Maremarnukun Bunaren ISSN 0351-336X
Vol.38 (LXIV) No.2

2014 (5-11) UDC: 515.142.32
Crkomje, Makenounuja

REVERSE ORDER LAW FOR THE MOORE-PENROSE
INVERSE OF CLOSED-RANGE ADJOINTABLE OPERATORS
ON HILBERT C*-MODULES

DRAGAN S. DJORDJEVIC

Abstract. Results related to bounded andjointable operators on Hilbert C*-
modules are presented. Results concerning generalized inverses are included.

1. INTRODUCTION

Let A be a complex C*-algebra with the norm || - ||, and let M be a complex
linear space. M is a (right) A-module, provided that there exists an exterior
multiplication - : M x A — M, obeying the following properties, for all =,y € M,
all a,b € A and all A € C:

(z+y)-a=z-a+y-a; z-(a+b)=z-a+y-b

x-(ab) = (z-a)-b; Aza) = (Ax)a = z(\a).

If M is an A-module, then the A-valued inner product is the function (-,-) :
M x M — A, satisfying the following conditions, for all z,y € M, all a € A:

(x,z) >0in A; x =0 if and only if (x,z) = 0;

(T, y) = (y, )% (@, \y + pz) = XMz, y) + plz, 2);

{2,y a) = (&,y)a.

Thus, M becomes a pre-Hilbert A-module.

The norm on a pre-Hilbert A-module M is defined by ||z||p = ||(z, z)||*/2. This
norm satisfies some nice properties, which are related to the Cauchy-Bunyakovsky-
Schwarz inequality:

(2, 9)(9,2) < lyl3, (2, 2), for all 7,y € M;

|z - allam < JJz||am e, for all z € M and all a € A;

@ )| < [zl mllylm for all 2,y € M.

Finally, if M is a Banach space with respect to the norm || - || a1, then M is a
Hilbert A-module. We also say that M is a Hilbert C*-module (over A). If H is a
complex Hilbert space, then H is a Hilbert C-module. Hence, Hilbert C'*-modules
are between Hilbert spaces and Banach spaces.
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Let M, N be Hilbert A-modules, and let T': M — N be a linear mapping. T
is an operator, if T is bounded (as an operator between Banach spaces) and T is
A-linear, i.e. T(z-a) =T(x)-afor all z € M and all a € A.

If T is an operator from M to N, and there exists an operator T* from N to
M satisfying (Tz,y) = (z,T*y) for all z € M and all y € N, them T* is the
adjoint of T, and T is adjointable. Notice that there exist operators which are not
adjointable. We use Hom" (M, ) to denote the set of all adjointable operators
from M to N. Recall that End*(M) = Hom"™ (M, M) is a C*-algebra.

If T € Hom"(M,N), then R(T) denote the range of T, and N(T) denote the
kernel of T. Notice that N (T) is always closed.

Among the situation that there exists non-adjointable operators between Hilbert
A-modules, there also is the following non-convenient situation. Let IC be a closed
submodule of M. The orthogonal complement of K is defined as K+ = {z € M :
(z,y) = 0 for all y € K}. Although K is a closed submodule of M, we do not
have in general M = K @ K+.

However, in the case which is the most important for this research, we have the
following result.

Theorem 1. ([9], [10]) Let M, N be a Hilbert A-modules, and let T € Hom™ (M, N).
If R(T) is closed, then the following hold:

N(T) is an orthogonally complemented submodule in M and M = R(T*)ON (T);
R(T) is an orthogonally complemented submodule in N and N = R(T) & N (T*).

Previous result allows us to investigate adjointable operators between Hilbert
A-modules in a similar way as on Hilbert spaces. For detailed treatment of Hilbert
C*-modules see [9] and [10].

Now, we have the usual definition of the Moore-Penrose inverse. Let T €
Hom™* (M, N). The operator TT € Hom*(M,N) is the Moore-Penrose inverse of
T, provided that the following holds:

TT'T =T, T'TT' =T, (TTY* =TT", (T'"T)* = T'T.

The Moore-Penrose inverse is unique in the case when it exists: this is standard
for all standard structures that admits the existence of the Moore-Penrose inverse.
Moreover, T exists if and only if R(T) is closed in A (see [14]).

In this paper we are interested in the reverse order law for the Moore-Penrose
inverse. If a, b are invertible elements in an unital semigroup, then (ab)~! = b~1a~!
is the reverse order law for the ordinary inverse. However, the rule (ab)! = bfaf
does not hold in general for the Moore-Penrose inverse. If a,b are Moore-Penrose
invertible, then it does not follows that ab is also Moore-Penrose invertible. Since
we consider only Hilbert modules, we refer to the result which explain when the
product of two closed-range adjointalbe operators also has a closed range. One
equivalent condition is proved in [12].

In this paper we prove some equivalencies of the reverse order rule (AB)" =
BYAt, where A, B, AB are adjointable operators between Hilbert modules, that
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have closed ranges. This result is known in the case of bounded Hilbert space op-
erators, and in some parts in rings with involutions. We demostrate the usefulness
of Theorem 1 for the geometric theory of generalized inverse.

Let T € Hom*(M, N) has a closed range. Then 77T is the orthogonal projec-
tion from M onto R(T*), and TT" is the orthogonal projection from A onto R(T).
Using these projections, we see that T" has the following matrix decomposition:

< [3 3 [50]- 22)
0 0 N(T) N(T*)

The operator T} is invertible and adjointable, so

r- ) ) )
0 0] [N(TY N(T)
This decomposition allows us to reduce some properties of non-invertible T' to
invertible T7.

Previous representation is derived from block representations of operators on
Banach and Hilbert spaces, as well as Hilbert C*-modules (see, for example, [4],
[6], [12], [13]). This representation, and derived ones, are systematically used in
the investigation of generalized inverses.

Let 7 € Hom™(M,N) have a closed range. T is EP if and only if 7Tt = TTT.
Equivalently, T is EP if and only if R(T) = R(T*) (see [12] for EP operators
on Hilbert modules). Obviously, T is EP if and only if T* is EP. Notice that
selfadjoint and normal operators with closed range are EP operators.

We use [T, 5] =TS — ST to denote the commutator of operators T' and S. In
this paper we use the fact that if 7" and S are selfadjoint, then T'S is selfadjoint if
and only if [T, S] = 0.

2. REsuLTs
We prove the following main result of this paper.

Theorem 2. Let A be a C*-algebra, and let M, N, K be Hilbert A-modules. Sup-
pose that A € Hom™ (N, K), B € Hom" (M, N) be adjointable operators, such that
A, B, AB have closed ranges. Then the following statements are equivalent:

(a) (AB)T = BTAT;

(b) [ATA, BB*] = 0 and [A*A, BB'] = 0;
(¢c) R(A*AB) C R(B) and R(BB*A*) C R(A*);
(d) A*ABB* is EP.
Ay 0] : [R(A )] . [R(A))]’

Proof. Using previous ideas, we know that A = {

0 0 N(A) N (A*
-1

where A, is invertible, and consequently At = A0 . Also, B = By 0 :
0 0 By 0

R(B*) R(A*) . - T L . .
[J\/(B)] — {./\/'(A) . Notice that D = B} B; + B3 By is positive and invertible
D~'By D_lBg]

in End*(R(B*)). Hence, Bt = (B*B)'B* = [ 0 0
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A1B1 0

We find equivalent forms of (a). Notice that AB = [ 0 0

—1p*x 4—1
[D %1A1 8} Hence, (AB)" = BTAT if and only if (41B1)" = D™'Bj A"

We have the following;: AlBl(D’leAl_l)AlBl = A1 B; if and only if
B1D™'BiB;, = B;. (2.1)

Also, D™'Bf A7 (A1 B1)D'Bf A;' = D™'B; A7" if and only if (2.1) holds. The
operator Ay B D' Bf A7 is Hermitian if and only if

} and BTAt =

[A7A;,BD"'Bj] =0. (2.2)
Finally, D~' B} A7 A, B, is Hermitian if and only if
[D, BfB;] = 0. (2.3)
Now we find equivalent forms of (b). We have ATA = é 8] JA*A = {AloAl 8} ,

«_ |BiB} BiBj +_ [BiID™'Bf BiD'B; t L
BB* = |:BQBT BB and BB = BD-'Bf B,D-'B;|" Hence, [ATA, BB*] =
0 if and only if

BB} =0. (2.4)
Also, [A*A, BB'] = 0 if and olny if
[A7A;,BiD"'B}] =0 (2.5)
and
ByD™'B; =0. (2.6)

We find equivalent conditions for (c). Notice that R(A*AB) C R(B) holds
if and only if BBTA*AB = A*AB. Also, R(BB*A*) C R(A*) if and only if
ATABB*A* = BB*A*. From previous decompositions of operators we see that
ATABB*A* = BB*A* if and only if

BB} =0, (2.7)
which the same as (2.4). We have BBTA*AB = A*AB if and only if
BiD'Bi A A B, = AJA By (2.8)
and
ByD !By AT A1 B, = 0. (2.9)

Thus, (c) is equivalent to (2.7), (2.8) i (2.9).
Finally, (d) is equivalent to

R(A*ABB*) = R(BB*A* A), (2.10)

assuming that this submodule is closed.
(b) = (a): We prove the following:

((2.4) A (2.5) A (2.6)) — ((2.1) A (2.2) A (2.3)).
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Suppose that (2.4), (2.5) and (2.6) hold. Obviously, (2.2) holds. Also,

B} = DD 'Bf = (BB, + B;B,)D"'B} = BfB,D™'B;.
Thus, (2.1) holds. We see that B B;D~! B} B; = BB is satisfied, so R(BjB1)
is closed. We have the following matrix form of BiBy: BiB; = {C(;l 8]

[J\/‘(B}Bl)] — [N(B}Bl)]' Since R(B3B;) C N(BfB;1) we have B5By =

[003 84] : U\z/((glfgi))} — U\ef((gli‘gll))] However, B; Bs is Hermitian, so C5 = 0.
C: O
0 C4
(a) = (b): We prove

(WA@A®) = (WAG)A®G).

Suppose that (1), (2) and (3) hold. Since D commutes with B} By, we get that
D~! commute with B B;. Hence, we get

By =B D7'BiB, = Bi(D — BiB,)D~' = By — BiByD\.
It follows that By Bs By = 0. Since R(Bj) = R(Bj4B2) and R(Bj;Bs) C N(By), we
get R(B3) C N(By), so B1 B3 = 0. Thus, (4) is proved. Also, (5) is obvious. From
BB} = 0 we get Bf BB} = 0 and B:B;D~'B; = 0. Hence, BoD~'B{B; = 0.
In the same manner as before, we conclude that Bo D~ B = 0, so (6) holds.
(a)A(b) = (c): It is enough to observe the following elementary implications:

G)ANQA) = (8), 4) < (1), (6) = (9).
(¢) = (b): We prove the implication:

(DAEA©) = (WAG)AG).

Obviously, (7) <= (4). From (9) we get R(B; A}) = R(B;A;A1By) C N(ByD™1),
implying that BoD~'BjA; = 0, so (6) follows. We multiply (8) by (A;B;)T
and use the equality G*GG' = G* whenever G is Moore-Penrose invertible.
Hence, we get ByD'Bf A% = At A1 B (A1 B;), implying that BiD 'B; At A, =
A3(A1B1(A1B1)")A;. We know that A;B;(A;B;)" is selfadjoint, and therefore
A$(A1B1(A1By)")A; is selfadjoint. Now, By D~! B} A% A, is selfadjoint.

Since both ByD~!B} and A} A; are selfadjoint, we get

[Bi1D™ B}, A A1 =0,

Thus, D = and it obviously commutes with B By. Thus, (2.3) holds.

so (5) follows.
(d) = (c): Let A*ABB* be EP. Then we have

R(A*AB) = R(A*ABB*) = R(BB*A*A) C R(B)

and
R(BB*A*) = R(BB*A* A) = R(A*ABB*) C R(AY).
Hence, (c) holds.
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(¢) = (d): Suppose that all conditions (7),(8),(9) hold. We find the equivalent
form of (10). Under these assumptions, we have that (10) is equivalent to

o ([AABIB; AJABIB,)\ _ ([ BiBiA 0
0 0 “\|B.BrAtA; o )

Since (7) holds, we see that (1) is equivalent to
R(A1A1 B By) = R(B1B{ AT Ay).
The operator A; is invertible, so the last equality is equivalent to
R(A1A1 By By) = R(B1Bj).
Using the closed-range assumptions, the last one is equivalent to
R(A7A1By) = R(B1),

which is the same as

B1BIA*A1B) = AT A By. (2.11)
Now we start from (8) and obtain the following:

B1BIA*A1B) = BiBIBiD 'BfATA1B; = BiD 'B; A} A\ B, = A{ A\ B,.

Thus, (8) implies (11). Hence, we have just proved that (c) implies (d). O

This theorem represents an extension of well-know results for matrices and
operators on Hilbert spaces (see [1], [2], [3], [7], [8]) to the more general settings:
we considered the Moore-Penrose inverse of a product of closed-range adjointable
operators on Hilbert C*-modules. See also [5] and [11] for some algebraic aspects.

REFERENCES

[1] A. Ben-Israel, T. N. E. Greville, Generalized inverses: theory and applications, 2nd
ed., Springer, New York, 2003.

[2] R. H. Bouldin, The pseudo-inverse of a product, SIAM J. Appl. Math. 25 (1973), 489—
495.

[3] R. H. Bouldin, Generalized inverses and factorizations, Recent Applications of Gener-
alized Inverses, Pitman Ser. Res. Notes in Math. No. 66 (1982), 233-248.

[4] D. S. Djordjevi¢, Unified approach to the reverse order rule for generalized inverses,
Acta Sci. Math. (Szeged) 67 (2001), 761-776.

[5] J. J. Koliha, D. S. Djordjevié, D. Cvetkovié¢ Ili¢, Moore—Penrose inverse in rings with
tnvolution, Linear Algebra Appl. 426 (2007) 371-381.

[6] D. S. Djordjevié¢ and N. C. Dinci¢, Reverse order law for the Moore-Penrose inverse,
J. Math. Anal. Appl. 361 (2010), 252-261.

[7] T. N. E. Greville, Note on the generalized inverse of a matriz product, SIAM Rev. 8
(1966), 518-521.

[8] S. Izumino, The product of operators with closed range and an extension of the reverse
order law, Tohoku Math. J. 34 (1982), 43-52.

[9] E. C. Lance, Hilbert C*-modules — a toolkit for operator algebraists, Cambridge Uni-
versity Press, Cambridge-New York-Melbourne, 1995.

[10] V. M. Manuilov, E. V. Troitsky, Hilbert C*-modules, Translations of Mathematical
Monographs, American Mathematical Society, Providence, Rhode Island, 2005.
[11] D. Mosi¢, D. S. Djordjevi¢, Reverse order laws in rings with involution, Rocky Moun-

tain J. Math. 44 (4) (2014), 1301-1319.



REVERSE ORDER LAW FOR THE MOORE-PENROSE INVERSE... 11

[12] K. Sharifi, The product of operators with closed range in Hilbert C*-modules, Linear
Algebra Appl. 435 (2011), 1122-1130.

[13] K. Sharifi, EP modular operators and their products, J. Math. Anal. Appl. 419 (2014),
870-877.

[14] Q. Xu, L. Sheng, Positive semi-definite matrices of adjointable operators on Hilbert
C*-modules, Linear Algebra Appl. 428 (2008), 992-1000.

UNIVERSITY OF Ni§, FACULTY OF SCIENCES AND MATHEMATICS,
VISEGRADSKA 33, 18000 Nis, SERBIA
E-mail address: dragandjordjevic70@gmail.com, dragan@pmf.ni.ac.rs



