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THE RELATIVE ROTHBERGER PROPERTY AND PIXLEY
ROY SPACES

M. SCHEEPERS

Abstract. We characterize subscts of the real linc which have strong measure
zero in all finite powers in terms of a selection property of the correspponding
Pixley-Roy space.

INTRODUCTION

For a space X with topology 7, PR(X) = {F C X : F finite}. For F € PR(X),
and for V an open subset of X with F C V, [F,V]={G € PR(X): FC G CV}.
Then B = {[F,V]: F € PR(X) and F C V C X open} is a basis for a topology,
denoted PR(7), on PR(X). We shall call B the standard basis for this topology.
The space (PR(X ), PR(7)) is the Pizley-Roy space of (X, 7).

The symbol C,(X ) denotes the space of continuous real-valued functions with
domain X, topologized by the topology of pointwise convergence. For Tychonoff
spaces there is an extensive “duality” theory between the space X and the cor-
responding hyperspace C,(X ). Generally speaking, covering properties of finite
powers of X correspond to properties of the closure operator of C,(X). Examples
of duality results related to selection principles can be found in [9] and [10].

The “duality” theory between the space X and the corresponding hyperspace
PR(X) is less well developed. Some work has been done on the relation between
selection principles holding in a space X, and selection principles holding in the
Pixley-Roy space PR(X) - for example in [7] and [12]. Experience suggests that
for appropriate X there should be a rich duality theory between X and PR(X ). In
this paper we will give some more evidence of this by exploring the classical strong
measure zero property of Borel in the context of Pixley-Roy spaces. The result
given here belongs to the area of relative selection principles as were considered in
(1], i2], [5] and [6].

STRONG MEASURE ZERO AND ROTHBERGER’S PROPERTY

A metric space (X,d) has strong measure zero if there is for each sequence
(en : n € N) of positive real numbers also a partition X = UpenXn where for each
n the diameter of X,, is less than e,. Borel conjectured that only countable and
finite sets of real numbers have strong measure zero. Sierpinski early on proved
that the Continuum Hypothesis can be used to construct uncountable sets of real

SUPPORTED BY NSF GRANT DMS 99 - 71282
15



16 M. SCHEEPERS

numbers of strong measure zero. A few years later K. Godel proved that the
Continuum Hypothesis is consistent relative to the consistency of classical math-
ematics: Consequently Sierpinski’s result implies that it is relatively consistent
that Borel’s Conjecture is false. In 1976 Laver published a proof that it is also
relatively consistent that the only sets of real numbers which have strong measure
zero are the countable and finite sets of real numbers. Thus, even in the case of the
real line Borel’s Conjecture is not decidable by the traditional Zermelo Fraenkel
Axioms of Mathematics.

In his study of Borel’'s Conjecture F. Rothberger considered a special case of

the following selection principle:

Si(A, B): For each sequence (4, : n € N) of elements of A there is

a sequence (B, : n € N) such that for each n we have B, € A,, and

{B,:n € N} € B.
Let Ox be the collection of open covers of X. Rothberger proved that if a metriz-
able space X has the property S1(Ox,Ox) then it has strong measure zero. But
Rothberger also proved that the converse is not true. More specifically, the Con-
tinuum Hypothesis implies that there are sets of real numbers which have strong
measure zero, but do not have the Rothberger selection property.

The secret to describing strong measure zeroness for sets of real nunbers in
terms of the selection property Si(A, B) was to relalivize the selection property.
Let Y C X be a subspace of X. We let Ox denote the open covers of X, and
Oxy, the covers of Y by sets open in X. An open cover U of a space is said to be
an w-cover if the space itself is not an element of &/, but for each finite subset ¥
of X tehre is a U € U such that FF C U. The symbol Qx denotes the collection of
w-covers of the space X, and Q xy denotes the collection of w-covers of Y by sets
open in X. The following was proved in [11]:

Theorem 1. Let X be a metrizable o —compact space. The following are equivalent
for a subset Y of X :

1. In each metric d for X, Y has strong measure zero.

2. X = 51(0x,0xy).

And for finite powers: For metric d on X, let d" denote the product metric on
‘X 'l7..

Theorem 2. Let X be a metrizable o —compact space. The following are equivalent
for a subset Y of X :

L. For each metric d for X, Y™ has strong measure zero with respect to d™.

2. X ES1(Qx, Qxy)-
Games, and Ramsey Theory. The following game, Gi(A, B), is naturally as-
sociated with S;(A, B): In the n-th inning ONE chooses an O,, € A, and TWO
responds with a T, € O,. A play Oy, T1, -+, Op, Tn, -+ is won by TWO if
{T,, : n € N} is an element of B; else, ONE wins. It is evident that if ONE has no
winning strategy in the game Gy (A, B), then S;(A, B) holds. The converse is not
always true. When it is true, it presents a powerful tool in analysing the properties

of A and B.
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Also Ramsey theory is related to the selection principle S;(A4, B). For a set S
and for n € N the symbol [S]™ denotes {F C S : |F| = n}. The symbol

A — (B)g
denotes that for each A € A and for each function f : [A]™ — {1,---,k} there is
aB CAandanie{l,---,k} such that B € B, and f[F] =i for each F € [B]".

Dense families of open sets. The following notions were introduced and studied
in [7] and [12]. They are important in developing a “duality” theory for a space
and its Pixley-Roy hyperspace. For a space X let Dx be the collection of families
U of open sets with UU dense in X. Let Dgz( be the collection of elements U of
Dx such that no element of U is a dense subset of X and for each finite set F of
nonempty open subsets of the space there is an A € U such that for each F € F,
FNAG#GD.

These notions can evidently be relativized as follows: Let Y be a subset of X.
Then Dxy denotes the families U of open subsets of X for which (UU)NY is a
dense subset of Y.- And Dg}Y denotes the collection of «f € Dxy such that no
element of U is dense relative to Y, but for each finite family F of nonempty open
subsets of Y there is a U € U such that for each F € F we have FNU # 0.

In [12] we examined among other things the selection principle S; (A, B) for the
cases when A and B are members of {Dx, DL}

The proofs of Theorems 3 and 4 are very similar to those of Theorems 14 and
23 of [12] and will be omitted here:

Theorem 3. For a topological space X and a subspace Y of X, the following are
equivalent:

1. X = S1(Dx,Dxy)-
2. ONE has no winning strategy in the game G1(Dx,Dxy).

Theorem 4. Let X be a space for which each element of Dg% has a countable
subset in ’D%. Then for subspace Y of X the following are equivalent:

1. X ESi1(Dx,Dxy).
2. For each k, D% — (DXY)z-

Pixley-Roy spaces, Rothberger’s property and strong measure zero.
There is a strong connection between the theory Ox and the theory of Dpgr(x).
For the Rothberger selection principle the following is known:

Theorem 5. For a metrizable Lindelof space X the following are equivalent:

1. X & S1(Qx, 2x).

2. For eachn € N, (X" |=51(0x,0x))
3. PR(X) = S1(Opr(x)> Drr(X))

4. PR(X) 'Z SI(DPR(X),'DPR(X))

5. PR(X) = S1(Darr(x), Drr(x))

6. PR(X) = S1(Dapr(x), Parr(x))
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[ this theorem, 1 < 2 is due to Masami Sakai [8], 2 < 3 is due to Peg Daniels
[7]. and the remaining equivalences were proved in [12]. More examples of such
“duality” between X and PR(X) can be found in [7] and [12]. Now we connect the
Pixley-Roy topology with the notion of strong measure zero metric spaces. Our
main result is

Theorem 6. Let X be a o-compact metrizable space. The following are equivalent
for subspace Y of X :

I. For each n, Y™ has strong measure zero in all metrizations of X ™.

2. X E=S51(2x,Qxy)

3. PR(X) = S1(Dpr(x): Prr(x)PR(Y))

In the course of the proof of Theorem 6 we will use the following lemma:

Lemma 7. Let (X,d) be a metric space and let Y C X be such that X =
S1(Qx,Qxy). Then for any F,-subset F of X we have F |= S1(r, QF (Fry))-

Proof : For let (U, : n € N) be a sequence of open (in I') w-covers of F'. Since
Fis an Fs-set, write F' = U,enFy, where for each n we have I, C F,, 11 and F,, 1s
closed in X. For each n, for each U € U,, choos a Viy C X open in X and with
Vo N F = U. Then define for each n V,, = {Vy N (X \ F,,) : U € U,,}. Bach V),
is an w-cover of X by sets open in X. Applying S;(Qx, Qy) to this sequence we
choose for each n a W, € V,, such that {W,, : n € N} is an w-cover of Y. For each
n choose a U,, € U, such that W,, = Vy, U (X \ F,,). Then for each n a U, € U,,
and {U, : n € N} is an w-cover of Y N F by sets open in F. {

Proof : (of Theorem 6): 1 < 2: This part uses the o-compactness of X, and
was proved in [11]. For 2 < 3 we only need that the metric space X is Lindelof.
2 = 3: Let (U, : n € N) be a sequence of elements of Dpr(x). Since X is
o-compact, PR(X) has the countable chain condition and we may thus assume
each U,, is countable. Moreover, by refining U, if necessary, we may assume each
element of U, is an element of the standard basis 5.

Now let (B, : n < o) bijectively enumerate the set of finite unions of elements
from some countable basis for X . If each [F, U] € U, is replaced by countably many
[F, B,,] such that for each m we have F C B,, C B,, C U, then the refinement
of U, thus obtained is also an element of Dpgr(x). Thus, we may assume that
each element of U,, is of the form [F, B,,], and that for each [S, B,,] € U, the set
{B; 185 G B;'€ §j C By} is an w-cover of By,.

For each n enumerate U, bijectively as {[F.,Br] : m € N}. Also, write
N = UpnenYn so that each Y, is infinite and for m < n we have Y,,, NY,, = 0.

Fix n and for each m € Y,, write V,, = {B": EZL C Byp}. Then (V,,, :m €Y,,)
is a sequence of w-covers of B,,. Since B,, is an open set in metrizable space X, it
is an F,-set. Apply, by Lemma 7, S;(Qp,, (g5, (B,ny)) to find for each n € V),
a V,, € V,, such that {V,, : m € Y, } is an w-cover of B,, NY. For each m € Yy,
choose a k,, such that V,,, = B,i"

To see that {[F{", By ] : m € N} is in Dpr(x)pr(y), consider a basic open set
[F,U] with F C Y. Choose an n such that ¥ C B, C U. Then choose an m € Y,
with F C B}* . Then [F,U]N[S;" , B ] # 0. This completes the proof of 1 = 2.
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3 = 2: Let (V, : n € N) be a sequence of w-covers of X. For each n put
U, = {[F,U] : F € PR(X)and F C U € V,}. Then each U, is a member of
DPR(X)- Apply Sl(DPR(X)sDPR(X) pR(y)) to choose for each n an [Fn, Un] € u.,,_ S0
that {[Fn,Un] : n € N} € Dpr(x)pr(y). Consider any finite subset F of ¥, and
an open set U with FF C U. Then choose an n such that [F,U] N [F,,U,] # 0. It
follows that F C U,. Consequently, {U,, : n € N} is a member of Qxy. ¢

Now using the general theory for D as outlined before, we obtain the following
corollaries.

Corollary 8. For metrizable Lindelof space X and subspace Y the following are
equivalent:

1. X ES1(Qx,Qxy)-

2. PR(X) = S1(Dpr(x)> Per(x)PR(Y))-

3. ONE has no winning strategy in G1(Dpr(x), Dpr(x),PR(Y))-
4. For each n, DQR(X) — (DPR(X),PR(Y))%-
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