RELATIVE HUREWICZ PROPERTY AND GAMES

LILJANA BABINKOSTOVA

Abstract. In this paper we assume that X is a $Lindel\"{o}f$ space. Our main result characterizes the relative Hurewicz property game-theoretically.

Let X be a topological space and let Y be a subspace of X, possibly equal to X. By a cover for X we always mean "countable open cover". Since we are primarily interested in Lindelof spaces, the restriction to countable covers does not lead to a loss of generality. We will use the following classes of open covers:

- 1. Γ the collection of γ -covers of the space. An open cover \mathcal{U} of X is said to be a γ -cover if it is infinite and for each $x \in X$ the set $\{U \in \mathcal{U} : x \notin U\}$ is finite.
- 2. Λ the collection of λ -covers of the space. An open cover \mathcal{U} of X is said to be a λ -cover if: for each $x \in X$ the set $\{U \in \mathcal{U} : x \in U\}$ is infinite.

The symbol Γ_X (Λ_X) denotes the set of γ -covers (λ -covers) of X, and Γ_Y (Λ_Y) denotes the collection of γ -covers (λ -covers) of Y by sets open in X.

In [3] Hurewicz introduced a covering property which is nowadays called the Hurewicz property: For each sequence $(\mathcal{U}_n : n < \infty)$ of open covers of X there is a sequence $(\mathcal{V}_n : n < \infty)$ of finite sets such that for each $n \ \mathcal{V}_n \subseteq \mathcal{U}_n$, and each element of X belongs to all but finitely many of the sets $\cup \mathcal{V}_n$.

The symbol $U_{fin}(\mathcal{A}_X, \mathcal{B}_Y)$ denotes the following selection principle: For a sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of elements in \mathcal{A}_X there is a sequence $(U_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, U_n is a finite subset of \mathcal{U}_n and $\{\bigcup U_n : n \in \mathbb{N}\}$ is an element of \mathcal{B}_Y , or there exist an n such that $Y \subseteq \bigcup U_n$. According to [6] and [7] we say that Y has the relative Hurewicz property in X if the selection principle $U_{fin}(\Gamma_X, \Gamma_Y)$ holds.

Theorem 1. $U_{fin}(\Gamma_X, \Gamma_Y) = U_{fin}(\Lambda_X, \Gamma_Y)$.

Proof: The implication $U_{fin}(\Lambda_X, \Gamma_Y) \Rightarrow U_{fin}(\Gamma_X, \Gamma_Y)$ is evident. Now, let $U_{fin}(\Gamma_X, \Gamma_Y)$ hold and let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of λ -covers of X. We may assume that for each finite subset $\mathcal{F} \subseteq \bigcup_{n \in \mathbb{N}} \mathcal{U}_n$ we have that $\mathcal{U}_k \cap \mathcal{F} = \emptyset$ for all but finitely many k.

For each n, enumerate \mathcal{U}_n bijectively as $(U_k^n : k \in \mathbb{N})$ and define

²⁰⁰⁰ Mathematics Subject Classification. 54D20, 54D45, 03E02, 91A44.

Key words and phrases. γ -cover, λ -cover, relative Hurewicz property, relative selection principles, game theory.

$$V_m^n = \bigcup \{U_i^n : i < m\}.$$

We have that each $\mathcal{V}_n = (\mathcal{V}_m^n : m \in \mathbb{N})$ is an open cover of X for which: either there exists m_n , such that $\mathcal{V}_{m_n}^n = X$, or \mathcal{V}_n is a γ -cover of X. We must consider the case where there exists an infinite set A for which \mathcal{V}_n is a γ -cover for each $n \in A$. So, let \mathcal{V}_n be a γ -cover for each $n \in A$. We apply the selection principle $\bigcup_{fin}(\Gamma_X,\Gamma_Y)$ and we can find a finite subset $\mathcal{W}_n \subset \mathcal{V}_n$ such that $\{\bigcup \mathcal{W}_n : n \in A\}$ is γ -cover of Y in X. \diamondsuit

We define the following game associated to $\bigcup_{fin}(\Gamma_X, \Gamma_Y)$: in the *n*-th inning player ONE selects a γ -cover \mathcal{U}_n ; player TWO responds by selecting a finite set $U_n \subset \mathcal{U}_n$. TWO wins the play $\mathcal{U}_1, \mathcal{U}_1; \mathcal{U}_2, \mathcal{U}_2; \ldots, \mathcal{U}_n, \mathcal{U}_n; \ldots$ if $\{\bigcup U_n : n \in \mathbb{N}\} \in \Gamma_Y$; otherwise ONE wins. This game is denoted $\mathsf{Hurewicz}(X,Y)$.

Theorem 2. For a Lindelöf space X and $Y \subset X$ the following are equivalent:

- 1. The $U_{fin}(\Gamma_X, \Gamma_Y)$ property hold;
- 2. ONE does not have a winning strategy in the game Hurewicz(X,Y).

Proof: $(1) \Rightarrow (2)$: Let F be a strategy for the player ONE. The first move of the player ONE according to the strategy F will be denoted with F(X). We will prove that for the strategy F of player ONE there exists a play of the game

$$F(X), T_1 \subset F(X), F(T_1), T_2 \subset F(T_1), F(T_1, T_2), T_3 \subset F(T_1, T_2), \cdots$$
 where T_1, T_2, T_3, \cdots are finite sets such that the player TWO wins i.e.

$$(\forall y \in Y)(\forall_n^{\infty})^1 (y \in \cup T_n).$$

Because X is Lindelöf we may assume that the player ONE always chooses a countable λ -cover for the space X. For each λ -cover $(U_n : n \in \mathbb{N})$ for X which player ONE chooses, the counter strategy of player TWO is to choose only sets of the form $\{U_1\}, \{U_1, U_2\}, \dots, \{U_1, U_2, \dots, U_n\}, \dots$

Then the moves of player ONE according to the startegy F in the game Hurewicz (X,Y) are as follows:

For each n_1

$$U_{n_1} = F(\{U_1, U_2, \cdots, U_{n_1}\})$$

enumerate this λ -cover as $\mathcal{U}_{n_1} = (U_{n_1,n} : n \in \mathbb{N});$ For each n_1, n_2

$$\mathcal{U}_{(n_1,n_2)} = F(\{U_1,U_2,\cdots,U_{n_1}\},\{U_{n_1,1},U_{n_1,2},\cdots,U_{n_1,n_2}\})$$

enumerate this λ -cover as $\mathcal{U}_{(n_1,n_2)} = (U_{n_1,n_2,n} : n \in \mathbb{N});$

For each n_1, n_2, \cdots, n_k ,

$$\mathcal{U}_{n_1,n_2,\cdots,n_k} = F(\{U_1,\cdots,U_{n_1}\},\{U_{n_1,1},\cdots,U_{n_1,n_2}\},\{U_{n_{k-1,1}},\cdots,U_{n_1,n_2,\cdots,n_k}\})$$

enumerate this λ -cover as $\mathcal{U}_{(n_1,n_2,\cdots,n_k)} = (U_{n_1,n_2,\cdots,n_k,n}:n\in\mathbb{N});$

¹ for all but finitelly many

In this way we get a countable family of λ -covers for X:

$$(\mathcal{U}_{(n_1,n_2\cdots,n_k)}:n_1,n_2,\cdots,n_k\in\mathbb{N},k\in\mathbb{N}).$$

Since Y has Hurewicz property in X for each (n_1, n_2, \dots, n_k) we choose a finite set

 $\mathcal{V}_{(n_1,n_2,\cdots,n_k)} \subset \mathcal{U}_{(n_1,n_2,\cdots,n_k)}$, such that

$$(\forall y \in Y)(\forall_{(n_1,n_2,\cdots,n_k)}^{\infty})(y \in \cup \mathcal{V}_{(n_1,n_2,\cdots,n_k)}).$$

For each $\mathcal{V}_{(n_1,n_2,\cdots,n_k)} \subseteq \mathcal{U}_{(n_1,n_2,\cdots,n_k)}$ we choose n_{k+1} , such that

$$\mathcal{V}_{(n_1, n_2, \dots, n_k)} \subset \{U_{n_1, \dots, n_k}, \dots, U_{n_1, \dots, n_k, n_{k+1}}\} = T_{k+1}$$

The sequence of moves $F(X), T_1, F(T_1), T_2, F(T_1, T_2), T_3, \cdots$ of players ONE and TWO in the game $\mathsf{Hurewicz}(X,Y)$ is according to the strategy F of player ONE such that for each k, we have

$$\cup \mathcal{V}_{(n_1,n_2,\cdots,n_k)} \subseteq \cup T_{k+1}.$$

Now $\mathcal{V}_{(n_1)}, \mathcal{V}_{(n_1,n_2)}, \cdots, \mathcal{V}_{(n_1,n_2,\cdots,n_k)} \cdots$ is an infinite subset of the set of all \mathcal{V}_{σ} (where σ is any finite sequence of natural numbers). We have that

$$(\forall y \in Y)(\forall_k^{\infty})(y \in \cup \mathcal{V}_{(n_1,n_2,\cdots,n_k)} \subseteq \cup T_{k+1}).$$

Consequently F is not a winning strategy for player ONE. \Diamond

REFERENCES

- [1] L.Babinkostova, Selektivni principi vo topologijata, doctoral dissertation, (1991).
- [2] L.Babinkostova, Lj.D.R.Kočinac and M.Scheepers, The combinatorics of open covers (VIII), Topology and its Applications, to appear.
- [3] W. Hurewicz, Über eine Verallgemeinerung des Borelschen Theorems, Mathematische Zeitschrift 24 (1925), 401-421.
- [4] W. Just, A.W. Miller, M. Scheepers and P.J. Szeptycki, *The combinatorics of open covers* (II), **Topology and its Applications** 73 (1996), 241-166.
- [5] Lj.D.R.Kočinac and M. Scheepers, *The combinatorics of open covers (VII): groupability*, Fundamenta Mathematicae, to appear.
- [6] C.Guido and Lj.D.R.Kočinac, Relative covering properties, Q and A in General Topology 19 (2001), 107-114.
- [7] M. Scheepers, The combinatorics of open covers I: Ramsey Theory, Topology and its Applications 69 (1996),31-62.
- [8] M. Scheepers, Open covers and partition relations, Proceedings of the American Mathematical Society, 127 (1999), 577-581.
- [9] M. Scheepers, Combinatorics of open covers (III): games, $C_p(X)$, Fundamenta Mathematicae 152 (1997), 231-254.

FACULTY OF NATURAL SCIENCES AND MATHEMATICS, ST.CYRIL AND METHODIUS UNIVERSITY, SKOPJE, REPUBLIC OF MACEDONIA

E-mail address: liljanab@iunona.pmf.ukim.edu.mk