THE ANTIAUTOMORPHISMS OF SIMPLE FINITE-DIMENSIONAL TERNARY ALGEBRAS

V.A. ARTAMONOV AND B. ZEKOVIĆ *
Dedicated to Academician Ǵorǵi Čupona

Abstract

In this paper we consider antiautomorphisms of simple finite-

 dimensional ternary algebras.
1. Introduction

A classification of antiautomorphisms is motivated by a study of antipodes in Hopf $(2,3)$-algebras ([Z]). It is shown in [Z] that Hopf (2,3)-algebra can be embedded in the usual Hopf algebra. The structure of semisimple finite-dimensional Hopf algebras H, which have only one the irreducible non-one-dimensional representation, we found in [A]. This describtion is based on a classification of the antipodes in H . The results of the present paper can be used for analogous problems for (2, 3)-algebras.

In $[\mathrm{N}]$ and $\left[\mathrm{N}_{1}\right]$ there is found the structure of simple (1)-artinian $(2, n)$-rings in two cases, when the considered $(2, n)$-ring consists or not proper $(1, n)$-ideals.

In the first case, the ring R is isomorphic to $(2, n)$-ring of square matrices $\Delta_{m}^{n}(c, \varphi)$ over a skew field Δ, with a fixed automorphism φ, such that $\varphi^{n-1}=1_{\Delta}$ and with central element $c, \varphi(c)=c$, with usual addition and n-ary multiplication

$$
x_{1} \cdots x_{n}=c x_{1} x_{2}^{\varphi^{n-2}} \cdots x_{n-1}^{\varphi} x_{n}
$$

for $x_{1}, \cdots, x_{n} \in \Delta_{m}$.
In the second case, the ring R has the form

$$
\operatorname{Hom}_{k}\left(V_{1}, V_{2}\right) \oplus \operatorname{Hom}_{k}\left(V_{2}, V_{3}\right) \oplus \cdots \oplus \operatorname{Hom}_{k}\left(V_{n-1}, V_{1}\right),
$$

where k is a skew field not necessarily commutative, $V_{i}, 1 \leqslant i \leqslant n-1$, finitedimensional (left) vector-spaces over $k, d_{i}=\operatorname{dim}_{k} V_{i}$. In the matrix language,

[^0]$(2, n)-\operatorname{ring} R$ is representative as the ring of block-matrices of the form

In particular, for $n=3$, we consider (2,3)-rings R together with the multiplication

$$
\left(\lambda x_{1}\right) x_{2} x_{3}=x_{1}\left(\lambda x_{2}\right) x_{3}=x_{1} x_{2}\left(\lambda x_{3}\right)=\lambda\left(x_{1} x_{2} x_{3}\right)
$$

for each $\lambda \in k$. We also assume that k is an algebraically closed field.
In this paper, in the first case we consider antiautomorphisms of order 2 or involutions

$$
\gamma: \operatorname{Mat}(m, k) \rightarrow \operatorname{Mat}(m, k),
$$

defined by

$$
\gamma(x)=\mu^{-1} z^{t} x^{t} z^{-1}
$$

where $\mu= \pm 1$ and z is invertible matrix from $\operatorname{Mat}(m, k)$ (T.2.1)
In the second case, we find antiautomorphisms in two cases, as:

$$
\gamma\left(\begin{array}{ll}
0 & Y \\
X & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & { }^{t} A^{-1 t} X^{t} B \\
{ }^{t} B^{-1 t} Y^{t} A & 0
\end{array}\right)
$$

where

$$
{ }^{t} A=\lambda A, \quad{ }^{t} B=\lambda B
$$

and $\lambda= \pm 1$ (T.3.1) and

$$
\gamma\left(\begin{array}{ll}
0 & Y \\
X & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & \lambda^{-1} A^{-1 t} Y^{t} A \\
\lambda^{t} A^{-1 t} X A & 0
\end{array}\right)
$$

(T.3.2.).
2. Antiautomorphisms of $(2,3)$-Algebras $R=\Delta_{m}^{3}(c, \varphi)$

In this section, we consider antiautomorphisms of (2,3)-algebra $R=\Delta_{m}^{3}(c, \varphi)$ ([N]). Note that as a vector space

$$
\Delta_{m}^{3}(c, \varphi)=\operatorname{Mat}(m, k),
$$

where $k=\Delta$, with ternary multiplication

$$
x_{1} x_{2} x_{3}=c x_{1} x_{2}^{\varphi} x_{3}, \quad \varphi^{2}=1
$$

and φ is an automorphism of the ring $\operatorname{Mat}(m, k)$, c is a central element, such that $\varphi(c)=c$. Then, there exists a matrix $P \in \operatorname{Mat}(m, k)$, such that $X^{\varphi}=P X P^{-1}$ and $P^{2}=\lambda E$.

Let characteristic of the field k is not equal to 2 and k is algebraically closed. Then, the polynomial $t^{2}-\lambda$ has no multiple roots. Let ς and $-\varsigma$ be two different roots of the polynomial. Then, there exists an invertible matrix S, such that

$$
S P S^{-1}=\left(\begin{array}{ll}
\varsigma E_{s} & 0 \\
0 & -\varsigma E_{m-s}
\end{array}\right)
$$

In this case

$$
{ }^{t} S^{-1 t} P^{t} S=\left(\begin{array}{ll}
\varsigma E_{s} & 0 \\
0 & -\varsigma E_{m-s}
\end{array}\right)
$$

Put

$$
Q={ }^{t} S \cdot S
$$

Then, $Q P Q^{-1}={ }^{t} P$ and ${ }^{t} Q=Q$. Hence,

$$
Q^{-1 t} P Q=P
$$

Consider the map

$$
\gamma: \operatorname{Mat}(m, k) \rightarrow \operatorname{Mat}(m, k)
$$

defined by the rull

$$
\gamma(X)=Q^{-1 t} X Q
$$

We shall show that γ is an antiautomorphism of $(2,3)$-algebra R, i.e.

$$
\gamma\left(c X_{1} P X_{2} P^{-1} X_{3}\right)=c \gamma\left(X_{3}\right) P \gamma\left(X_{2}\right) P^{-1} \gamma\left(X_{1}\right)
$$

We have

$$
\begin{aligned}
\gamma\left(c X_{1} P X_{2} P^{-1} X_{3}\right) & =Q^{-1 t}\left(c X_{1} P X_{2} P^{-1} X_{3}\right) Q \\
& =c Q^{-1 t} X_{3}{ }^{t} P^{-1 t} X_{2}^{t} P^{t} X_{1} Q \\
& =c Q^{-1 t} X_{3} Q P Q^{-1 t} X_{2} Q P^{-1} Q^{-1 t} X_{1} Q
\end{aligned}
$$

or

$$
{ }^{t} P^{-1 t} X_{2}{ }^{t} P=Q P Q^{-1 t} X_{2} Q P^{-1} Q^{-1}={ }^{t} P^{t} X_{2}{ }^{t} P^{-1}
$$

But,

$$
P^{2}=\lambda E
$$

and so

$$
P^{-1}=\lambda^{-1} P, \quad \lambda^{-1 t} P^{t} X_{2}{ }^{t} P={ }^{t} P^{t} X_{2} \lambda^{-1 t} P .
$$

Therefore, γ is antiautomorphim. If γ_{1} is arbitrary antiautomorphism, then $\gamma^{-1} \circ \gamma_{1}=\alpha$ is an automorphism and therefore

$$
\gamma_{1}=\gamma \circ \alpha
$$

So, an arbitrary antiautomorphism γ_{1} has the form

$$
\gamma_{1}(X)=Q^{-1 t} \alpha(X) Q
$$

Then, there exists an element $D \in \operatorname{Mat}(m, k)$, such that

$$
\alpha(X)=\alpha(E) D^{-1} X D
$$

([N]). So,

$$
\begin{equation*}
\gamma_{1}(X)=Q^{-1 t} D^{t} X^{t} D^{-1 t} \alpha(E) Q=Z^{t} X Z^{-1} \gamma_{1}(E) \tag{*}
\end{equation*}
$$

where $Z=Q^{-1 t} D$ and $\gamma_{1}(E) \in G L(m, k)$.
Suppose that $\gamma_{1}^{2}=1$, i.e.

$$
\begin{equation*}
X=\gamma_{1}\left(Z^{t} X Z^{-1} \gamma_{1}(E)\right)=Z^{t} \gamma_{1}(E)^{t} Z^{-1} X^{t} Z Z^{-1} \gamma_{1}(E) \tag{**}
\end{equation*}
$$

for every X. The coefficients $x_{i j}$ in matrix X on the right side are equal to

$$
\sum_{r, s}\left(Z^{t} \gamma_{1}(E)^{t} Z^{-1}\right)_{i r} x_{r s}\left({ }^{t} Z Z^{-1} \gamma_{1}(E)\right)_{s j}
$$

Since $x_{i j}$ is arbitrary element,

$$
\begin{equation*}
\left(Z^{t} \gamma_{1}(E)^{t} Z^{-1}\right)_{i r}\left({ }^{t} Z Z^{-1} \gamma_{1}(E)\right)_{s j}=\delta_{i r} \delta_{s j} \tag{***}
\end{equation*}
$$

If

$$
\left({ }^{t} Z Z^{-1} \gamma_{1}(E)\right)_{s j} \neq 0
$$

for some $s \neq j$, then

$$
\left(Z^{t} \gamma_{1}(E)^{t} Z^{-1}\right)_{i r}=\delta_{i r},
$$

i.e.

$$
Z^{t} \gamma_{1}(E)^{t} Z^{-1}=E
$$

and ${ }^{t} \gamma_{1}(E)=Z^{-1 t} Z$, i.e. $\gamma_{1}(E)=Z^{t} Z^{-1}$.
Analogously, if

$$
\left(Z^{t} \gamma_{1}(E)^{t} Z^{-1}\right)_{i r} \neq 0
$$

for some $i \neq r$, then

$$
\left.{ }^{t} Z Z^{-1} \gamma_{1}(E)\right)=E
$$

and therefore

$$
\gamma_{1}(E)=Z^{t} Z^{-1}
$$

In both cases, we obtain in $(*)$

$$
\gamma_{1}(X)=Z^{t} X Z^{-1} Z^{t} Z^{-1}=Z^{t} X^{t} Z^{-1}
$$

Suppose that both of matrices

$$
Z^{t} \gamma_{1}(E)^{t} Z^{-1}, \quad{ }^{t} Z Z^{-1} \gamma_{1}(E)
$$

are diagonal. Then, we obtain in $(* *)$

$$
E=Z^{t} \gamma_{1}(E)^{t} Z^{-1 t} Z Z^{-1} \gamma_{1}(E)=Z^{t} \gamma_{1}(E) Z^{-1} \gamma_{1}(E)
$$

or

$$
Z^{t} \gamma_{1}(E)=\gamma_{1}(E)^{-1} Z
$$

and therefore we obtain in $(* *)$

$$
X=\gamma_{1}(E)^{-1} Z^{t} Z^{-1} X^{t} Z Z^{-1} \gamma_{1}(E)
$$

So

$$
\gamma_{1}(E)^{-1} Z^{t} Z^{-1}=\mu E
$$

and

$$
\gamma_{1}(E)=\mu^{-1} Z^{t} Z^{-1}
$$

Using $(*)$, we obtain

$$
\gamma_{1}(X)=Z^{t} X Z^{-1} \mu^{-1} Z^{t} Z^{-1}=\mu^{-1} Z^{t} X^{t} Z^{-1}
$$

From here

$$
\begin{aligned}
X & =\gamma_{1}^{2}(X)=\gamma_{1}\left(\mu^{-1} Z^{t} X^{t} Z^{-1}\right) \\
& =\mu^{-1} Z^{t}\left(\mu^{-1} Z^{t} X^{t} Z^{-1}\right)^{t} Z^{-1} \\
& =\mu^{-2} Z Z^{-1} X^{t} Z^{t} Z^{-1}=\mu^{-2} X
\end{aligned}
$$

So $\mu^{-2}=1$ and $\mu= \pm 1$.
Thus we have proved:
Theorem 2.1. Let γ_{1} be an involution. Then, there exists an invertible matrix Z, such that

$$
\gamma_{1}(X)=\mu^{-1} Z^{t} X^{t} Z^{-1}, \quad \mu= \pm 1
$$

for each X. Conversely, any map γ_{1} from (*) is an involution.
3. Antiautomorphims of $(2,3)$-algebras $R=\operatorname{Hom}_{k}\left(V_{1}, V_{2}\right) \oplus \operatorname{Hom}_{k}\left(V_{2}, V_{1}\right)$

We describe antiautomorphisms of (2,3)-algebra

$$
R=\left\{\left(\begin{array}{ll}
0 & [\overbrace{*}^{d_{2}}]\} d_{1} \\
d_{2}\{[\underbrace{*]}_{d_{1}} & 0
\end{array}\right)\right\}
$$

$\left([N]_{1}\right)$. For $X=\left(\begin{array}{cc}0 & B \\ A & 0\end{array}\right) \in R$, the transpose has the form

$$
{ }^{t} X=\left(\begin{array}{ll}
0 & { }^{t} A \\
{ }^{t} B & 0
\end{array}\right) \in R
$$

So, the map

$$
\gamma: X \rightarrow{ }^{t} X
$$

is an antiautomorphism of $(2,3)$-algebra R. If γ_{1} is an arbitrary antiautomorphism, then $\gamma^{-1} \circ \gamma_{1}=\alpha$ is an automorphism of $(2,3)$-algebra R. Hence,

$$
\gamma_{1}=\gamma \circ \alpha
$$

i.e. every antiautomorphism of R is a composition of an automorphism α of R and the antiautomorphism γ. The automorphism α of R has form

$$
\begin{equation*}
\alpha(X)=P X P^{-1} \tag{A}
\end{equation*}
$$

where

$$
P=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in G L\left(d_{1}+d_{2}, k\right)
$$

([$\left.\left.\mathrm{N}_{1}\right]\right)$. Thus

$$
P\left(\begin{array}{ll}
0 & Y \tag{1}\\
X & 0
\end{array}\right) P^{-1}=\left(\begin{array}{ll}
0 & Y_{1} \\
X_{1} & 0
\end{array}\right)
$$

Suppose first that the matrix P preserves the blocks of $\left(\begin{array}{cc}0 & Y \\ X & 0\end{array}\right)$. Then, for each block X, there exists a unique block X_{1}, such that

$$
P\left(\begin{array}{ll}
0 & 0 \tag{B}\\
X & 0
\end{array}\right) P^{-1}=\left(\begin{array}{ll}
0 & 0 \\
X_{1} & 0
\end{array}\right)
$$

and for each Y, there exists a unique Y_{1}, such that

$$
P\left(\begin{array}{ll}
0 & Y \tag{C}\\
0 & 0
\end{array}\right) P^{-1}=\left(\begin{array}{ll}
0 & Y_{1} \\
0 & 0
\end{array}\right)
$$

The formula (B) can be written as

$$
P\left(\begin{array}{ll}
0 & 0 \tag{1}\\
X & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
X_{1} & 0
\end{array}\right) P .
$$

Taking into account the form of the matrix P, in $\left(B_{1}\right)$ we have

$$
\begin{aligned}
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & 0 \\
X & 0
\end{array}\right) & =\left(\begin{array}{ll}
B X & 0 \\
D X & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
0 & 0 \\
X_{1} & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
X_{1} A & X_{1} B
\end{array}\right)
\end{aligned}
$$

Thus $B X=0=X_{1} B$ and $D X=X_{1} A$.
Since, X and X_{1} are arbitrary, it follows that $B=0$. Similary, (C) implies $C=0$. So, we have proved:

Proposition 3.1. If P from (A) defines an automorphism, which preserves blocks in $\left(\begin{array}{cc}0 & Y \\ X & 0\end{array}\right)$, then $P=\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$, where A and B are invertible matrices of sizes d_{1} and d_{2}, respectively.

Put P in $\left(\mathrm{A}_{1}\right)$. Then,

$$
\begin{aligned}
\alpha\left(\begin{array}{ll}
0 & Y \\
X & 0
\end{array}\right) & =\left(\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & Y \\
X & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
A^{-1} & 0 \\
0 & B^{-1}
\end{array}\right) \\
& =\left(\begin{array}{ll}
0 & A Y \\
B X & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
A^{-1} & 0 \\
0 & B^{-1}
\end{array}\right)=\left(\begin{array}{ll}
0 & A Y B^{-1} \\
B X A^{-1} & 0
\end{array}\right)
\end{aligned}
$$

is an automorphism of (2,3)-algebra. In this case, an arbitrary antiautomorphism $\gamma_{1}=\gamma \circ \alpha$ has the form

$$
\gamma_{1}\left(\begin{array}{ll}
0 & Y \tag{2}\\
X & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & A^{-1 t} X^{t} B \\
{ }^{t} B^{-1 t} Y^{t} A & 0
\end{array}\right)
$$

Let us describe the antiautomorphism γ_{1}, which is an involution, i.e. $\gamma_{1}^{2}=1$. By (A_{2})

$$
\gamma_{1}^{2}\left(\begin{array}{ll}
0 & Y \\
X & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & { }^{t} A^{-1} A Y B^{-1 t} B \\
{ }^{t} B^{-1} B X A^{-1 t} A & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & Y \\
X & 0
\end{array}\right)
$$

Then

$$
\begin{equation*}
{ }^{t} B^{-1} B X A^{-1 t} A=X, \quad{ }^{t} A^{-1} A Y B^{-1 t} B=Y \tag{D}
\end{equation*}
$$

The following Lemma is well known:

Lemma 3.1. Let U, V be square matrices and $U Y=Y V$, for every Y. Then, $U=\lambda E, V=\lambda E$.

Now, we have proved:
Theorem 3.1. The antiautomorphism $\left(\mathrm{A}_{2}\right)$ is an involution if and only if

$$
{ }^{t} A=\lambda A, \quad{ }^{t} B=\lambda B, \quad \lambda= \pm 1
$$

If P does not preserve blocks, then P is a composition of a permutation of the blocks and considered automorphism with the matrix $\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)\left(\left[\mathrm{N}_{1}\right]\right)$. The permutation of the blocks with $d_{1}=d_{2}$ is defined by matrix $\left(\begin{array}{cc}0 & E \\ E & 0\end{array}\right)$. So,

$$
P=\left(\begin{array}{ll}
0 & E \\
E & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right)=\left(\begin{array}{ll}
0 & B \\
A & 0
\end{array}\right)
$$

The antiautomorphism

$$
\gamma_{1}=\gamma \circ \alpha
$$

Then,

$$
\begin{aligned}
\left(\begin{array}{ll}
0 & Y \\
X & 0
\end{array}\right) & \mapsto{ }^{t}\left(\left(\begin{array}{ll}
0 & B \\
A & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & Y \\
X & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & A^{-1} \\
B^{-1} & 0
\end{array}\right)\right) \\
& =\left(\begin{array}{ll}
0 & { }^{t} B^{-1} \\
{ }^{t} A^{-1} & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & { }^{t} X \\
{ }^{t} Y & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & { }^{t} A \\
{ }^{t} B & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
{ }^{t} B^{-1 t} Y & 0 \\
0 & { }^{t} A^{-1 t} X
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & { }^{t} A \\
{ }^{t} B & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
0 & { }^{t} B^{-1 t} Y^{t} A \\
{ }^{t} A^{-1 t} X^{t} B & 0
\end{array}\right)
\end{aligned}
$$

The map γ_{1} is an involution if and only if $\gamma_{1}^{2}=1$, i.e.

$$
\begin{aligned}
& \left(\begin{array}{ll}
0 & Y \\
X & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & { }^{t} B^{-1 t}\left({ }^{t} B^{-1 t} Y^{t} A\right)^{t} A \\
{ }^{t} A^{-1 t}\left({ }^{t} A^{-1 t} X^{t} B\right)^{t} B & 0
\end{array}\right)= \\
& =\left(\begin{array}{ll}
0 & { }^{t} B^{-1} A Y B^{-1 t} A \\
{ }^{t} A^{-1} B X A^{-1 t} B & 0
\end{array}\right)
\end{aligned}
$$

for every X, Y. By Lemma $3.1^{t} A^{-1} B=\lambda E$, i.e. $B=\lambda^{t} A$.
So, we have proved:
Theorem 3.2. If $d_{1}=d_{2}$ and γ_{1} is not any involution from Theorem 3.1. then it has the form

$$
\gamma_{1}\left(\begin{array}{ll}
0 & Y \\
X & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & \lambda^{-1} A^{-1 t} Y^{t} A \\
\lambda^{t} A^{-1 t} X A & 0
\end{array}\right)
$$

References

[Z] B. Zekovic, Ternary Hopf algebras, Algebra and Discrete mathematics, Kijev, 2005., N.3, 96-106.
[A] V.A. Artamonov, On semisimple finite-dimensional Hopf algebras, Mat. Sbornik 198 (2007), N. 9
[N] A.N. Nikitin, Semisimple (2, n)-rings, "Vesnik MGU", ser. matem, mehan, 6 (1984), 3-7
$\left[\mathrm{N}_{1}\right]$ A.N. Nikitin, Semisimple $(2, n)$-rings, Vsesojuznij simpozijum po teoriji koljec, algebr i moduljej, Novosibirsk, 1982, s. 98-99.

Dapartment of Algebra,
Faculty of Mechanics and Mathematics,
Moscow State University, Moscow, Russia
E-mail address: artamon@bk.ru
*Faculty of Natural Science,
Department of Mathematics,
University of Montenegro, Podgorica, Montenegro
E-mail address: biljanaz@t-com.me

[^0]: 2000 Mathematics Subject Classification. Primary 16W30.
 Key words and phrases. Antipode, antiautomorphism, ternary Hopf-algebra.

