usually floating points. Thus matrix gij is
sufficient. The output of the algorithm is the modified weight matrix {gij}.

Algorithm 2 has a structure similar to Algorithm 1. In lines 1 and 2 the values
rij are initialized to False which means that initially we assume conservatively
that no edge needs to be removed. Lines 4-8 are expanded version of lines 3-5 of
Alg. 1 and as such it computes the restricted transitive influences of the original
graph. It is straightforward to check that regarding the assignment to gij , lines 5-7
are equivalent to the statement gij := max(gij ,min(gik, gkj)) in line 5 of Alg. 2. In
addition, in line 8, the value of rij is set to True to record that edge (i, j) should
be removed. This is based on the observation that for an edge to be removed it
suffices that in at least one iteration the weight of the edge is smaller than the
(restricted) influence of the graph.

The last part of Alg. 2, lines 7 and 8, is analogous to the final part of Alg. 1,
lines 10 and 11. Based on the value of rij edges are removed from the original
graph.

To establish the soundness of Algorithm 2 we need to show that if an edge
(i, j) is removed in lines 10 and 11, i.e., if rij = True, then also according to the
definition, this edge needs to be removed from the original graph, i.e., rij implies
wij < hij .

104 BOŠNAČKI ET AL.

Algorithm 2 Transitive reduction for weighted acyclic graphs (memory efficient)

Input: Weight matrix {gij} of the original graph
Output: Modified weight matrix {gij} of the reduced graph
1: for (i, j) ∈ n× n do in parallel
2: rij := False
3: for k = 1, . . . , n do sequentially
4: for (i, j) ∈ n× n do in parallel
5: g∗ = min(gik, gkj)
6: if gij < g∗ then
7: gij := g∗

8: rij := True
9: for (i, j) ∈ n× n do in parallel

10: if rij then
11: gij := 0

Analogously to Alg. 1, after the termination of the k-th iteration of the parallel
loop in line 3 it holds

gij = hk
ij . (4.1)

Again we establish validity of this invariant by means of induction. The invari-
ant 4.1 holds before entering the line 3 loop, since by definition for the elements of
the input matrix we have gij = wij = h0

ij . It is straightforward to check that the
property is preserved by the iteration step: the statements in lines 5-7 of Alg. 1
are equivalent to the assignment gij := max(gij ,min(gik, gkj)) in line 5 of Alg. 2.
For, if gij < g∗ = min(gik, gkj) then max(gij ,min(gik, gkj)) = g∗. Otherwise, the
maximum is gij and its value remains unchanged. Thus, by the induction hy-
pothesis 4.1 we have that before the assignment in line 7 in the k-th iteration it
holds: gij = hk−1

ij , and also by Prop. 2.4, gik = hk−1
ik = hk

ik and gkj = hk−1
kj = hk

kj .
By Prop.2.1 this implies that after the assignment, invariant 4.1 is established.

Boolean rij can be changed to True only by the assignment in line 8. So,
once modified (to True) the value is never reverted to False. Let us consider the
greatest k ≥ 1 for which rij is modified. The assignment is performed under the
condition gij < g∗. Taking into account 4.1 and the assignment in line 7 and

using Prop. 2.2 we conclude that hk−1
ij = gij < g∗ij = hk

ij . Hence, rij = True

after the termination of the loop 3, implies the following chain of (in)equalities

wij = h0
ij ≤ hk−1

ij < hk ≤ hn
ij = hij , which establishes the required inequality and

with that the soundness of the algorithm.
For the completeness we have to show that for each edge (i, j) such that wij <

hij , value rij becomes eventually True after the execution of loop 3. We do this
by contradiction. Suppose that there exist such an edge (i, j) with wij < hij ,
but after the loops are terminated rij = False. Since rij is changed if and only
if gij is changed (lines 7 and 8) we conclude that also gij is unchanged after the
termination of the loops and therefore after the last iteration gij = wij , by the
definition of the input of the algorithm. On the other hand, we already showed

PARALLEL ALGORITHMS FOR TRANSITIVE REDUCTION 105

that after the termination of loop 3 also gij = hij and therefore wij = hij which
contradicts our initial assumption.

4.3. Algorithm for Transitive Reduction with Upper Threshold. The idea
behind the third version of the algorithm with upper threshold is similar. The only
modification is in the condition which determines when an influence of the edge
is updated and consequently the corresponding element of the Boolean array is
set. In this version of the algorithm there are edges which are “protected” in the
sense that they are preserved, the Boolean element is not set, if the edge weight is
greater than the given threshold tu. The transitive reduction with upper threshold
can be generated by an algorithm which is obtained from Alg. 2 by replacing the
condition gij < g∗ in line 6 by

gij < g∗ and gij < tu.

The correctness of the modified algorithm can be shown in a way analogous to
Alg. 2. The only difference is that the loop relation 4.1 becomes gij ≤ hk

ij . As a
consequence, rij implies (wij < hij) ∧ (wij < tu). The completeness arguments
are the same as for Alg. 2.

4.4. Complexity, Generalizations, GPUs. All of the presented algorithms are
obviously of polynomial complexity O(n3), where n is the number of nodes in
the graph. They can be also implemented efficiently on parallel architectures,
in particular shared memory ones, like modern GPUs. Experiments with our
prototype implementations show significant speed ups of more than 40 compared
to their sequential counterparts. Regarding the parallel version of the algorithms,
assuming p ≥ n2, where p is the number of processors and n the size of the graph,
we obtain time complexity O (n), i.e., linear in the number of nodes.

Besides the ‘weakest’ link transitive influence Tmin that we used throughout
the paper, one can use the complementary Tmax transitive influence in which the
transitive influence of a path is determined as its maximal edge weight. Analo-
gously, instead of the maximal transitive influence we have to work with a minimal
one. Also we need to use ∞ as a special value that indicates absence of edge. In
general, the edge weights should be from a set which is a lattice and in the def-
initions supremum (greatest upper bound) and infimum (least lower bound) can
substitute instead of maximum and minimum, respectively. In the proofs the only
constraints that we used on T is that it was associative and the counterparts of
the max and min operations have to be mutually distributive. In that case we can
reuse completely the schema of our algorithm by only replacing the operations and
the designated values.

5. Conclusions

We presented a generalization of the notion of transitive reduction for weighted
graphs. Both algorithms are of polynomial complexity O(n3), where n is the
number of nodes in the graph. They can be also implemented efficiently on parallel
architectures, in particular shared memory ones, like modern GPUs.

106 BOŠNAČKI ET AL.

We implemented both sequential and parallel versions of the algorithms. Cur-
rently we have been performing experiments for inference of genetic networks. The
first experiments are quite encouraging, both in run time and quality of the net-
work reconstruction, especially taking into account the relative simplicity of the
concept.

An interesting avenue for future work would be to find other applications for
transitive reductions of weighted graphs beyond genetic networks. Probably to
this end one would need to use different definitions of transitive influence and
counterparts to the minimum and maximum operations.

References

[1] A.V. Aho, M.R. Garey, and J.D. Ullman. The Transitive Reduction of a Directed Graph,
SIAM Journal on Computing, 1(2) (1972), 131–137.

[2] P. Chang and L. J. Henschen. Parallel transitive closure and transitive reduction algorithms,
in: International Conference on Databases, Parallel Architectures and Their Applications,
PARBASE-90, (1990) 152–154.

[3] C. Ding, X. He, H. Xiong, H. Peng, and S.R. Holbrook. Transitive closure and metric

inequality of weighted graphs; detecting protein interaction modules using cliques, Int. J.
Data Min. Bioinformatics, 1(2) (2006), 162–177.

[4] R.W. Floyd. Algorithm 97: Shortest path, Commun. ACM, 5(6), (1962), 345.
[5] A. Goralćıková and V. Koubek. A reduct-and-closure algorithm for graphs, in: J. Becvár

(ed.), Mathematical Foundations of Computer Science 1979, Lecture Notes in Computer
Science 74, Springer Berlin / Heidelberg (1979), 301–307.

[6] D. Gries, A. J. Martin, J. L. van de Snepscheut, and J.T. Udding. An algorithm for transitive
reduction of an acyclic graph, Sci. Comput. Program., 12(2) (1989), 151–155.

[7] S. Klamt, R. J. Flassig, and K. Sundmacher. Transwesd: inferring cellular networks with
transitive reduction Bioinformatics, 26 (2010), 2160–2168.

[8] D.M. Moyles and G. L. Thompson. An algorithm for finding a minimum equivalent graph
of a digraph, J. ACM, 16 (1969), 455–460.

[9] A. Tresch, T. Beissbarth, H. Sültmann, R. Kuner, A. Poustka, and A. Buness. Discrimi-
nation of Direct and Indirect Interactions in a Network of Regulatory Effects, Journal of
Computational Biology, 14(9) (2007), 1217–1228.

[10] A. Wagner, How to reconstruct a large genetic network from n gene perturbations in fewer
than n2 easy steps, Bioinformatics, 17(12) (2001), 1183–1197.

[11] S. Warshall, A theorem on boolean matrices, J. ACM, 9(1) (1962), 11–12.

Department of Biomedical Engineering, Eindhoven University of Technology,
PO Box 513, 5600 MB, Eindhoven, The Netherlands

E-mail address: dragan@win.tue.nl

