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BARZILAI-BORWEIN METHOD FOR
A NONLOCAL ELLIPTIC PROBLEM
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Abstract. The object of interest in the present paper is a nonlocal non-
linear problem for a general second order elliptic operator. The problem
under consideration represents a model of nonlocal reaction diffusion process.
Furthermore, applications in computational biology are also available. The
strong problem is reduced to a discrete minimization problem. The approxi-
mate problem is obtained by Lagrangian finite element discretizations. Due
to its simplicity and efficiency, the Barzilai and Borwein gradient method is
used for finding positive solutions with respect to the inhomogeneous strong
Allee effect growth pattern. The corresponding fast and stable iterative al-
gorithm converges monotonically with respect to the objective functional. A
rigorous proof of the monotone convergence theorem is presented. Computer
implementations of the method support the considered theory.

1. Introduction

The population growth is more than eighty millions annually [1]. The human
population increases by 1.2% each year. The global population has grown from
one billion in year 1800 to seven billion in year 2012 [1]. There is a real chance
it reaches more than eleven billion by the end of the century. The exceeding
of the resource capacity of an area or environment is called overpopulation. It
affects directly the growth of the population. The overpopulation problem is very
important from economical and social point of view. The mathematical model of
population behavior consists of the nonlinear elliptic problem

∂u

∂t
= D∆u+ uf(x, u)

defined on a bounded polygonal domain. The solution u describes the population
density, D > 0 denotes the diffusion constant, ∆ is the spatial Laplacian and
f(x, u) is the growth rate per capita. If the function f(x, u) is negative when u
is small, we call that a strong Allee effect is available [2]. Otherwise if f(x, u) is
smaller than the maximum but still positive for small u, we call it a weak Allee
effect [2]. The application of the reaction-diffusion equation in computational
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biology is studied by a lot of researchers in the last decades [2]-[5]. A nonlocal
reaction-diffusion model

∂u

∂t
− a

(∫
Ω

|∇u|2
)

∆u = f(x, u),

a ∈ C(R+), 0 < m ≤ a(p) ≤M
is studied by M. Chipot, V. Valente, G. V. Caffarelli [6]. More general reaction-
diffusion equation is considered by S. A. Sanni [7].

The object of interest in the present paper is the nonlocal nonlinear reaction-
diffusion problem investigated by T. D. Todorov [8]. The investigation is carried
out in the case of a general second-order elliptic operator. The nonlocal term in-
volved in the strong formulation essentially increases the complexity of the prob-
lem and the necessary total computational work. The major contribution of the
present paper consists of a monotone convergent iterative method for solving the
nonlocal nonlinear elliptic problem. A new globalization technique with variable
steplength is obtained. A convergence theorem is proved. The new method is
computer implemented.

The rest of the article is organized as follows. The problem under consideration
is described in Section 2. The weak formulation and discrete problem are obtained
in Section 3. An iterative schemes for solving the nonlocal elliptic problem is
compiled in Section 4. The corresponding algorithm is described briefly step by
step. Section 5 contains some numerical results supporting the considered theory.
Concluding remarks are involved in Section 6.

2. Problem definition

Let Ω be a plane polygon. Denote the norm and the seminorm in the real
Sobolev space Hk(Ω) by ‖·‖k,Ω and the |·|k,Ω. Introduce the norm

||DkF (x)||= sup
||ξi||≤1
1≤i≤k

||DkF (x)(ξ1, ξ2, ..., ξk)||

for the k-th Fréchet derivative DkF (x). The L2-scalar product is denoted by

(u, v) =

∫
Ω

uvdx.

Define the space
V = {v ∈ H1(Ω) | v = 0 on Γ}.

and the second-order elliptic linear operator

Lu = −
2∑

i,j=1

∂

∂xj

(
aij

∂u

∂xi

)
+ a.u, domL = C2

0

(
Ω
)
,

where aij(x) and a(x) belong to C1(Ω), aij = aji, i, j = 1, 2 and a(x) ≥ a0 >
0, ∀x ∈ Ω. Assume that L is uniformly elliptic, i.e. there exists a constant α > 0
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such that

α

n∑
i=1

ξ2
i ≤

2∑
i,j=1

aij(x)ξiξj , ∀ξ, x ∈ R2. (2.1)

Suppose that:

g ∈ C1(Ω× R),
∂g

∂u
(x, u) ≥ 0, ∀x ∈ Ω, g(x, 0) = 0, (2.2)

f ∈ L2(Ω) with ||f ||0,Ω 6= 0. (2.3)

Consider the following nonlocal nonlinear elliptic problem

S :

 Find u ∈ C2
0

(
Ω
)

satisfying :
(Lu, u)Lu+ g(x, u) = f(x) in Ω,

u = 0 on ∂Ω
.

3. The weak formulation and discretization

Applying Green’s theorem to (S) we obtain the weak formulation

W :

{
Find u ∈ V such that

a(u, u)a(u, v) + (g(x, u), v) = (f, v) in Ω,

where a(u, v) is the bilinear form

a(u, v) =

∫
Ω

2∑
i,j=1

aij(x)
∂u

∂xi

∂v

∂xj
dx+

∫
Ω

a(x)uv dx.

and (·, ·) is the L2-scalar product. Since L is a linear continuous and uniformly
V-elliptic operator there exist positive constants α and α such that

α||u||21,Ω ≤ a(u, u), a(u, v) ≤ α||u||1,Ω||v||1,Ω, ∀u, v ∈ V.

Define the objective functional

J(v) =
a2(v, v)

4
+B(v)− F (v),

where

G(v) =

∫ v

0

g(x, t)dt, F (v) = (f, v) and B(v) =

∫
Ω

G(v)dx.

Associate the weak form (W) with the following minimization problem

M : arg min
v∈V

J(v).

The existence and uniqueness of the solution of the minimization problem (M)
is established in [8, Theorem 1].

Continue with discretization and formulation of the approximate finite element
problem. Let {τh} be a regular family of conforming finite element triangulations
obtained by Lagrangian finite elements of degree n, Vh ⊂ V be the corresponding
finite element space, Nh = {ai}mi=1 be the set of all interior nodes of τh and
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{ϕi(x)}mi=1 be the nodal bases functions of Vh. Consider the following discrete
problem

Wh :

{
Find a function uh ∈ Vh satisfying

a(uh, uh)a(uh, vh) + (g(x, uh), vh) = (f, vh), ∀vh ∈ Vh
.

The finite element solution can be presented in the form

uh(x) = U · Φ(x) =

m∑
i=1

Uiϕi(x) ∈ Vh,

where Ui = uh(ai). As in [8] we interpolate the function g by a Vh interpolant

Ihg =

m∑
i=1

g(ai, u(ai))ϕi.

Compile the quartic problem

Q̂h :

{
Find a function uh ∈ Vh that satisfies
a(ûh, ûh)a(ûh, vh) + (gh, vh) = (f, vh), ∀vh ∈ Vh

,

where gh = Ihg. Define

Gh(v) =

∫ v

0

gh(x, t)dt, Bh(v) =

∫
Ω

Gh(v)dx

and corresponding objective functionals:

J(vh) =
1

4
a2(vh, vh) +B(vh)− F (vh), vh ∈ Vh,

Jh(vh) =
1

4
a2(vh, vh) +Bh(vh)− F (vh), vh ∈ Vh

for the problems (Wh) and (Q̂h).
Remark that

DJh(ûh)vh = a(ûh, ûh)a(ûh, vh) + (gh, vh)− (f, vh), ∀vh ∈ Vh.

4. A globalization technique with variable steplength for solving
the discrete problem

Consider the following unconstraint minimization problem

Mh : arg min
v∈Vh

J(v).

Define the Barzilai-Borwein gradient method

(uk+1, v) = (uk, v)− 1

αk
DJ(uk)v, k ≥ 1 (4.1)

with the steplength

αk =
(a(uk, uk) + a(uk−1, uk−1)) a(sk−1, sk−1) + ((g(x, uk) + g(x, uk−1))sk−1, sk−1)

2||sk−1||21,Ω
,

(4.2)
sk−1 = uk − uk−1
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obtained by T. D. Todorov [8]. He proved that the steplength (4.2) produces much
better results in the quartic case than the classical steplength

βk =
DF (uk)sk−1

||sk−1||21,Ω
(4.3)

analyzed by E. G. Birgin, J. M. Martínez and M. Raydan [9]. In the proof of [8,
Theorem 2] was established that

0 < α∗ < αk < α∗, ∀k ∈ N, (4.4)

where α∗ and α∗ are positive constants. The validity of (4.4) depends on the
distance between the initial guesses and the weak solution. If the initial guesses
are faraway from the weak solution αk could become negative for some k. That
is why in such cases we cannot guarantee monotone convergence of the objective
functional. Moreover the lack of estimate (4.4) can lead to divergence of the two
point step size gradient method (4.1-4.2).

In this section we propose a monotone convergent algorithm for the two point
gradient method in the quartic case.

Algorithm 1.
set k = 1; ε > 0; 1 < ν
set initial guesses u0 and u1

calculate α1 from (4.2)
while DJ(uk)uk > ε do

begin
set i = 0 and αk0 = αk
calculate J(uk)
find uk1 from (uk1, v) = (uk, v)− 1

αk0
DJ(uk)v

while J(uki+1) > J(uk) do
begin

αki+1 := −ναki
find uki+2 from (uki+2, v) = (uk, v)− 1

αki+1
DJ(uk)v

i := i+ 1
end

αk := αki
uk+1 := uki+1

k := k + 1
end

Theorem 1. Assume that conditions (2.1-2.3) hold. Then the sequence {J(uk)}
generated by Algorithm 1 converges monotonically to {J(uh)}.

Proof. Compare two successive values of the objective functional. Apply the mean
value theorem

J(uki+1)− J(uk) = DJ(ũki+1)(uki+1 − uk),
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where ũki+1 = uk + ϑ(uki+1 − uk), ϑ ∈ (0, 1). From the definition of uki+1 we
have

J(uki+1)− J(uk) = − 1

αki
DJ(ũki+1)DJ(uk).

Remember that the functional J(u) is twice Fréchet differentiable. Therefore, from
the sign preservation property, there is a neighborhood

Uε(uk) = {v ∈ Vh | ‖uk − v‖1,Ω < ε}

such that DJ(v)DJ(uk) > 0 ∀v ∈ Uε(uk). We have
{
uki ⇀ uk
i→ +∞

since
{
|αki|→ +∞
i→ +∞ . Then there is an integer i0 such that

uki+1 ∈ Uε(uk) ∀i ≥ i0. (4.5)

Let i be the smallest i satisfying (4.5) and αki > 0. Then

J(uki+1)− J(uk) = − 1

αki
DJ(ũki)DJ(uk) < 0.

We choose uk+1 = uki+1 and obtain J(uk+1) < J(uk). Thus we proved that the
sequence {J(uk)} is monotone decreasing. Since J(uk) ≥ J(uh) [8] we conclude
that {J(uk)} converges monotonically.

It remains to prove that

lim
k→+∞

J(uk) = J(uh). (4.6)

Suppose the negation of (4.6) namely
{
uk ⇀ u∞
k → +∞ and ‖u∞ − uh‖1,Ωh 6= 0. Then

J(u∞) = inf
k∈N

J(uk). (4.7)

Choosing a sufficiently large α∞ > 0 we obtain

u∗ = u∞ −
1

α∞
DJ(u∞)

and J(u∗) < J(u∞). The last result contradicts to (4.7). Therefore (4.6) is valid
which completes the proof. �

5. Numerical Tests

Consider an initial uniform triangulation of the unit square Ω by 18 cubic
triangular Lagrangian finite elements. Obtain triangulations with 162 and 1458
applying the Jung and Todorov [10] refinement strategy. All numerical tests are
executed by Andreev and Todorov [11] cubature formula of degree five. This
cubature formula is appropriate for obtaining optimal convergence properties with
respect to the cubic Lagrangian finite element.

Denote the error functional by

E(v) = |DJh(v)v|
and ε = 10−6.
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FE dimVh α̃k α̂k β̂k νk
18 64 17 39 45 1.5

162 676 68 168 179 2
1458 6400 272 631 852 4

Table 1. The number of necessary iterations solving Problem 1
to obtain E(ûk) < ε.

Definition 1. The function ih ∈ Vh is said to be quasiunit if ih(x) = 1 ∀x ∈ Nh.

Problem 1. State the problem{
(Lu, u)Lu+ g(u) = f(x) in Ω,

u = 0 on ∂Ω

where L = −4, g(u) = u(2u2 − 3u+ 6) and f(x) = ex1x2 .

The function − g(u)
u satisfies the inhomogeneous strong Allee effect growth pat-

tern. Denote the steplength obtained in Algorithm 1 by α̃k, the steplength ob-
tained by T. D. Todorov [8] by α̂k, the analogue of (4.3) related to the quartic
problem by β̂. Solve Problem 1 with initial guesses

û0 = 4ih and û1 =
1

4
ih.

The optimal values of the parameter ν forms an increasing sequence {νk} de-
pending on the refinement level. Results are presented in comparative Table 1.
The presented numerical examples indicate that the proposed monotone Barzilai-
Borwein method is superior with respect to the number of iterations.

6. Conclusion

A nonlocal nonlinear problem for a general second order elliptic operator is
reduced to a quartic minimization problem. An effective monotone convergent
algorithm for solving the problem of interest is obtained. A rigorous proof of the
convergence theorem is presented. The numerical tests indicate that the number
of necessary iterations for satisfying the stop criterion are essentially reduced.
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