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A GENERALIZATION OF ¢-MITTAG-LEFFLER FUNCTION

S. D. PUROHIT AND S. L. KALLA

Abstract. The aim of this paper is to introduce and study some elementary
properties of new g-exponential functions with three parameters, which leads
to g-analogue of the generalized Mittag-Leffler function. Some g¢-integral rep-
resentations for these g-Mittag-Leffler functions are derived. Special cases of
main results are pointed out briefly.

1. INTRODUCTION
0

In 1903, Mittag-Leffler [12] introduced the following function, in terms of the

power series
0 k
z
E = E — (R C). 1.1

A two-index generalization of this function was given by Wiman [22] as

o k

Fup(z) = kZ:O m (R(a) > 0,2, € C). (1.2)

Both are entire functions of order p = 1/« and type o = 1. A detailed account of
these functions is available in the monographs of Erdélyi et al. [6], Dzrbashjan [5]
and Podlubny [13].

By means of the series representation a generalization of Mittag-Leffler function
(1.2) is introduced by Prabhakar [14] as:

B 4(2) = f: Ot (1.3)
@h = T(ka+p) n!’

where z, o, 8,6 € C,R(a) > 0. It is an entire function of order [R(a)]™" (see [14,
p.7]) and for § = 1, reduces to Mittag-Leffler function E, g(z).
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The Mittag-Leffler function provides solutions to certain problems formulated
in terms of fractional order differential, integral and difference equations, there-
fore, it has recently become a subject of interest for many authors in the field
of fractional calculus and its applications. Motivated by these avenues of appli-
cations, a large amount of research in the theory of Mittag-Lefller functions has
been published in the literature (for details, see [10], [13], [14], and [18]-][21]).

The g-calculus is the g-extension of the ordinary calculus. The theory of g-
calculus operators in recent past have been applied in the areas of ordinary frac-
tional calculus, optimal control problems, in finding solutions of the g-difference
(differential) and g-integral equations, and in g-transform analysis. One may refer
to [8] and recent papers [2], [4], [7], [11] and [15]-[17] on the subject.

Recently, Rajkovié¢ et al. [16]-[17], have generalized the concept of fractional
g-integrals with the parametric lower limit of integration and hence introduced
the fractional g-derivative of Caputo type, generalized g-Leibniz formula and the
following g-analogues of the Mittag-Leffler function (1.2):

— 21 (/2 q)aktp—1

€gap(z;0) = e c| < |z|), 1.4
q; 75( ) kzzo (q;q)alﬁ»ﬁfl (I | | |) ( )

o 00 q(ak+ﬁ71)(ak+ﬂf2)/2 Zak+ﬁ71(c/2;q)ak+5—1
Eq;a,,ﬂ(zvc) - X - s (15)

=0 (=€ @)ak+p-1 (4 @)ak+p—1
where

(q,z,¢,a,8 € C; R(a) >0,R(B) >0,]g| <1). (1.6)

The g-special functions eq.q g(z; ¢) and Eq.o g(2; ¢) are called as the small g-Mittag-
Leffler and big ¢g-Mittag-Leffler functions respectively.

On the other hand, Mansour [11] has introduced an another g-analogue of the
Mittag-LefHler function, and derived a fundamental set of solutions for the homo-
geneous linear sequential g¢-difference equations with constant coefficients and a
general solution for the corresponding non homogeneous equations. The g-Mittag-
Leffler function due to Mansour [11], is given by

a,5(2;q) = gma |z <(1—¢q)" % (1.7)

where o« > 0,5 € C. For further studies on the ¢g-Mittag-Leffler functions and
their applications, see [3], [11], [16] and [17].

In this paper, our purpose is to introduce new g-exponential functions with three
parameters, whcih lead to g-analogues of the generalized Mittag-Leffler function
(1.3) and to derive some elementary properties. Some g-integral representations
for these functions are established. Special cases of the main results are given in
the concluding section.
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2. PRELIMINARIES

In the theory of g-calculus (see [8]), the g-shifted factorial is defined for a, ¢ € C
as a product of n factors by

1 ; n=20
““‘”"‘{ (1-a)(l1—agq) - (1—ag"!) : neN, @1
and its natural extension is
(a;9)c0
a;q)q = ———, a e C. 2.2
(a:9) (ag™;q) oo 22)

If |g) < 1, the definition (2.1) remains meaningful for n = oo as a convergent

infinite product:
[ee]

(1—ag’) (2.3)

[}

i=
The g-analogue of the power (binomial) function (z £y)™ cf. Ernst [7], is given by
(see also [15])

n

(@ £y)™ = (@ty)y = 2" (Fy/2;0)n =" ) { L ] "I (ty /o) (24)
k=0 q

such that
Lt (x+y)™ = (x+y)",

q—1-

where the ¢g-binomial coefficient is defined as:

{ K } = @50 goyr k112 (e Wa € ©). (2:5)
o (@D
“+o0
For a bounded sequence of real or complex numbers, let f(z) = > A,a™ be a

n=—oo

power series in z, (see for instance, [7, p. 502, eqn. (3.18)], then we have

+oo
fletyl, = D An 2" (Fy/2;0)n. (2:6)

n=-—oo

The ¢-gamma and the g-beta functions (cf. [8] and [11]) are defined by

Py(z)= T (1 s e ag(0,-1,-2,-},0<q<1), (27)

_ L'y ()T (B)

Lt RORE>0. (28
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Also, the g-difference operator and g-integration of a function f(z) defined on a
subset of C are, respectively, given by (see Gasper and Rahman [8, pp. 19-22])

_ f(z) = f(zg)
DQf(z)_ﬂ (z#0, ¢#1), (2.9)
and
/f tqulququq (2.10)
k=0

3. GENERALIZED ¢-MITTAG-LEFFLER FUNCTIONS AND
THEIR ELEMENTARY PROPERTIES

In the theory of g-series, two g-analogues of the classical exponential function
are defined by (see [8])

eq(2) = ;;) @O (2] < 1), (3.1)

and
Z ¢ (z € Q). (3.2)

In this section, we introduce two new q—exponentlal functions with three param-
eters, that is, g-analogues of the Mittag-Leffler function due to Prabhakar [14],
which may be regarded as generalizations of the ¢g-Mittag-Leffler function (1.7).

Definition. Let ¢, z,a, 8,0 € C; R(a) > 0,R(5) > 0 and |q| < 1, then the function

b 5(z:0) = ZF aiﬁ;f oo < -0, (3.3)

is called as the generalized small q-Mittag-Leffler function. Similarly, the general-
ized big q-Mittag-Leffler function is introduced as

I (z1q) = i (q6§Q)k qk(k_l)/Q zF
W S Ty (ak + B) (a5 0)

Some important special cases of of these functions are enumerated below:

el < (=g (3.4)

(i) eap(2;9) = €}, 5(2;q), where the left-hand side g-Mittag-Leffler function is
given by (1.7).

(ii) ea(z;q) = €} 1(2;q), where the function eq(2;q) is g-analogue of the func-
tion (1.1).

(iii) Ea(z;q) = B} 1(2;q), where the function E,(z;q) is another g-analogue of
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(iv) eq((1 = q)2) = €11 (21 9).
(v) Eq((1 = q)2) = E} 1 (2:9).

() 25 (z5m,q) = B gLn L (gramsg) (v € ),

where the function Z¢(z;m, q) denotes the g-Konhouser polynomials due to Yadav
and Singh [23], namely

Lymn+a+1) & x { n } 2k gh(k=1)
Z%(z;m,q) = b’ -1 _— 3.5
e D e U I [ s
(m,n € ZT; R(a) > —1).
(vii) Finally, in view of the relations
(g% q)n
Lt ——— =(a),, 3.6
Lt =) (36)
and
Lt Ty(z) =T(2), (3.7)
q—1-
we observe that
Lt € 5(z;q)= Lt E° 4(z;9) = E° ) 3.8
It el a(ia) = It Bl (sia) = Bl 4(2) (38)

Now we prove the following theorems, that provides elemantary properties of
the g-Mittag-Leffler functions (3.3) and (3.4).

Theorem 1. Let a € R and R(5) > R(a) > 0, then there holds the formulas

az* ¢! eiﬁ(a 2%q) = e‘;,ﬁ_a(a 2%q) — eg;ﬂl_a(a 2%;q), (3.9)
and
az ¢ E)glaz%q) =E) 5 o(a2%/q;q) — ES ) (a2%/q;q). (3.10)

Proof. To prove the result (3.9), we consider the left-hand side (say L) of (3.9)
and make use of the definition (3.3), to obtain
(2% @)k (az®)*H
Ty(ak + B) (¢; )k

On using the g-identity (which can easily be obtain from definition (2.1)), namely

k=0

(1 -d"") (%K = (5 Dkt — (@5 Dk, (3.11)

and the g-identity given in [8, p. 6, No. (1.2.33)], we obtain

oo

_ (0% @r1 = (@5 @)psa] (az®
b= Z Ly(ak + B) (¢ @)k+1

)k+1

k=0
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Now, for R(8) > R(a) > 0 the above series also exists for k = —1 and correspond-
ing value is zero, therefore, we can write

o0

I — Z [(qé;Q)kH - (q671§Q)k+1] (az*)P 1
Lo(ak + B) (¢ @)+
After replacing k by & — 1 and making use of (3.3), we arrive at the right-hand

side of (3.9). Similarly, in view of the definition (3.4), one can easily prove the
result (3.10).

(3.12)
k=-—1

Theorem 2. Consider R(«) > 0 and x,y, 8 € C. Then, for generalized q-Mittag-
Leffler functions we have

oo

o0
@+y) " et s(mryi) =D (—ay)t ekl sm+yia),  (3.13)
r=0 k=0
and
o d Ry BT (—ayia) = Y MR (—a) B (etyia).
r=0 k=0
(3.14)

Proof. Substituting definition (3.3) in the left-hand side (say L) of (3.13) and
changing the order of summations, which is valid under the given conditions, we
have

L= ), 3.15
kzo ZF 2ak+7‘a+5) (@+y) (3.15)
Using the well-known q—1dent1ty [8, p. 234, 1.18], we have
r41. k1.
@59k _ (@) (3.16)
(¢ 9)x (4 9)r
Hence, we can write
o0 o0 g
Q)r
L= )k ), 3.17
Z —y) Zqua+2ozk—|—,5)( qQ)r (@+y) (3.17)

r=0

Interpreting the inner series in view of the definition (3.3) the above equation leads
to the right-hand side of (3.13).

Similarly, one can easily prove the result (3.14) by taking definition (3.4) into ac-
count.

An immediate consequence of the Theorem 2 is contained in:

Corollary 1. For R(a) > 0, R(y) > 0 and z,y, 8 € C, we have

oo
> 7 e Z y" el ks (@3 a), (3.18)
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and

Z gD g Ephnis:9) :Z g2y B ot s(w30)- (3.19)
k=0

4. SOME ¢-INTEGRAL REPRESENTATIONS OF €0, 4(z;q) AND E?, 4(z;q)

In this section, we establish the following theorems in terms of the g-integral
representations of the generalized ¢-Mittag-Lefller functions.

Theorem 3. If z,a, 3,5 € C; R(a) > 0,R(5) > 0 and R(B) > R(«) > 0, then

w_p oo k 0(0’*1)/2
s z B—a—1 E q D t
€a,p\2:q) = 70— 7§ t"/2") ¢ dat:
,ﬁ( ) (1 _ql/m)/(; ( / F Oék‘i‘ﬁ (Q7 ) ( q)"*l !
(4.1)

and
a— k(k—1)/2+0c(c—1)/2

%) tk
ES (2 -z / eqg(—t™)2™) tPet (¢ dqt,
s B0 = g imy [, a7/ Z TR GO

(4.2)

where

_B-a+k
o= lootk (4.3)

and m 1s any non zero positive number.

Proof. To prove the result (4.1), we consider the right-hand side (say R) of (4.1)

LB 0 q q & tk qO'(O'—l)/2
R=—"—— / tm)zm) ¢hmel dgt.
=g Jy T E: Ty (oh+ 8) (6 0n@ Dot
(4.4)
Substituting ¢ /2™ = w, then in view of the g-difference operator (2.9), we get

(1 _ ql/m)

dat = (1-9)

zut/™ 1 d .

Hence, we can write

1 oo s qé q l/m)k: q(T(O'—l)/2
R= / eq(—u) -1 ’ dou. (4.5
T—afy koch+ﬁ>< D@ e (49)

On interchanging the order of integration and summation, under the valid condi-
tions given with (4.1), we obtain

e o(oc—1)/2

1 (q6§Q)k P q oo B o
(1 =q) &= Lolok + B8) (4 k(g5 @)o—1 /0 eq(—u) u?™ " dgu.

R=
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o(o—1)/2
(¢°; ka q° o1
R= § c 11, 46

« g(ak + B) (¢ 0)r(¢ 0)o—1 o {u } (46)

where L, {f(u); s} denotes the g-Laplace transform of f(u), introduced by Hahn
[9] and defined by

Lol wis) = s [ o) fw dy (47)

On using the known result due to Abdi [1], namely

. —o(oc—1)/2
Eq {uafl;s} _ (‘LQ)U—ljf

(R(o) > 0), (4.8)
we have
,C {ua 1. 1} q q o1 G’(O’—l)/Q’

and hence, the result (4.6) leads to the left-hand side of (4.1). This completes the
proof of (4.1). On using (3.4) one can easily prove the result (4.2) of Theorem 3.

Theorem 4. If z,a, 3,5 € C; R(a) > 0,R(5) > 0 and R(B) > R(ew) > 0, then

&S (2q) = (1-9) ! l/a 6 5
a,ﬁ( 7q) (1 — qa)rq(ﬁ — a) /O (qt )B a—1 ( t; q) d (49)
and
(1 7 q) ! 1 a .
B} 5(z1q) = A5 a)/o (@t @)p—a—1 B o (2t;q) dgt.  (4.10)

Proof. Applying the definitions (3.3) and (3.4) in the right-hand sides of (4.9) and
(4.10) respectively, it is easy to prove Theorem 4. For sake of brevity we omit the
proof.

Theorem 5. If z,a, 3,5 € C; R(a) > 0,R(5) > 0 and R(B) > R(«) > 0, then

1 1 o— —Q «
e 5(z1q) = Fq(a)/o 271 (gt q)g—a—1 € g_a(2(1 —tq" )@ q) dyt, (4.11)
and
1 e _
Ej 4(z1q) = 7/ 27 (gt @) p—a—1 ES p_o(2(1—tq" =) q) dygt. (4.12)
Fq(a) 0

Proof. In view of (3.3) and (2.6), the right-hand side (say R) of (4.11) reduces to

R=— /1 7 (gt q) p—a1 i (e 2 & (td" ™ @)ka dyt
Lq(a) Jo HHpman = Lylak + B8 —a) (g 9)k e
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On interchanging the order of integration and summation, and making use of the
g-identity [8, p. 234, 1.17], the above equation leads to

1 (@5 q)k 2"
Py(e) &= Tylak+ 5 —a)

Using (2.8) and (3.3), equation (4.13) reduces to the left-hand side of (4.11). The
proof of the result (4.12) of Theorem 5 follows similarly.

o0

R:

1
7 (tq: QOraspa1 dgt. (413
v / (10 Dkarpo 1 dat.  (4.13)

5. CONCLUDING OBSERVATIONS

We briefly consider some consequences of the results derived in the preceeding
sections. For example, if we set m = 1, the results of Theorem 3 yields to the
following:

Corollary 2. If z,«, 3,0 € C; R(a) > 0,R(6) > 0 and R(B) > R(«) > 0, then

—B k 0’(0’—1)/2
s P / B—a—1 (@;q)n t
€q z2;q) = t/z t d t’
#(z9) 1—q /o ca(=t/2) Z g(ak +B) (g; )(Q;Q)B—a+k—1 !
(5.1)
and
a—pf tk k(k—1)/240(c—1)/2
B 4(z1q) = = / t)z) tP-o1 L d,t.
8(7:0) 1—¢ cq(=t/2) ZF (ak+B) (¢ Dr(¢: Dp—ath-1
(5.2)

Now, if we let ¢ — 17, and make use of the limit formulae (3.6)-(3.8), we
observe that the results of Theorem 1 and Theorem 2 provide, respectively, the
g-extensions of the known results due to Saxean and Saigo [19, p. 146, Lemma 1]
and Soubhia et al. [21, p. 11, Theorem 3.1].

Similarly, for ¢ — 1~ Corollary 2 and Theorems 4-5 gives the following results
involving integral representations for the Mittag-Leffler function (1.3):

Corollary 3. If z,«, 8,0 € C; R(a) > 0,R() > 0 and R(B) > R(a) > 0, then

ap [ I (&), tF
Bl 5(2) =2 ﬁ/o exp(—t/z) t° ’;)F(ak+ﬁ) k!’“r<67a+k) dt. (5.3)

Corollary 4. If z,a, 3,0 € C; R(a) > 0,R(5) > 0 and R(B) > R(«) > 0, then

1_@)/; (1— /)Pl B2 (2t) dt. (5.4)

& _
Ea,ﬁ(z) - o F(B

Corollary 5. If z,, 3,0 € C; R(a) > 0,R(5) > 0 and R(B) > R(«) > 0, then
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Egﬁ(“z):ﬁ/o e (- nf e B (G- dt (5.5)

We observe that the Corollaries 3-5 are also special cases of the known results
due to Shukla and Prajapati [20, pp. 32-33, Theorems 3-5].

We conclude with the remark that the g-Mittag-Leffler functions and their prop-
erties derived in this paper, can be used to obtained results involving g-exponential
functions, g-Mittag-Leffler functions and ¢-Konhouser polynomials and likely to
find certain applications in investigating solutions for several fractional g-integral
and g¢-difference equations.
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TEHEPAJIN3AIINIJA HA ¢-MITTAG-LEFFLER ®YHKIINJA

S. D. Purohit u S. L. Kalla

Peszuwme

Henra HA OBOj Tpyn € Oa BOBeJeMe M IPOYyUYMME HEKOM OCHOBHU CBOjCTBA
Ha HOBA @-€KCIOHEHIMjaJiHa (YHKIMja CO TPU IapaMeTpH, KOja NOBELYyBa IO
g-ananoruja Ha obommrenara Mittag-Lefller ¢yurmuja. W3Bemenu ce nerxou
g-uHTerpasHn peunpesenranuu xHa oBue ¢-Mittag-Lefler ¢pyurmmu. Ha xparko
Ce IMOCOYEHU U CIENUjAJHU CIyYard Ha [JIABHUTE PE3yJITATH.
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