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REFINEMENTS AND SHARPNESS OF SOME INEQUALITIES
FOR MATHIEU TYPE SERIES

ŽIVORAD TOMOVSKI∗ AND DELČO LEŠKOVSKI∗∗

Dedicated to Academician Blagoj Popov on the Occasion of His 85th Birthday

Abstract. In this paper the classical Qi’s type inequalities [15] for Mathieu
type series as well as for its alternating version [13] are studied. Some new
refinements and sharpness of the inequalities given in [13, 15, 19, 20] will be
presented.

1. Introduction and preliminaries

The following familiar infinite series

S(r) =

∞∑
n=1

2n

(n2 + r2)2
(r ∈ R) (1.1)

is named after Emile Leonard Mathieu (1835 − 1890), who investigated it in his 1890
work [10] on elasticity of solid bodies. Bounds for this series are needed for the solution of
boundary value problems for the biharmonic equations in a two-dimensional rectangular
domain (see [16], p.258, eq. (54)). Inequality

S(r) <
1

r2
(1.2)

was conjectured in 1890 by Mathieu [10] and proved only in 1952 by L. Berg [2]. A very
elegant and at the same time elementary proof of the inequalities

1

r2 + 1
2

< S(r) <
1

r2
(1.3)

is given by E. Makai [11]. These inequalities are called Mathieus.
H.W. Gould and T. A. Chapman [7] have proved in 1962 the inequalities

1

r2 + 1
− 1

r2 + (m + 1)2
≤

m∑
n=1

2n

(n2 + r2)2
≤ 1

r2
− 1

r2 + m2
(∀m ∈ N) (1.4)

from which we can derive weaker inequalities than (1.3).
A remarkably useful integral representation for S(r) in the elegant form

S(r) =
1

r

∞∫

0

t sin(rt)

et − 1
dt (1.5)
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was given by Emersleben [5]. Alternative version of (1.1)

S̃(r) =

∞∑
n=1

(−1)n−1 2n

(n2 + r2)2
(r ∈ R) (1.6)

was recently introduced by Pogany et.al in [13].
Let F be a Laplace transform of f i.e.

F (p) = L(f(t)) (1.7)

Using the relations (see [14], pp.651)

∞∑
n=1

F (n) =

∞∫

0

f(x)

ex − 1
dx (1.8)

∞∑
n=1

(−1)n−1F (n) = −
∞∫

0

f(x)

ex + 1
dx (1.9)

we gave [13] an integral representation for S̃(r):

S̃(r) =
1

r

∞∫

0

t sin(rt)

et + 1
dt (1.10)

Several interesting problems and solutions dealing with integral representations and
bounds for the following slight generalization of the Mathieu series with a fractional power

Sµ(r) =

∞∑
n=1

2n

(n2 + r2)µ
(r ∈ R; µ > 1) (1.11)

can be found in the works by Diananda [4], Tomovski and Trencevski [18] and Cerone
and Lenard [3]. Feng Qi introduced [15] the series of following type:

Sµ+1(r, α) =

∞∑
n=1

2n
α
2

(nα + r2)µ+1
(r > 0, µ > 0, α > 0) (1.12)

It is obvious that Sµ(r, 2) = Sµ(r). Motivated essentially by the works of Cerone and
Lenard [3] (and Qi [15]), Srivastava and Tomovski defined in [17] a family of generalized
Mathieu series

S(α,β)
µ (r, a) = S(α,β)

µ (r, {ak}∞k=1) =

∞∑
n=1

2aβ
n

(aα
n + r2)µ

(r, α, β, µ ∈ R) (1.13)

where it is tacitly assumed that the positive sequence

a = {ak}∞k=1 = {a1, a2, a3, . . . } ( lim
k→∞

ak = ∞)

is chosen such that the infinite series in definition (1.13) converges, that is, that the
following auxiliary series

∞∑
n=1

1

aµα−β
n

is convergent. Comparing the definitions (1.1), (1.11) and (1.13), we see that S2(r) = S(r)

and Sµ(r) = S
(2,1)
µ (r, {k}). Furthermore, the special cases
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S
(2,1)
2 (r; {ak}), S

(2,1)
µ (r; {k}), S

(2,1)
µ (r; {kγ}), S

(α, α
2 )

µ (r; {k}) = Sµ(r, α) were investigated
by Qi [15]; Diananda [3]; Tomovski [19] and Cerone-Lenard [3].
Let

S̃(α,β)
µ (r; a) = S̃(α,β)

µ (r; {ak}∞k=1)

=

∞∑
n=1

(−1)n−1 2aβ
n

(aα
n + r2)µ

(r, α, β, µ ∈ R) (1.14)

be an alternating variant of (1.13), where the positive sequence {an}∞n=1 satisfied the same
conditions of the definition (1.13). In [13] we obtained several integral representations for
(1.13) and its alternating variant in terms of the generalized hypergeometric functions
and the Bessel function of first kind. Using these integral representations it is shown [20]
that

S̃(2,1)
µ (r; {nγ}) ≤ 2

(1 + r2)µ
= M(r, µ) (1.15)

with r, γ ∈ R+, µ > 1
2
(1 + r2).

Specially for µ = 2, γ = 1, the inequality (1.15) reduces to the inequality

S̃(r) ≤ M(r, 2) (0 < r <
√

3). (1.16)

2. Refinements of the Qi type inequalities

In this part firstly we shall refine some inequalities of Qi type, given in [15] and [13].
We need the following proposition.

Proposition 2.1. For x > 0,
x

2ex
<

x

ex + 1
<

x

ex
. (2.1)

The following Theorem appears erroneously (without the term −3e−π/(2r) on the right
hand sided inequality) in the works by Feng Qi [15] and we will present here the correct
formulation.

Theorem 2.1. For any positive number r > 0,

L ≤ S(r) ≤ R (2.2)

where

L =
4(1 + r2)(e−π/r + e−π/(2r))− 4r2 − 1

(e−π/r − 1)(1 + r2)(1 + 4r2)

R =
(1 + 4r2)(e−π/r − e−π/(2r))− 4(1 + r2)− 3e−π/(2r)

(e−π/r − 1)(1 + r2)(1 + 4r2)
.

Remark 2.1. This theorem was published six years after appearance of the very impor-
tant paper by Alzer et al. [1]. Namely they proved the following theorem.

Theorem 2.2. For any positive number r > 0,

1

k1 + r2
< S(r) <

1

k2 + r2
(2.3)

where k1 = 1
2ζ(3)

and k1 = 1
6

are the best possible constants. Here ζ denotes Riemann-

Zeta function and ζ(3) ≈ 1.20205 is the Apéry’s constant.

Remark 2.2. When 0 < r < 0, 72149 . . . , the upper bound in (2.2) is better than that
in (2.3)(see figure 1).
Qi in [15] remarked that when 0 < r < 2, 9002 . . . ,the lower bound in (2.2) is positive,
and then is useful. But, it is not better than that in (2.3).
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Figure 1

The proof of the next Theorem is similar to those of Theorem 2.1 in [15] and it is
sufficient to be presented here one of them.

Theorem 2.3. For all r > 0,

L̃ < S̃(r) < R̃, (2.4)

where

L̃ =
2

(1 + r2)2
− 1

(1 + r2)2(1− e−π/r)
− πe−π/r

2r(1 + r2)(1− e−π/r)2

and

R̃ =
1

(1 + r2)2
+

1

(1 + r2)2(1− e−π/r)
+

πe−π/r

2r(1 + r2)(1− e−π/r)2
.

Proof. Since

S̃(r) =
1

r

∞∑

k=0




(2k+1)π/r∫

2kπ/r

x

ex + 1
sin(rx)dx +

(2k+2)π/r∫

(2k+1)π/r

x

ex + 1
sin(rx)dx


, (2.5)

by applying the elementary two-sided inequality (2.1), we obtain

∞∑

k=0

(2k+1)π/r∫

2kπ/r

x

ex + 1
sin(rx)dx ≤

∞∑

k=0

(2k+1)π/r∫

2kπ/r

xe−x sin(rx)dx,

∞∑

k=0

(2k+2)π/r∫

(2k+1)π/r

x

ex + 1
sin(rx)dx ≤ 1

2

∞∑

k=0

(2k+2)π/r∫

(2k+1)π/r

xe−x sin(rx)dx.
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Applying the well-known integral formula (see [14], p.446)

∞∫

0

xe−x sin(rx)dx =
2r

(1 + r2)2

we get

S̃(r) ≤ 1

r




∞∑

k=0

(2k+1)π/r∫

2kπ/r

xe−x sin(rx)dx +
1

2

∞∑

k=0

(2k+2)π/r∫

(2k+1)π/r

xe−x sin(rx)dx




=
1

r


1

2

∞∫

0

xe−x sin(rx)dx +
1

2

∞∑

k=0

(2k+1)π/r∫

2kπ/r

xe−x sin(rx)dx




=
1

(1 + r2)2
+

1

2r

∞∑

k=0

(2k+1)π/r∫

2kπ/r

xe−x sin(rx)dx = R̃.

On the other hand,

S̃(r) ≥ 1

r


1

2

∞∑

k=0

(2k+1)π/r∫

2kπ/r

xe−x sin(rx)dx +

∞∑

k=0

(2k+2)π/r∫

(2k+1)π/r

xe−x sin(rx)dx




=
1

r




∞∫

0

xe−x sin(rx)dx− 1

2

∞∑

k=0

(2k+1)π/r∫

2kπ/r

xe−x sin(rx)dx




=
1

(1 + r2)2
− 1

2r

∞∑

k=0

(2k+1)π/r∫

2kπ/r

xe−x sin(rx)dx = L̃.

The proof is complete. ¤

Remark 2.3. Since
1

1− e−
π
r

> 1 (∀r > 0) ,

πe−
π
r

2r(1 + r2)
(
1− e−

π
r

)2 > 0 (∀r > 0)

we obtain that

R̃ >
1

(1 + r2)2
+

1

(1 + r2)2
= M(r, 2),

i.e. the inequality (1.16) for 0 < r <
√

3 is stronger than the right hand sided inequality
of (2.4).

Theorem 2.4. [13] For all r > 0,

4ζ(3)− 3

2 (3r2 + 2) (2ζ(3)r2 + 1)
< S̃(r) <

12− ζ(3)

2 (6r2 + 1) (ζ(3)r2 + 2)
. (2.6)



66 ŽIVORAD TOMOVSKI AND DELČO LEŠKOVSKI

Remark 2.4. 4 It is easy to show that when 0 < r < 0, 28668,the upper bound in (1.16)
is better than the upper bound in (2.6). Namely, if we denote

D(r) = M(r, 2)− 12− ζ(3)

2 (6r2 + 1) (ζ(3)r2 + 2)
=

2

(1 + r2)2
− 12− ζ(3)

2 (6r2 + 1) (ζ(3)r2 + 2)
,

after simplifying, we have

D(r) =
(25ζ(3)− 12) r4 + 6 (ζ(3) + 4) r2 + (ζ(3)− 4)

2 (1 + r2)2 (6r2 + 1) (ζ(3)r2 + 2)
.

Let G(r) = (25ζ(3)− 12) r4 + 6 (ζ(3) + 4) r2 + (ζ(3)− 4). For r > 0, the function G(r)
is increasing and the positive root of the equation G(r) = 0 is

r0 =

√
−3 (ζ(3) + 4) +

√
−16ζ2(3) + 184ζ(3) + 94

25ζ(3)− 12
≈ 0, 28668.

Therefore, D(r) < 0 ⇔ G(r) < 0 ⇔ r ∈ (0, r0).

r

Figure 2

When 0 < r < 0, 912173 . . . , the lower bound in (2.4) is positive, and then it is useful.
It is better than the lower bound in (2.6) when 0 < r < 0, 808583 . . . (see figure 2).

Applying the same technique as Qi did in [15], that is, by using the fact that x−1 (ex + 1)
is an increasing function for x > c0 ≈ 1, 27846 (c0 is a root of the equation ex−xex +1 =
0), the well-known inequality x

ex+1
< 2

ex/2 would yield the following result, which appears

erroneously in the works by Pogany et al. [13, Theorem 4] and we will present here the
correct formulation.
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Theorem 2.5. (a) For all r ∈
(
0, π

c0

)
,

S̃(r) ≤ 1

r

π/r∫

0

x sin(rx)

ex + 1
dx. (2.7)

(b) For all r > 0,

1

r

π/r∫

0

x sin(rx)

ex + 1
dx ≤

2
(
1 + e−π/(2r)

)

r2 + 1
4

. (2.8)

3. Inequalities for generalized Mathieu series

In this section we shall refine double inequalities given in [19] and prove that the
inequality (1.15) is stronger than inequlity of [13] given by

S̃(2,1)
µ (r; {nγ}) ≤ bLC̃µ(r)Γ

(
µ + 1

2

)
(
µ− 3

2

) 1
3

= Nb (r, µ)

(
µ >

3

2

)
(3.1)

where bL = 0, 674885 . . . and C̃µ(r) =
√

π

(2r)
µ− 3

2 Γ(µ)
.

Theorem 3.1. [19] For r > 0, µ > 0, α > 0 the following integral representation for
Sµ+1 (r, α) holds

Sµ+1 (r, α) =
2

Γ (µ + 1)

∞∫

0

xµe−r2xg(x)dx, (3.2)

where g(x) =
∞∑

n=1

nα/2e−nαx.

The following lemma can be found in [6], pp146-147.

Lemma 3.1. Let at the some z > 0 function f is increasing on [0, z) and decreasing on

[z,∞) and
∞∫
0

f(x)dx converges. Then the inequalities

∞∫

0

f(x)dx− max
x∈R+

f(x) <

∞∑
n=1

f(n) <

∞∫

0

f(x)dx + max
x∈R+

f(x)−
1∫

0

f(x)dx (3.3)

take place.

Theorem 3.2. If r > 0, µ > 0, α > 0, µ− 1
α

> − 1
2

then

2

αr2µ−2/α+1
B

(
1

α
+

1

2
, µ− 1

α
+

1

2

)
− 2Γ

(
µ + 1

2

)
√

2eΓ (µ + 1) r2µ+1
< Sµ+1 (r, α)

<
2(

µα + α
2
− 1

)
(r2 + 1)µ+1 2F1

(
1, µ + 1; µ− 1

α
+

3

2
;

r2

1 + r2

)

+
2Γ

(
µ + 1

2

)
√

2eΓ (µ + 1) r2µ+1
, (3.4)

where 2F1 denotes the Gauss hypergeometric function and B is the Euler Beta function.
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Proof. The proof of (3.4) follows directly by applying of Lemma 3.1 to f(x) = xα/2e−xαt,

x > 0, t > 0. Since
∞∫
0

f(x)dx =
Γ( 1

α
+ 1

2 )
αt1/α+1/2 and max

x∈R+
f(x) = 1√

2et
, by (3.3) we obtain

Γ
(

1
α

+ 1
2

)

αt1/α+1/2
− 1√

2et
< g(t) <

Γ
(

1
α

+ 1
2
, t

)

αt1/α+1/2
+

1√
2et

(3.5)

where g(x) is the function defined in Theorem 3.1. and Γ (a, x) =
∞∫
x

e−tta−1dt is an

incomplete gamma function. Hence by Theorem 3.1. we obtain

2Γ
(

1
α

+ 1
2

)

αΓ (µ + 1)

∞∫

0

tµ−1/α−1/2e−r2tdt− 2√
2eΓ (µ + 1)

∞∫

0

tµ−1/2e−r2tdt < Sµ+1(r, α)

<
2

αΓ (µ + 1)

∞∫

0

Γ

(
1

α
+

1

2
, t

)
tµ−1/α−1/2e−r2tdt +

2√
2eΓ (µ + 1)

∞∫

0

tµ−1/2e−r2tdt,

2Γ
(

1
α

+ 1
2

)
Γ

(
µ− 1

α
+ 1

2

)

αΓ (µ + 1) r2µ−2/α+1
− 2Γ

(
µ + 1

2

)
√

2eΓ (µ + 1) r2µ+1
< Sµ+1(r, α)

<
2

αΓ (µ + 1)

∞∫

0

Γ

(
1

α
+

1

2
, t

)
tµ−1/α−1/2e−r2tdt +

2Γ
(
µ + 1

2

)
√

2eΓ (µ + 1) r2µ+1
.

Applying the integral formula (see [8], page 663)

∞∫

0

Γ

(
1

α
+

1

2
, t

)
tµ− 1

α
− 1

2 e−r2tdt

=
Γ (µ + 1)(

µ− 1
α

+ 1
2

)
(r2 + 1)µ+1 2F1

(
1, µ + 1; µ− 1

α
+

3

2
;

r2

1 + r2

)

(r > 0, µ > 0, α > 0) (3.6)

and definition of the Beta function

B

(
1

α
+

1

2
, µ− 1

α
+

1

2

)
=

Γ
(

1
α

+ 1
2

)
Γ

(
µ− 1

α
+ 1

2

)

Γ (µ + 1)
(3.7)

we finally get (3.3). ¤

Specially for α = 2 we get two sided inequality for Sµ+1(r).

Corollary 3.1. For r, µ ∈ R+,

1

µr2µ
− 2Γ

(
µ + 1

2

)
√

2eΓ(µ + 1)r2µ+1
< Sµ+1(r) <

1

(µΓ(µ + 1)) (r2 + 1)µ +
2Γ

(
µ + 1

2

)
√

2eΓ(µ + 1)r2µ+1
.

(3.8)

The next result was proved recently by Tomovski and Hilfer in [20], but we shall give
here a modified proof illustrated graphically.

Theorem 3.3. For r ∈ R+, µ > 3
2

the inequality (1.15) is stronger than inequality (3.1).
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Proof. Let

P (r, µ) =
M(r, µ)

Nb(r, µ)
=

(µ− 3/2)1/3

bL

√
2π

· Γ (µ)

Γ (µ + 1/2)
· 2µrµ−3/2

(1 + r2)µ . (3.9)

We shall prove that P (r, µ) < 1 for µ > 3
2

and ∀r > 0.
For the proof of this theorem we need Gautschi´s inequality (see [9],[12, page 286])

Γ (µ + β)

Γ (µ)
≥

(
µ− 1− β

2

)β (
µ >

1− β

2
, β ∈ [0, 1]

)
(3.10)

which for β = 1
2

gives

Γ (µ)

Γ (µ + 1/2)
≤ 1√

µ− 1/4

(
µ >

1

4

)
(3.11)

The function f(r) = rµ−3/2

(1+r2)µ has a maximum at the point r0 =
√

µ−3/2
µ+3/2

.

Then,

P (r, µ) ≤ P (r0, µ) =
(µ− 3/2)1/3

bL

√
2π

· Γ (µ)

Γ (µ + 1/2)
·

2µ
(√

µ−3/2
µ+3/2

)µ−3/2

(
1 +

(√
µ−3/2
µ+3/2

)2
)µ

=
(µ− 3/2)1/3

bL

√
2π

· Γ (µ)

Γ (µ + 1/2)
·
2µ (µ−3/2)µ/2−3/4

(µ+3/2)µ/2−3/4

2µµµ

(µ+3/2)µ

≤ 1

bL

√
2π

· (µ− 3/2)µ/2−3/4 · (µ + 3/2)µ/2+3/4

µµ
· (µ− 3/2)1/3

(µ− 1/4)1/2
(3.12)

P (r0, µ) ≤ 1 for µ > 3
2

(see figure 3)

r

Figure 3
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i) µ ≥ 2.

The function f(x) = (x−3/2)1/3

(x−1/4)1/2 has maximum at x = 4.

Therefore, since (3.12), we have

P (r, µ) ≤ 1

bL

√
2π

·
(

5
2

)1/3

(
15
4

)1/2
· L(µ) (3.13)

where

L(µ) =
(µ− 3/2)µ/2−3/4 · (µ + 3/2)µ/2+3/4

µµ
.

Let a = µ− 3/2. It is clear that a ≥ 1/2. Then

L(µ) = L(a + 3/2) =
aa/2 · (a + 3)(a+3)/2

(
2a+3

2

) 2a+3
2

=

√√√√
(
1 + 3

a

)a+3

(
1 + 3

2a

)2a+3 =

√√√√
(

1 + 3
a

1 + 3
a

+ 9
4a2

)a

·
√(

1 + 3
a

1 + 3
2a

)3

≤
√(

1 + 3
a

1 + 3
2a

)3

=

√(
1 +

3

2a + 3

)3

≤
(

7

4

)3/2

(3.14)

Since (3.13) and (3.14) we have

P (r, µ) ≤ 1

bL

√
2π

·
(

5
2

)1/3

(
15
4

)1/2
·
(

7

4

)3/2

≤ 0, 59113 · 1, 35721

1, 93649
· 2, 31504 ≤ 0, 96 < 1

So, for µ ≥ 2, it holds P (r, µ) < 1.
ii) 3

2
< µ ≤ 2

(
9
6

< µ ≤ 12
6

)
.

We will rewrite (3.12) in the following form

P (r, µ) ≤ 1

bL

√
2π

· (µ− 3/2)µ/2−5/12 · (µ + 3/2)µ/2+3/4

µµ · (µ− 1/4)1/2
. (3.15)

Since 0 < µ− 3
2

< 1 by (3.15), we have

a)
(

3
2

< µ ≤ 5
3

)

P (r, µ) ≤ 1

bL

√
2π

·
(

1
6

)1/3 · ( 19
6

)19/12

(
3
2

)3/2 · ( 5
4

)1/2
< 0, 9825 < 1.

b)
(

5
3

< µ ≤ 11
6

)

P (r, µ) ≤ 1

bL

√
2π

·
(

1
3

)5/12 · ( 20
6

)20/12

(
5
3

)5/3 · ( 17
12

)1/2
< 0, 99764 < 1.

c)
(

11
6

< µ ≤ 2
)

P (r, µ) ≤ 1

bL

√
2π

·
(

1
2

)1/2 · ( 7
2

)7/4

(
11
6

)11/6 · ( 19
12

)1/2
< 0, 97931 < 1.

This completes the proof. ¤
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[13] T. K. Pogany, H. M. Srivastava, Ž. Tomovski, Some families of Mathieu a-series and alter-
nating Mathieu a-series, Appl.Math.Comput., 173 (2006), 69-108.

[14] A. P. Prudnikov, Yu. A. Bryckov, O. I. Maricev, Integrals and Series (Elementary Func-
tions), Nauka, Moscow, 1981 (Russian); English translation: Integrals and Series, Vol.1:
Elementary Functions, Gordon and Breach Science Publishers, New York, 1990.

[15] Feng Qi, An integral expression and some inequalities of Mathieu type series, Rostock.
Math.Kolloq., 58 (2004), 37-46.

[16] K. Schroder, Das Problem der eingespannten rechteckigen elastischen Platte, Math. Anal.,
121 (1) (1949), 247-326.
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