Math. Maced.
Vol. 1 (2003)
9-13

PARTIAL ERROR-FREE POLYNOMIAL REGRESSION

TIBOR K. POGANY

Abstract. New parametric regression method is proposed (called partial
error-free regression) in the polynomial regression case, in which the sum
of errors in sample nodes vanish for all subsamples. Special attention is given
to the lincar partial crror-free regression. In this case convergence results
arc presented, and the connections to some kind of numerical integration
quadrature formulae arc cxposed.

1. INTRODUCTION TO ERROR-FREE REGRESSION

Interested in the polynomial regression problem for the two-dimensional sample
U:= {(2j.y;) : 1 < j < n} we introduce the following approach. Assume that
regression polynomial is of the form

-1 .
y = Pm-1(z) =po+- - +pmaz™, m < n. (1)
Here we are looking for the unknown parameter array p := (po, - ,pm—1). In
this goal denote ¢; :== P,,—1(z;) — yj,7 = 1,n the elementwise regression error in

the model (1) with respect to the sample U. To find p we consider the case

Yo=Y (Pmoi(z;) —y;) =0. )
=1 =

Now, the term error-free is selfexplanatory. Since (2) possesses unique solution
only when m = 1 we will assume that m > 1 and we decompose {1,2,--- ,n}
into an union of nonempty, disjoint subsets Ji,--- , Jn,. The resulting index-sets
Ji generate subsamples U; of U in the manner that (z;,y;) € Us when j € J,
1<s<m.

Repeating the procedure (2) for all decompositions J = {Jy,---, Ji,}, say, we
get the linear algebraic system in p:

m—1

Sixbpe=y  1<i<m, (3)
k=0

s gk e 1 B o e A . %
where xj 1= Z5- Zje.h zi, Y11= gz, Zje.h y;j. The decomposition J is admissible
when the system (3) has unique solution. Endly, averaging all p;’s by the number of
all admissible J we get the optimal error-free coefficient array p* = (pg, ==+, Pr—1)-
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Concerning the admissibility of J the following simple geometrical criterion could
be given. Namely, J is admissible iff at least two first coordinates of centroids of
Ji differ k = 1,m, see [5, Theorem 2.1, Theorem 2.2]. Also it could be mentioned
that_the error-free regression polynomial

m—1

* _k

9 = E PRz
k=0

contains the centroid of the plane polygon U. Additional comparations with the
Minimal Least Squares regression polynomial are given in [6].

The main lack of the error-free regression method is that we have to restrict
ourselves to the set of admissible decompositions of {1,---,n}. To avoid this
inconvenience, we introduce the so-called partial error-free approach.

2. PARTIAL ERROR-FREE REGRESSION

Assume that we know already the regression polynomial degree m —1, say. Then
let Ul(m) one of the admissible subsamples of U, which size equals m. Denote Dy
the cardinality of the set of all m-sized admissible subsamples of U. Obviously,
Ny < (;n)-

Consider the system in p:
m—1
Z Pz} = yj, V(zj,9;) € U™, (4)
k=0

Since for all different z’s in U the system determinant in (4) is of Vandermonde
® ®)

type, there exists an unique solution p; := (pg”, - , Py—1), Say. In the same time

we deduce that any m-sized subsample Ul(m) of the sample U is admissible, iff all

first coordinates of its nodes are different. Consequently, if U is admissible, then

~-()

1 <% o 1 <X o
L 5 E l
p:(p07'“7pm——1) o= <_Zp0 7"'7_me—1)' (5)
My =1 Ny =1
All this results in
y = ()~ Pmos(@) =Bo+ - + Pm-aa™ ",

where the approximation = is in the partial error-free sense used, having on mind
the constraint (4).

Denote

3. LINEAR PARTIAL ERROR-FREE REGRESSION

The very important linear case of regression models, in the Minimal Least
Squares manner used, is well-covered in literature. Therefore, here we will discuss
the lincar regression model taking partial error-free method instead of the MLS

one.
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Consider an admissible sample U which index set {1,--- ,n} possesses a decom-
position J. It is clear that we can restrict ourselves to samples with z; € [0, 1] with-
out any loss of generality. Indeed, taking mini<;<, 2; = a while max;<j<pz; = b
instead of the initial sample U, we deal with (b —a)~'U:= {(z;/(b—a),y,;) : 1<

i £n}. Bo, let (i) (zrup) € Ul(z) for some fixed I € {1,--- ,(72‘)} We are
looking for the values of the coeflicients p(()jk), pgjk) in this restricted variant of the

system (4). We get

k) _ Yj — Uk ik vj = Uk
i = & gt =y - Ly (6)

’

T; — Tk Tj — Tk
According to (5) it will be
- -1
~ [T (5k) R L (4k)
po_(Q) Sk, pl_(Q) > o0
1<j<k<n 1<j<k<n
and the regression line is
y = Pi(x) = po + p1z. (8)

Let us transform (8) by using concrete values of the coefficients for some fixed
€ €[0,1]. We get

F0=(3) Yo-ou+(}) T Le-s

; zj
=1 1<j<k<n

n
- n2111 Z (1 = %) YiAz, +n2_”1 Z _H’i(g — ) Az ;AT
i=1 x 1<j<k<n ™7
I, I,
9)
where
AIHJ = Tp,l — Tpl-1 = % = l—;l

When the sample U is generated by a bounded function y = f(z), ie.
f € MJ0,1], say, we recognize I as the Riemannian simple-integral sum of the
function (1 — ¢)f(t) on the integration domain ¢ € [0,1]. Similarly I, is the
Riemannian double-integral sum of function (f(t) — f(s))(¢€ —t)(t — s)~! for the
integration domain (t,s) € [0,1] x (¢,1]. Letting n — oo in (9), we deduce the
following result:

lim 131(5) - 2/ (1 —t)f(t)dt+2/0 /L &ti—:—f(s—)(g — t)dtds. (10)

1

n—oo 0
Theorem 1. Let f € M0, 1] generates the sample U with the admissible decom-
position J. Then we have

" };1(5):2/01[ HOIEIEN QIR I (1)

n—00 t—s
max Azy, ;—0
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Proof. Elementary transformations of (10) lead to (11). O

As the straightforward consequence of the Theorem 1 it follows the following quad-
rature formula:

o1 ] . . _ : s
/ / f(s) =€) — ft)(s g)dtds
0 Jt t—s
~ ( 1_ 1) Z(” =Dy + E : —‘_y] : 25 (6 - z;) (12)
nn I=1 1<j<ksn 09 T Tk

such that is valid for all f € M0, 1].
One of our next goals is to find the distance between P; (z) and the point

n n
g=i 7=1

where C is the centroid of the sample U. In this purpose balancing with suitable
¢ in (11) one gets the desirable result taking ¢ = Z,,. By this we have ¢ — % as
Ly o ;{ when n is growing. On the other side, deducing by the Monte Carlo

method, we obtain the approximation

3=

n 1

n
j:] n—oo 0

Now, by (11) we deduce:
N 11 . e ol
Pm)_yn:/o / (f( )2t -1) = FO 1>_f<z>>d,m. i)

t—s 1—1

Taking vanishing integrand in (13), the problem: ”When is Py (z) containing the
centroid C of the sample U?” will be reduced to the functional equation
(s)(2t —1) — f(t)(2s — 1 t
M- D7) _ I g gepyxey (14
t—s 1-—¢
It is not hard to see that the unique solution of (14) is f(z) = v(1 — z), for all
z € [0, 1] with some real constant v. Hence, the following result is proved.

Corollary 1.1. The centroid of an admissible sample U belongs to the partial
error-free regression line y = P1(x) iff the sample U takes the form

U, = {(zj,7(1 —2;)) : z; €[0,1], 1 < j < n}.

Remark 1. Of course, the admissibility is not a prerequisite to applying the partial
error-free quadrature formula (12). So, using linear partial errorsfree approach
instead of the error-free one, we are loosing the desirable property that the centroid
C belongs to the regression line. At this point we can only conjecture that the
suitably weigthed centroid Cy (3 5_; wjzj, >i—1wjyj), where S wi =1, w; >
0, could avoid this anomaly.
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To find the coefficients of the regression polynomial ﬁmﬁl(ac) we can accept
mathematically more sophisticated approaches. One of them is the estimation
of solutions of system of linear algebraic equations by the theorem on extremal
value of nonnegative bounded functions, compare [3, Chapter 2]. The same item
is treated in [2, Chapter 17], but there the Monte Carlo method is the main
mathematical tool. The interested reader can consult [4] too.

Finally, let us given the linear statistical model

Y; = po+p1X;+¢j, (15)

where the statistical sample X = (X, -+, X,) is defined on given probability
space (2,3, P) and the random variables X; are i.i.d. Let Y = f(X), f bounded
Borel. It would be of interest to observe the homoscedastic case in (15), i.e.
the i.i.d.r.v. case e; ~ N(0,0%). But, having on mind the partial error-free
approach (4) with m = 2, this is not a realistic assumption (compare (2) as
well). Therefore the linear partial error-free polynomial regression has to be a
heteroscedastic procedure with the noise i.r.v’s distributed like

€j NN(O,O’?), j =T,_n.

The detailed treatment of the heteroscedastic Minimal Least Square regressions
can be found in [1, Chapter 7, §4], [7].
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