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Abstract. In this paper we consider antiautomorphisms of simple finite-
dimensional ternary algebras.

1. Introduction

A classification of antiautomorphisms is motivated by a study of antipodes in
Hopf (2, 3)-algebras ([Z]). It is shown in [Z] that Hopf (2, 3)-algebra can be embed-
ded in the usual Hopf algebra. The structure of semisimple finite-dimensional Hopf
algebras H, which have only one the irreducible non-one-dimensional representa-
tion, we found in [A]. This describtion is based on a classification of the antipodes
in H. The results of the present paper can be used for analogous problems for
(2, 3)-algebras.

In [N] and [N1] there is found the structure of simple (1)-artinian (2, n)-rings
in two cases, when the considered (2, n)-ring consists or not proper (1, n)-ideals.

In the first case, the ring R is isomorphic to (2, n)-ring of square matrices
∆n

m(c, φ) over a skew field ∆, with a fixed automorphism φ, such that φn−1 = 1∆
and with central element c, φ(c) = c, with usual addition and n-ary multiplication

x1 · · ·xn = cx1x
φn−2

2 · · ·xφ
n−1xn,

for x1, · · · , xn ∈ ∆m.
In the second case, the ring R has the form

Homk(V1, V2)⊕Homk(V2, V3)⊕ · · · ⊕Homk(Vn−1, V1),

where k is a skew field not necessarily commutative, Vi, 1 6 i 6 n − 1, finite-
dimensional (left) vector-spaces over k, di = dimk Vi . In the matrix language,
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(2, n)- ring R is representative as the ring of block-matrices of the form

d1{

dn−1︷︸︸︷
[∗]

d2{
d1︷︸︸︷
[∗] 0

d3{
d2︷︸︸︷
[∗]

. . .

0 dn−1{

dn−2︷︸︸︷
[∗]


In particular, for n = 3, we consider (2, 3)-rings R together with the multipli-

cation

(λx1)x2x3 = x1(λx2)x3 = x1x2(λx3) = λ(x1x2x3),

for each λ ∈ k. We also assume that k is an algebraically closed field.
In this paper, in the first case we consider antiautomorphisms of order 2 or

involutions

γ : Mat(m, k) → Mat(m, k),

defined by

γ(x) = µ−1ztxtz−1,

where µ = ±1 and z is invertible matrix from Mat(m, k) (T.2.1)
In the second case, we find antiautomorphisms in two cases, as:

γ

(
0 Y
X 0

)
=

(
0 tA−1tXtB
tB−1tY tA 0

)
where

tA = λA, tB = λB

and λ = ±1 (T.3.1) and

γ

(
0 Y
X 0

)
=

(
0 λ−1A−1tY tA
λtA−1tXA 0

)
(T.3.2.).

2. Antiautomorphisms of (2,3)-algebras R = ∆3
m(c, φ)

In this section, we consider antiautomorphisms of (2, 3)-algebra R = ∆3
m(c, φ)

([N]). Note that as a vector space

∆3
m(c, φ) = Mat(m, k),

where k = ∆, with ternary multiplication

x1x2x3 = cx1x
φ
2 x3, φ2 = 1
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and φ is an automorphism of the ring Mat(m, k), c is a central element, such that
φ(c) = c. Then, there exists a matrix P ∈ Mat(m, k), such thatXφ = PXP−1and
P 2 = λE.

Let characteristic of the field k is not equal to 2 and k is algebraically closed.
Then, the polynomial t2 − λ has no multiple roots. Let ς and −ς be two different
roots of the polynomial. Then, there exists an invertible matrix S, such that

SPS−1 =

(
ςEs 0
0 −ςEm−s

)
.

In this case
tS−1tP tS =

(
ςEs 0
0 −ςEm−s

)
.

Put
Q = tS · S.

Then, QPQ−1 = tP and tQ = Q. Hence,

Q−1tPQ = P.

Consider the map
γ : Mat(m, k) → Mat(m, k),

defined by the rull
γ(X) = Q−1tXQ.

We shall show that γ is an antiautomorphism of (2, 3)-algebra R, i.e.

γ(cX1PX2P
−1X3) = cγ(X3)Pγ(X2)P

−1γ(X1).

We have

γ(cX1PX2P
−1X3) = Q−1t(cX1PX2P

−1X3)Q

= cQ−1tX3
tP−1tX2

tP tX1Q

= cQ−1tX3QPQ−1tX2QP−1Q−1tX1Q

or
tP−1tX2

tP = QPQ−1tX2QP−1Q−1 = tP tX2
tP−1.

But,
P 2 = λE

and so
P−1 = λ−1P, λ−1tP tX2

tP = tP tX2λ
−1tP.

Therefore, γ is antiautomorphim. If γ1 is arbitrary antiautomorphism, then
γ−1 ◦ γ1 = α is an automorphism and therefore

γ1 = γ ◦ α.
So, an arbitrary antiautomorphism γ1 has the form

γ1(X) = Q−1tα(X)Q.

Then, there exists an element D ∈ Mat(m, k), such that

α(X) = α(E)D−1XD
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([N]). So,

γ1(X) = Q−1tDtXtD−1tα(E)Q = ZtXZ−1γ1(E) (∗)
where Z = Q−1tD and γ1(E) ∈ GL(m, k).

Suppose that γ2
1 = 1, i.e.

X = γ1(Z
tXZ−1γ1(E)) = Ztγ1(E)tZ−1XtZZ−1γ1(E) (∗∗)

for every X. The coefficients xij in matrix X on the right side are equal to∑
r,s

(Ztγ1(E)tZ−1)irxrs(
tZZ−1γ1(E))sj .

Since xij is arbitrary element,

(Ztγ1(E)tZ−1)ir(
tZZ−1γ1(E))sj = δirδsj . (∗ ∗ ∗)

If

(tZZ−1γ1(E))sj ̸= 0

for some s ̸= j, then

(Ztγ1(E)tZ−1)ir = δir,

i.e.

Ztγ1(E)tZ−1 = E

and tγ1(E) = Z−1tZ, i.e. γ1(E) = ZtZ−1.
Analogously, if

(Ztγ1(E)tZ−1)ir ̸= 0,

for some i ̸= r, then
tZZ−1γ1(E)) = E

and therefore

γ1(E) = ZtZ−1.

In both cases, we obtain in (∗)
γ1(X) = ZtXZ−1ZtZ−1 = ZtXtZ−1.

Suppose that both of matrices

Ztγ1(E)tZ−1, tZZ−1γ1(E)

are diagonal. Then, we obtain in (∗∗)
E = Ztγ1(E)tZ−1tZZ−1γ1(E) = Ztγ1(E)Z−1γ1(E)

or

Ztγ1(E) = γ1(E)−1Z

and therefore we obtain in (∗∗)
X = γ1(E)−1ZtZ−1XtZZ−1γ1(E).

So

γ1(E)−1ZtZ−1 = µE

and

γ1(E) = µ−1ZtZ−1.
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Using (∗), we obtain

γ1(X) = ZtXZ−1µ−1ZtZ−1 = µ−1ZtXtZ−1.

From here

X = γ2
1(X) = γ1(µ

−1ZtXtZ−1)

= µ−1Zt(µ−1ZtXtZ−1)tZ−1

= µ−2ZZ−1XtZtZ−1 = µ−2X

So µ−2 = 1 and µ = ±1.
Thus we have proved:

Theorem 2.1. Let γ1 be an involution. Then, there exists an invertible matrix
Z, such that

γ1(X) = µ−1ZtXtZ−1, µ = ±1

for each X. Conversely, any map γ1 from (∗) is an involution.

3. Antiautomorphims of (2, 3)-algebras R = Homk(V1, V2)⊕Homk(V2, V1)

We describe antiautomorphisms of (2, 3)-algebra

R =


 0 [

d2︷︸︸︷
∗ ]}d1

d2{[ ∗]︸︷︷︸
d1

0




([N ]1). For X =

(
0 B
A 0

)
∈ R, the transpose has the form

tX =

(
0 tA
tB 0

)
∈ R.

So, the map

γ : X → tX

is an antiautomorphism of (2, 3)-algebra R. If γ1 is an arbitrary antiautomorphism,
then γ−1 ◦ γ1 = α is an automorphism of (2, 3)-algebra R. Hence,

γ1 = γ ◦ α

i.e. every antiautomorphism of R is a composition of an automorphism α of R
and the antiautomorphism γ. The automorphism α of R has form

α(X) = PXP−1 (A)

where

P =

(
A B
C D

)
∈ GL(d1 + d2, k)

([N1]). Thus

P

(
0 Y
X 0

)
P−1 =

(
0 Y1

X1 0

)
. (A1)
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Suppose first that the matrix P preserves the blocks of

(
0 Y
X 0

)
. Then, for

each block X, there exists a unique block X1, such that

P

(
0 0
X 0

)
P−1 =

(
0 0
X1 0

)
(B)

and for each Y , there exists a unique Y1, such that

P

(
0 Y
0 0

)
P−1 =

(
0 Y1

0 0

)
. (C)

The formula (B) can be written as

P

(
0 0
X 0

)
=

(
0 0
X1 0

)
P. (B1)

Taking into account the form of the matrix P , in (B1) we have(
A B
C D

)
·
(

0 0
X 0

)
=

(
BX 0
DX 0

)
=

(
0 0
X1 0

)
·
(

A B
C D

)
=

(
0 0
X1A X1B

)
.

Thus BX = 0 = X1B and DX = X1A.
Since, X and X1 are arbitrary, it follows that B = 0. Similary, (C) implies

C = 0. So, we have proved:

Proposition 3.1. If P from (A) defines an automorphism, which preserves blocks

in

(
0 Y
X 0

)
, then P =

(
A 0
0 B

)
, where A and B are invertible matrices of

sizes d1 and d2, respectively.

Put P in (A1). Then,

α

(
0 Y
X 0

)
=

(
A 0
0 B

)
·
(

0 Y
X 0

)
·
(

A−1 0
0 B−1

)
=

(
0 AY
BX 0

)
·
(

A−1 0
0 B−1

)
=

(
0 AY B−1

BXA−1 0

)
is an automorphism of (2, 3)-algebra. In this case, an arbitrary antiautomorphism
γ1 = γ ◦ α has the form

γ1

(
0 Y
X 0

)
=

(
0 tA−1tXtB
tB−1tY tA 0

)
. (A2)

Let us describe the antiautomorphism γ1, which is an involution, i.e. γ2
1 = 1.

By (A2)

γ2
1

(
0 Y
X 0

)
=

(
0 tA−1AY B−1tB
tB−1BXA−1tA 0

)
=

(
0 Y
X 0

)
Then

tB−1BXA−1tA = X, tA−1AY B−1tB = Y. (D)

The following Lemma is well known:
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Lemma 3.1. Let U, V be square matrices and UY = Y V , for every Y . Then,
U = λE, V = λE.

Now, we have proved:

Theorem 3.1. The antiautomorphism (A2) is an involution if and only if

tA = λA, tB = λB, λ = ±1.

If P does not preserve blocks, then P is a composition of a permutation of

the blocks and considered automorphism with the matrix

(
A 0
0 B

)
([N1]). The

permutation of the blocks with d1 = d2 is defined by matrix

(
0 E
E 0

)
. So,

P =

(
0 E
E 0

)
·
(

A 0
0 B

)
=

(
0 B
A 0

)
.

The antiautomorphism

γ1 = γ ◦ α.

Then, (
0 Y
X 0

)
7→ t

((
0 B
A 0

)
·
(

0 Y
X 0

)
·
(

0 A−1

B−1 0

))
=

(
0 tB−1

tA−1 0

)
·
(

0 tX
tY 0

)
·
(

0 tA
tB 0

)
=

(
tB−1tY 0
0 tA−1tX

)
·
(

0 tA
tB 0

)
=

(
0 tB−1tY tA
tA−1tXtB 0

)
The map γ1 is an involution if and only if γ2

1 = 1, i.e.(
0 Y
X 0

)
=

(
0 tB−1t(tB−1tY tA)tA
tA−1t(tA−1tXtB)tB 0

)
=

=

(
0 tB−1AY B−1tA
tA−1BXA−1tB 0

)
for every X,Y . By Lemma 3.1 tA−1B = λE, i.e. B = λtA.

So, we have proved:

Theorem 3.2. If d1 = d2 and γ1 is not any involution from Theorem 3.1. then
it has the form

γ1

(
0 Y
X 0

)
=

(
0 λ−1A−1tY tA
λtA−1tXA 0

)
.
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