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Abstract. Under consideration of this paper are unrecoverable multi-state

systems with independent multi state components. It is assumed that each
component can fail by one level down in time, and that transitions are ho-
mogenous Markov transitions. In order to calculate the reliability of such a
system, we need to estimate the one level transition intensities of each com-

ponent. Here we give an estimators for this parameters, under assumption
that all one level transition of the components of the system are known.

1. Introduction

Traditionally, reliability analysis of multi-component system depends upon the
assumption that the system and its components can be in a binary state; either
fully working conditions or complete failures [1], [2]. But, there some examples
where the binary approach gives uncorrect results, [9], [10], [11], and in this case
it is found that analysis using multi-state system (MSS) assumption is more ap-
propriate. MMS system is a system such that it and its components can operate
in more than one level of performance. The proper definitions of a multi-state
monotone system and of multi- state coherent systems are given in [7] and [8],
where we can also find the definitions for minimal path and cut vectors.

There are few points of view in reliability analysis of MMS. In some papers MMS
are considered without taking care about their structure depending on the compo-
nents, [5], [4]. In the papers that analyze the influence of individual components
to the reliability of the whole system it is usually assumed that they have already
known distribution, [3], [9] and [10]. Our approach is quite different. We are fo-
cusing on reliability data, trying to determine the unknown failure distribution,
similarly as in [1]. In this paper we give estimators of one level transition failure
intensities of the particular components of the systems, under assumption that
one level transitions of each of the components a monotone Markov transitions.
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2. Background

Under consideration in this paper are monotone, unrecoverable multi-state sys-
tems with independent components. Our assumption for the system is a small
generalization of the MMS systems given in ([7], [8]). Suppose that the k-th com-
ponent of an n - component system can work in one of Mk + 1 levels, such that 0
is the level of total failure and Mk is the level of perfect functioning, and for i < j,
the level j is better then the level i. Similarly, the whole system can operate in
one of M + 1 levels, where M is a level of perfect functioning, and 0 is the level
of total failure, and as it is usual in the MMS theory, we assume that the levels of
work of the whole system are linearly ordered, and greater number associates with
better performance. In this paper we may regard the system as a system with two
levels, 1, when it is in some working level, and 0, when it is failed.

Let us denote the set state of the system by S = {x = (x1, . . . , xn)|0 ≤ xk ≤
Mk, k = 1, n}, and by ϕ(x) the level of work of the whole system when it is
in the state x. Monotone MMS is a system that satisfies: x < y ⇒ ϕ(x) <
ϕ(y). We also assume that all components of the system are relevant, i.e they
give influence to the work of the system. More precisely, the k-th component
of a n-component system is relevant if there is a state (x1, . . . , xk, . . . , xn) such
that ϕ(x1, . . . , xk, . . . , xn) < ϕ(x1, . . . ,Mk, . . . , xn), where Mk is a maximal level
of work of the k-th component. Moreover we assume that each level of each
component is relevant for the system, i.e. that for xk > 0, ϕ(M1, . . . , xk, . . . ,Mn) >
0. If it is not the case, we can rename the states of k-th component by setting to 0
the first i such that ϕ(M1, . . . , i, . . . ,Mn) = 0, and setting to xk − i all others xk.

The systems of our interest are the systems for wich one level failure transitions
of each component are monotone Markov transitions, i.e. the transition time from
state i to state i − 1 of the k-th component have some exponential distribution

with density function f
(k)
i (t) = λ

(k)
i e−λ

(k)
i t, where λ

(k)
i is the failure intensity. The

problem we want to solve is to estimate this unknown parameters. The estimation
of the failure intensities of a unit which is a part of the system, is more complicated
then when it is regarded separately from the system, [6]. The estimation depends
of that if is the system is under complete control or not. Although the system
may be under complete control, this procedure will be more complicated compared
with one component system. This happens because the system may stopped with
its work before total failure of the certain unit, and the obtained data are not
complete.

3. MLE and estimator using moments for systems under complete
control

In the case when during the work, the system is under complete control, we
know the exact transition time between two neighbor states of each component.
But, we still do not have all information about some particular unit, since the
system may stop working before its total failure. For example, suppose that in
the time when the system fails, some of the components of the system is at a level
i. Then, for that particular component, we know the exact transition times from
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level j to level j− 1, for all j > i. But we do not have any information about how
long it will stay at levels j, for j ≤ i. So, since we have a little bit information, the
estimation of the failure intensity of the components which are at work in complex
system, even the system is under complete control, is not such simple as in the
case of one-component system.

When the system is under complete control, each experiment gives as much
uncensored data for each component, as the number of its one level transitions.
Also, when the component is not in the state of total failure, we get one censured
data. This data gives information how long the component was working at the
last level, before the system stoped with its work. In fact, for each unit from
each sample we get one data vector (tM , tM−1, . . . , ti+1, t), where tj , j = i+ 1,M
means that in time tj the unit transits from the state j to the state j− 1, and t is
the time when the system stops with its work. Note that in the moment of total
failure of the system, the component works with level i.

It is clear that tM < tM1 < . . . < ti < t, so we can do data transformation on
the following way:

t̂M = tM ,

t̂j = tj − tj+1, j = i+ 1,M − 1,

t̂i = t− ti+1.

The data t̂j , j ≥ i+1, gives exact time of working of the component at level j.
On the other hand, the component working with level i does not transit to level
i− 1 for the time t̂i.

Note that t̂j , j = i+ 1,M are uncensored data, and the t̂i is a censured data.

Let t̂ = (t̂M , t̂M−1, . . . , t̂i) we be the observed data vector.
Let us form the sets S′

k, S
′′
k and Sk, in the following way: S′′

k is the set of all

times t̂k that are the last coordinates of the vectors t̂, and S′
k is the set of all t̂k,

which are not last coordinates of the vectors t̂. Sk is defined as Sk = S′
k ∪ S′′

k .
Let n′

k = |S′
k|, n′′

k = |S′′
k | and nk = |Sk|. Now for each level k, we form likelihood

function:

Lk =
∏

t̂i∈S′′
k

e−λk t̂i
∏

t̂i∈S′
k

λke
−λk t̂i = (λk)

n′
k

∏
t̂i∈Sk

e−λk t̂i = (λk)
n′
k · e−λk

∑
t̂i∈Sk

t̂i .

Taking logarithm of both sides we obtain:

lk = n′
kln(λk)− λk

∑
t̂i∈Sk

t̂i.

Taking l′k = 0 we get:

0 =
n′
k

λk
−

∑
t̂i∈Sk

t̂i,

and we obtaine MLE for λk as

λ̂k =
n′
k∑

t̂i∈Sk
t̂i
. (1)
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All the intensities for which we have some data can be estimated using formula
(1). But, some of the states are visited infrequently by the component, so for
the estimation of the failure intensities associated to those states we have less
data. It is clear that the sample for the transition times for all other levels less
or equal to that one is even smaller, so the estimated values will have even higher
error. Consequently, the estimations of the transition intensities for higher levels
are more correct then that for the lower ones. Because the greater levels have a
greater influence to the work of the system, the errors that will occur at the lower
values has not drastically affect the reliability estimation of the whole system.

As we expect when we have an exponential distribution, the estimator obtained
by the method of moments is the same with (1). The mean transit time from level

k to level k−1 is
1

λk
. If ti is a censured data, i.e. we know that the system in time

ti has not failed, then we know that it will fail after some time εi. Because the
exact failure time has exponential distribution, εi also has exponential distribution

with parameter λk, i.e ε =
1

λk
. On the other hand

1

λk
=

∑
i∈S′

k
ti +

∑
i∈S′′

k
(ti + εi)

n′
k + n′′

k

=

∑
i∈Sk

ti +
∑

i∈S′′
k
εi

n′
k + n′′

k

=

∑
i∈Sk

ti + n′′
k

1

λk

n′
k + n′′

k

.

Solving this with respect to λk, we again obtain (1) as an estimator for λk .

The verification of that, how good is this estimator, was made by simulation of
such a system.

Example 1. We will give the results of three experiments in which were gener-
ated different size of data for a systems with three components, each of them can
operate in four levels: 0, 1, 2 and 3. The one - level intensities of all systems are

the same and they are given by following matrix Λ =

 1 2 3
1 2 1
1 2 2

, where Λi,j

is the failure intensity of the i-th component, from level j to level j-1. Systems
have different minimal cut sets. The minimal cut set for the first experiment is
M1 = {(3, 0, 1), (1, 2, 1), (0, 1, 3), (1, 3, 0), (3, 1, 0), (0, 3, 1), (1, 0, 3)}, for the second
one is M2 = {(1, 0, 1), (0, 1, 2), (2, 1, 0), (0, 3, 0), (3, 0, 0), (0, 3, 0)} and for the third
one is M3 = {(2, 0, 0), (0, 0, 2), (0, 2, 0), (1, 1, 1)}. The estimated failure intensities

by (1), Λ̂, are given in the following table.
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Λ̂ M1 M2 M3

500

 0.97 2.17 3.23
1.00 2.03 1.00
0.89 1.89 1.90

  1.02 1.94 3.02
1.16 2.00 0.98
0.89 1.99 2.10

  0.96 1.98 3.04
0.93 1.93 1.04
1.00 1.81 2.02



50

 0.83 1.72 2.88
1.18 1.78 0.89
1.43 1.70 1.79

  1.08 2.08 2.81
1.75 2.07 0.88
1.01 2.01 2.32

  0.99 2.25 3.07
1.16 2.65 1.11
0.78 1.61 2.65



10

 1.79 1.75 3.38
0.49 1.28 0.88
0.50 1.13 1.33

  1.20 1.31 2.74
0.74 2.02 0.99
0.94 2.26 3.30

  0.58 3.11 2.71
1.04 2.88 1.53
0.75 1.50 4.60



.

From this simulation we can conclude that this estimator is really good, since
for big sample 500 the estimated values are very closed to the real ones. Moreover,
good estimated values are also obtained for a relatively small sample, 50. In fact,
for this data size, we have a greater differences for the failure intensities from level
1 to level 0. But, this is an expected error, since for this level we have the smallest
amount of data, much smaller then 50. The worst estimation, as we expected, was
obtained for sample size 10, but the good think is that the estimated values do not
deviate much from the actual ones. It is not bed result, because some of this values
are obtained from a sample of size 1 or 2.

Also it is obvious that the quality of this estimator does not depend a lot from
the type of the system, since in all examples we have similar errors.

4. Ratio estimator

In this section we give another estimator, that is produced using ratios between
intensities of different components. This estimator is worst compared to MLE,
but it is due to the fact that it requires less information. Let us define failure
path as a sequence (M1,M2, . . . ,Mn) < x1 < . . . < xr−1 < xr, where ϕ(xr−1) > 0
and ϕ(xr) = 0. The estimator proposed in this section does not require all failure
intensities. It requires whole failure paths and only one failure time, that can be
the time to total failure, the time of first one level failure of any component or
some other specific failure time.

Let us have a collection of identical n-component systems. Suppose that during
there work, N of the systems are found in the state x, and N1 of them transit
to state x − ei and N2 to the state x − ej , for i, j = 1, n. Thus, the estimated

probability that the system will transit from the state x to the state x− ei is
N1

N
,

and from the state x to the state x − ej ,
N2

N
. On the other side, theoretically

we have that the probability that the system will transit from the state x to the
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state x − ei is
λxi∑n
k=1 λk

, and from the state x to the state x − ej is
λxj∑n
k=1 λxk

.

Consequently, we can write:

N1

N2
=

N1

N
N2

N

=

λxi∑n
k=1 λk

λxj∑n
k=1 λk

=
λxi

λxj

.

Following this idea, all of the important intensities (the intensities that have
influence the work of the system) can be expressed using only one of the intensities.
Now, the likelihood function will depend of one parameter only.

In order to use the whall information we have, in expressing particular failure
intensity parameter by the others, we will take all vector states where it is found.
Let λi1;j1 be the failure intensity of the i1-th component, from level j1 to level j1−1.
Also let λi2;j2 be the failure intensity of the i2-th component, from the level j2
to the level j2 − 1, for i1 ̸= i2. We will use following notations: By V(i1;j1),(i2;j2)

we will denote the set of all path vectors for which the i1-th coordinate is j1, and
i2-th coordinate is j2. For each x ∈ V(i1;j1),(i2;j2), Nx is the number of the systems
that visit the state x during their work, and Nx;i the number of the systems that
visit the state x, and in the next step its i-th component failed for one level. Now
we have:

λ̂i1;j1

λ̂i2;j2

=
1∑

x∈V(i1;j1),(i2;j2)

Nx

·
∑

x∈V(i1;j1),(i2;j2)

Nx
Nx;i1

Nx;i2

, i1 ̸= i2 (2)

Instead taking all elements from the set V(i1;j1),(i2;j2), we can take only the most
frequent one. Let us note it by v(i1;j1),(i2;j2). Sometimes this is a better choice,
since in some of that states the system is found very rarely, and that small samples
can give results with high error rate.

As a first step in the process of estimation we can choose one of the failure
intensities, for example λi,Mi , and we will express the other parameters trough
this one. Note that it is the best to choose the parameter of this type, because
the probability that the system will be found in a higher state is always greater
then the probability that the system will be found in lower state. Without lost
of generality we may choose λ1,M1 . Now all intensities can be expressed with this
one, since by our assumption that each level of each component is relevant for the
system we have that V(1;M1),(i;j) ̸= ∅. Let as set λ = λ1,M1 . For each intensity λi;j ,
using (2) we can calculate a real number α̂i;j such that λi;j = α̂i;jλ. It remains to
estimate λ. It can be done using the failure time of the whole system on different
ways. We may use all transitions, but for simplification, it is sufficient to take only
the first transition the system does, i.e. the random variable T1 - ”the time to the

first transition of the system”. The intensity of that transition is

n∑
i=1

λi,Mi , and

t1 =
1∑n

i=1 λi;Mi

=
1

λ
∑n

i=1 αi;Mi

.
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At the end we can estimate λ by

λ̂ =
1

t1
∑n

i=1 αi;Mi

.

Example 2. We use the same data of size 500 as in the Example 1, for the system

with Λ =

 1 2 3
1 2 1
1 2 2

 and minimal cut set M1. The parameters estimated by

using the ratio estimator and the time of the first faiure transition, we obtain:

Λ̂ =

 0.68 2.06 2.60
0.94 2.05 0.93
1.17 2.13 1.81

.
Reasonably, the second estimator gives worst results, since it uses less informa-

tion. In fact, for ML estimator we need to know all transitions and all one level
transition times, and for ratio estimator, only the time of the first transition and
the order of the falling components. So when all transition times of the system
are measured, it is better to use the ML estimator. But, when we only know the
order of the components falling and the time to total failure, or some other failure
time, we need to use ratio estimator.

The ratio estimator can be used in a situation where instead of controlling the
system all time, it is done by inspection at specific time intervals. During such
inspections we will collect information about the failure path of the system, while
information about the exact time of each failure transition will be incomplete.

5. Conclusion

This paper deals with multi state, multi component monotone systems with
independent components. The objective is to provide methods for evaluating the
reliability of such systems, based on statistical data about times of work of the
systems and transition states during its work.

There are presented two types of estimators of the one level failure intensities
of the components. The first estimator requires all information about failure times
of each of the components of the system and it is found that it gives very good
results even for a small sample. The second estimator can be used in the situation
when we do not have all one level transition times of each component, but we
know the failure path of the systems. Reasonable, it gives worst results, but the
estimated values do not vary too much from the values estimated by MLE.
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