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SOME PROPERTIES AND RELATIONS CONCERNING
BICENTRIC HEXAGONS AND OCTAGONS IN CONNECTION
WITH PONCELET’S CLOSURE THEOREM

MIRKO RADIC

ABSTRACT. In this paper we restrict ourselves to the case when conics are
circles one completely inside of the other. The great part is concerned with
the condition which tangents of a bicentric hexagon or a bicentric octagon
need to satisfy. Using very elementary mathematical facts, we have found
some important relations (equalities and inequalities, Theorem 1-5).

1. INTRODUCTION

1.1. A little of history. A polygon which is both chordal and tangential is briefly
called bicentric polygon. First they were concerned by the German mathematician
Nicolaus Fuss (1755-1826), a friend of Leonhard Euler. He posed himself the
following problem (known as Fuss’ problem concerning bicentric quadrilateral):

Find the relation between the radii and the line-segment joining the centers of
the circles of circumscription and inscription of a bicentric quadrilateral.

He found that
(r? — 22)% = 2p%(+? + 23), (1.1)

where r and p are radii and z is the distance between the centers of the circles of
circumscription and inscription.

This problem is listed and considered in [4, pp. 188-192] as one of 100 great
problems of elementary mathematics.

Fuss also found the corresponding formulas for the bicentric pentagon, hexagon,
heptagon and octagon. These formulas are:

P’ +0°Cp(p+9) —pap’(p+9)* — p*(p +9)(p — ¢)* = 0, (1.2)
3p'q* — 20°¢°0°(P* + ¢*) = p*(p* — ¢*)?, (1.3)
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(pg — plp — q) — 2p*)2pap/(p — p)(P +q) +
+(®°¢* — p°(p* +¢%))20V/(a— p)(p+q) = (1.4)

=+ (pg — p(p — ) (p°¢* + P*(* — ¢%)),

[0 + ¢°) — p*¢°)* = 16p*¢"p* (0* — ) (¢* — P°), (1.5)
where p=r+2,¢g=1r—=2.

About Fuss’ results can be seen in [5] and [6]. Also very interesting informations
about Fuss’ results and, generally, about history of the results concerning bicentric
polygons can be seen in [2] and [9].

A very remarkable theorem concerning bicentric polygon is given by the French
mathematician Poncelet (1788-1867). In the formulation of this theorem will be
used the so called Poncelet traverse. In short about this. First for the case when
conics are circles one completely inside of the other.

Let C; and C5 be two circles in a plane such that C; is completely inside of
Cy. If from any point on Cy we draw a tangent to C, extend the tangent so
that it intersect Co, and draw from the point of intersection a new tangent to C1,
extend this tangent similarly to intersect Cs, and continue in this way, we obtain
the so-called Poncelet traverse which, when it consists of n chords of the circle Cs,
it is called n-sided.

The Poncelet’s closure theorem for circles when one is completely inside of the
other is the following.

Let Cy and Cs be two circles in a plane such that C is completely inside of Cs.
If on Cy there is a point of origin for which n-sided Poncelet traverse is closed,
then the n-sided traverse will also be closed for any other point of origin on the
circle Cs.

So, for example, the circles C; and C3 shown in Figure 1 have the property that
for every point A; on (' there are points Az and Az on Cj such that A; A3 A3z is a
triangle whose incircle is C'; and circumcircle Co. Thus, in this case every 3-sided
Poncelet traverse is closed. As it is well known, the closing in this case will be iff

r? — 22 = 2rp, (1.6)

where 7 is the radius of C5, p is the radius of C; and z is the distance between the
centers of C7 and Cs.

In this connection let us remark that formula (1.6) has important role in the
prehistory of Poncelet’s closure theorem. (See [2, p. 291.])

Poncelet demonstrated that analogously holds a theorem for conic sections (gen-
eral Poncelet’s closure theorem):

If an n-sided Poncelet traverse constructed for two given conic sections is closed
for one position of the point of origin, it is closed for any position of the point of
origin.
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Figure 1

In this paper we restrict ourselves to the case when conics are circles one com-
pletely inside the other. In this case, as will be seen for bicentric hexagons and
octagons, there are many interesting relations (equalities and inequalities) which
need not be valid generally for conics.

1.2. On notation which will be used. Whenever A; ... A,, is a given or con-
sidered bicentric polygon in this paper, then the following notation is used:

Cy is incircle of Ay...A,,

(5 is circumcircle of Ay ... Ay,

p is radius of C,

r is radius of Cfy,

z = |MO|, where M is center of C; and O is center of Cs,

B; = measure of <M A;A;11,1=1,...,n (1.7)
~; = measure of <OA;A;11,1=1,...,n (1.8)
ti+tiga = | A i =1,...,n (1.9)

Of course, indices in (1.7)-(1.9) are calculated modulo n.

By t,, and tps will be denoted the lengths of the least and the largest tangent
that can be drawn from C5 to C;. See Figure 2, where t,, = |PQ|, tpr = |RS|. Tt
is easy to see that

tm =V (r — 2)%2 — p2, tm =V (r+2)2 — p? (1.10)
The following symbols will be used:
Symbol S;(z1,...,2,). Let z1,...,z, be real numbers, and let j be an integer

such that 1 < j < n. Then S;(z1,...,2z,) is the sum of all (n) products of the
J
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Figure 2

form x;, - - -x;,, where i1,...,1%; are different elements of the set {1,...,n}, i.e.
Bl PP of BBocbagi (1.11)
1<i:1<...<;<n
Symbol C}'. The sum S; (cot 1, - . ., cot B,) will be briefly written as C7}.

Remark 1. In the following where t1,...,t, will be lenghts of tangents we shall,
for brevity, write S} instead of S;(t1,...,tn).

For example: S§ = t; +ta + ta, S5 = t1ta + tots + tat1, S5 = t1tats.

1.3. About one kind of tangential polygons. Let A;... A, be a tangential
polygon and let k be a positive integer such that

n—1 n—2

k< if nis odd and £ <

if n is even. (1.12)

Then Ay ... A, will be called a k-tangential polygon if any two of its consecutive
tangents have only one common point and if

n
> pi=k-2m, (1.13)
=1

where p; = measure of <A;MA; 1, i = 1,...,n, and M is the center of the

inscribed circle into A; ... A,. So, for example, the octagon A;...A, shown in
Figure 3 is a 3-tangential octagon.

It is easy to show that a k-tangential polygon A; ... A, has the property that

3 s :(n—Zk)g, (1.14)
i=1 '
where §; = measure of <M A;A;11,i = 1,...,n. So, for example, for the 3-

tangential octagon shown in Figure 3 we can write

8
Z%‘:?)'?W-, i =7~ (B + Biy1),1=1,...,8
=1
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8

Z[W —(B; + Bina)] =3 27

=1

8
™
;ﬁi: (8—2'3)5-

(About a k-tangential polygon can be seen in [11].)

Figure 3

1.4. Some kinds of bicentric polygon. If one circle is completely inside of the
other, then every bicentric polygon is a k-tangential polygon. So, for example,
the bicentric octagon shown in Figure 5 is a 3-tangential polygon. When it is
important to point out that a bicentric polygon is a k-tangential polygon, it will
be said that this polygon has type k or, briefly, that this polygon is a k-bicentric
polygon. For example, the octagon A;...Ag shown in Figure 5 is a 3-bicentric
octagon.

1.5. One property concerning bicentric polygons. Here will be used oriented
angles. First let us remark that the measure of an oriented angle will be taken
positive or negative depending on whether this angle is positively or negatively
oriented.

Concerning angles i, ..., 0, given by (1.7), it is easy to see that the angles
MA;Aitq, i =1,...,n, are either all positively oriented or all negatively oriented.

Concerning angles 71, ..., 7, given by (1.8) and the angles a;, ..., a, given by

a; = measure of <A;4, 14;A;41,i=1,...,n
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Figure 5

the following holds
o= +v-1,1=1,...,n (1.15)
where ;1 = 7y, for i = 1.
So, for example, for bicentric hexagon A; ... Ag shown in Figure 4 it holds

M+ = a1 = 2B,
T2 + 1 = g = 20,
Y3 + Y2 = az = 23,
Y4 +v3 = g = 204,
Vs + Y4 = as = 205,
Y6 + 15 = ag = 2.

In the case when O (center of Cs) is inside of C}, then all 4; have the same
orientation. But if O is not inside of C4, then all ; have not the same orientation.
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See, for example, Figure 5, where

o = measure of <AgA; Ay <0,

~v1 = measure of <OA; A3 > 0,

g = measure of <OAgA; < 0,

oy =71 + 8 since <QAgA; = <AgA1 0.

In the case when n is even it holds
artaz+ - tap1=art+og+ -+ Qn,

from which, since a; = 20;, we get

Bi+Bs+PBs+ +Bao1 =0+ Lo+ Lo+ -+ bn (1.16)

So, for example, for octagon shown in Figure 5 we have

aitastastar=(m+v)+(B+r)+(s+7a)+ (7 +%) = Y’Yz,

g togtastag=(v+mn)+m+r)+ e+ + s+ = Z%

Remark 2. As it is already said, (31, ..., B, are either all positive or all negative.
It only depends upon how vertices are numbered (clockwise or counterclockwise).
So we can suppose that the angles g1, ..., 3, are positive.

2. SOME PROPERTIES AND RELATIONS CONCERNING BICENTRIC HEXAGON

First about some relations concerning angles given by (1.7).

Let A;...Ag be a bicentric hexagon and let (31,...,0s be its angles given by
(1.7). Then, for k = 1, according to (1.14) and (1.16), it holds

Br+PBs+Bs =02+ Ps+ B =m.

From
tan(By + B3 + f5) =0
or [
tan B1 + tan f3 + tan G5 — tan 31 tan B3 tan G5 = 0,
using relations tan 3; = , 1=1,3,5 we get

tits + tats + tst = p°.

In the same way we get toty + tats + teta = p°.
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Theorem 1. Let t,, and tps be given by

bt = /(1 —2)2 = p2, ty=/(r+2)?—p? (2.1)
where v, p and z satisfy Fuss’ relation for bicentric hezagon

3(r? — 22)* = 492 (r® + 22)(r? - 2%)? + 16r22%p%, (2.2)

Then, for every ti such that t,, <ty <ty there are to,. .., tg such that
tn<t; <tpm,1=2,...,6, (2.3)
t1ts + tats + t5t; = pz, (24)
tota + tate + teta = p?, (2.5)
tita = tats = t3le = tmin. (2.6)

Proof. In order to prove this theorem, we have to examine the system of the above
equations of t1,...,ts which satisfies the condition

tm <t; <itm,1=1,...,6.

For brevitiy in the following let t,,tps be denoted by A, i.e.

h=tnty. (2.7)
Since from (2.6) we have
h h h
to = — ts = —y te = — 28
2= = 6= 4 (2.8)

the relation (2.5) can be written as
£y <ty 4 s = (%)2t1t3t5. (2.9)
Using this relation and relation (2.4) we obtain

t3 + t5 = (%)2t1t3tr e tl,

t1(ts +1s5) + tats = p?, (2.10)
from which it follows that
ts+ts=a, tsts=>b (2.11)
where
4 22 20,2 | 42
- =, e.12)

Hence we have the equations

b
th—at3 +b=0, t5= " (2.13)
3
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The discriminant of the above square equation in £ is given by

D = (p* — h®)%t2 — 4h%(p?* + t3)(p* 3 + B2, (2.14)
We shall prove that D > 0 iff 4, < t; < tp. For this purpose it is sufficient to

prove that D = 0 for i1 = ¢, and t; = tps. It can be easily shown that

V212 2¢ 2 2 \( 4242 2 s €
(p" = 1?)Pt, — 40 + £,) (Pt 0, -+ h?) = 0 <= (2.2)
(p* — B2)215, — ARP (0 + t3)(PPth, + BP) = 0 <= (2.2).

Thus, for every t; such that &, < t; < tp there are t3 and {5 given by
n .
bl o >

o
[7an2 ;
¢ A% h
=24+ 4/(2) ~b, to=—. (2.15)
2 "V \z2, s

Also, there are to, t4, tg given by (2.8).
* Obviously, such obtained ¢1, ..., tg satisfy both (2.4) and (2.5).
Since 1 can be replaced by any of is,. .., g, it is clear that £, <¢; <itpy, i=
i,...,6.

Of course, instead of t3 and t5 given by (2.15), we can take (f3)2 and (5)2 given
by

a a\? b
t) = & (_> A , 2.16
All essentially remain the same since we get the same tangents only with other
notation. So instead of notations to and ¢3 we have notations tg and The
difference is only in going round the incircle C. O
Corollary 1.1. It holds
titsts
R?=p?—— 2.17
¥ by + itz + %5 ( )
Proof. It follows from (2.9). OJ
Corollary 1.2. It holds
totat
R e (2.18)

T tadtattg

Proof. From (2.17) ant (2.6) we obtain
p2—______t2t4t6 :pzﬁ.._]’i._}l)- .’l.}.ﬁ_{_ﬁ): p2h2 2
to +ts + tg ts t1 ta’ " Vts  t1 s tits + tats + tsty

Corollary 1.3. The following inequality holds
2o _Ytitsts

R g 2.19
Ttttz tis (2:19)
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Proof. Since § + —3 > 2 for every two positive numbers @ and b, we can write
1 1

(t1t3 + i35 + tstl)(tl 4+ t3 + ts) = t1t3tr( + + )(t] + i3+ 15 ) —
5
t t:
= t1tsts[3+ (— ti) + (fd ) (— )] > Oty tsts;
1 5 t1

p>(t1 +t3 + ts) > 9titats.
O

Remark 3. It may be interesting that the inequality (2.19) follows from the well-
known property concerning arithmetical and harmonical mean. Namely from

t1+t3+1ts5 3
3 Z 1 1 i
: HTaTe
it follows
B
(huls Fats B lehi)——— 2. 50
ti1tals
or

ti1tats
02 >3p G
t1 +ts+1ts

The equality holds only if t; = t3 = t5.
Corollary 1.4. It holds
p® > 3h. (2.20)
The equality p? = 3h holds only if t; =ty = ... = t.

Proof. From (2.19) we obtain

9t st
2> o235 op 52 > 3,
P =Pt +1s i

From tytg+1tsts+1ts5ty = toty +1tate+tgto = pz, t1 =tz = ts, to = t4 = tg it follows
t1 = to. O

Corollary 1.5. From

tits + tats + tsty = p°,
titsts  tatals
t1 +t3+t5 to +1t4 + tg

follows

tats + tate + tota = p°,

h !
t = — Lo s t = —,
2 ts 4 6
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where
titsts
h=py| ————.
t1 +1t3+1s

Proof. Tt is easy to see that
h h h h h h 5

R 1) ek _|_ e i o + i i ot .
s t1 t1 ts3 t3 s r
h h h) t1t3t5

hohoh ko bk
ts t1 ts ts t1 t3 ty+t3+t5

The following theorem is in fact a corollary of Theorem 1.

Theorem 2. Let ty,...,ts have the same meaning described in Theorem 1. Then
there is a bicentric hexagon A; ...Ag such that

ti+tip1 = |AiAi+1|, 3=1,...,6.

Proof. We have to prove that there are r and z such that
3(r2 — 22)* = 4p%(r2 + 22)(r? — 22)% = 16p*r22?, (2.21)

h? = (r? - 2%)2 — 2p%(r® + 2%) + p*, (2.22)

where
p? = tits +tats + tsty,

2 pz . t1t3t5
ty +t3+t5

Let us remark that (2.21) is Fuss’ relation for bicentric hexagon and that

22 =02 (% 4 2) 4 gt = [(r = 22 = Pl + 2 - Y = 2,

(r*— =2
It is easy to see that (2.21) and (2.22) are equivalent with
8 2 4 4 4 _ 12
2, 2 _ P +2h%p" —3h o o2_ P —h
42t = Sh2 2 . ri—2 =y (2.23)

since, by Corollary 1.4, holds p? > 3h, it follows
pt > 9h% p8 >81h%,  p® 4+ 2h%p* > 99t

So, solving (2.21) and (2.22) for r% + 22 and 72 — 22 we get (2.23). Reversely,
from (2.23) follows (2.21) and (2.22).

Thus, not only p?, but also r and z are completely determined by t1, t3, t5 since
p? and h are completely determined by t1, 3, t5

It is easy to see that 7, p, 2 in the above theorem are the same as in Theorem
O

1.
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In addition, as an appendix to the proof of Theorem 2, we shall prove the
following assertion, where Figure 6 will be used. The circles C; and Cj are such
that r, p, z satisfy Fuss’ releation (2.21).

A(X,.Y,)

AX2Y2)
Figure 6

Let Ai(z1,y1) and As(z2,y2) be two different points on Cy so that AjAs is a
tangent-line to C; and let ¢; and (t2); be given by

ty = |A1T1|, (t2)1 = |A2Th]

where T} is the tangential point of A; Ay and Cy. Then

th =12 —p2+ 2% — 2231, (to)r = /12— p? + 2% — 2222

and it holds
(t2)1 = to,
where
g
2= s
or
ht
==

with t3 and b given by (2.15) and (2.12).
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Using computer it can be found that

1
t2) = ———
i =Gy

— 2r2z2t% + z4t% + 2r2p2t% + 2z2p2t% —2p%2 - ;)Qt‘l1

+2¢—v—a%r+a%%ﬁw—a2~w—ﬁxw+z—mv+z+m—ﬁﬂ,

. [—r4p2 4222202 — 2402 4 2r2pt 4 22250 — g8 it

1
(tg)% = —( ST {—r4p2 +2r222p% — 24p? + 2r2p% + 222p4 = ? ¢ r4t%
p* +t1)
—2r22242 4 242 + 2r%0%t] + 22%0%12 — 2p™7 — pPt1
—2¢—v—a%r+a%%ﬁv—a2-ﬂ—ﬁxv+z—mw+z+m—ﬁﬂ

and that holds

(ta)2 — (%)2 =956(r + 2 — p)2(r — 2+ p)2(—r + 2+ P)2(r + 2 + p)?
(=3(r% — 22)* + 4(r% — 22)2(r2 + 22)p% + 16r22%p%)?
t1(0* + )2 (r* + (2 = p*)* = 2r%(2" + p*) + p*11)* = 0.
As can be easily seen the only factor which is equal to zero is
(=3(r? = 22)* + 4(r? — 22)2(r? + 22)p? + 161%22p%),
since holds Fuss’ relation (2.21).
Concerning factor (1% + (22 — p?)% — 2r2(2% + p?) + p*t?)? it holds
4 (22 - p?)?2 - 2r2(p®* +2%) > 0
since from r* — 2r2(22 + p?) + (22 — p?)? = 0 follows
r=p—z or r=p+z,
which can not be.
Now we state the following corollary of the Theorem 2.
Corollary 2.1. Let A; ... Ag be a tangential hexagon such that
tits + tats + tst; = p?, (2.24)

litsls  tatals
ti+ts+ts tattst+tes

(2.25)
where

ti +tiy1 = |AiAiqa|, i=1,...,6.
Then this hexagon is a bicentric one whose r and z are given by (2.23), where

B2 = 2 t1tsts

—_— 2.26
r t1+13+1ts ( )
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Proof. See Corollary 1.5. O

Remark 4. In [11] it is shown that for a 1-tangential hexagon A; ... Ag it holds
S%pt — S§p? + S¢ =0, where t; + t;41 = |A;Ait1]|. (See Remark 1.) Here can be
shown that from

Sep* — S5p* + S8 =0, (2.27)
tits + tats + tsty = tota + tats + teta = p°, (2.28)
tits = tots = tstg = h, (2.29)
follows (2.26). The equation (2.27), using (2.28) and (2.29), in the end becomes
[R2(t1 + t3 + t5) — pPtatsts][(t1 + ts + t5)p° — titats] = 0. (2.30)

Let us remark that (¢; + t3 +t5)? # titsts since p is the radius of the inscribed
circle into hexagon A; ... Ag and therefore it can not be the radius of the inscribed
circle into a triangle whose sides have the lengths t1 + t3, ts + t5, t5 + 1.

Example 1. Let t; =1, t3 =3, t5 = 5. Then
P2 = tits +tats + tsty = 23.

titsts
h = g = 6.191391874,
ter t1 +t3+ts

to = & =1.238278375,t4 = Z—i = 6.191391874, tg = t’—; = 2.063797291.

=&=
Using relations (2.23) we find that
r=6.497111204, =z = 1.608585094.

For the angles 3; = arctan Jt‘%, i1=1,...,6, we have
[ = 78.22176785°, B2 = 75.52248781°
B3 = 57.97223989°, B4 = 37.76124391°
Bs = 43.80599227° s = 66.71626828°

B1+ B3+ s = P2+ Pa + B = 180°.
Thus, a bicentric hexagon is completely determined by ¢1, t3, is.

Example 2. Here will be illustrated how using Theorem 1 can be relatively easily
obtained t, ..., tg if t1 is given.

Let r = 4.696519101, p = 3, z = 1.675497439. Then
tm = 0.355769419, ¢ = 5.62161852, t,,tar = 2.
If t; =1, then using relation (2.15) and (2.8), we get
t3 = 5.34704211, t5 = 0.575372712
to = 3.47600774, t4 =2, tg=0.374038572.
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Also, using the expression [3; = arctan {i i=1,...,6, we get
B3 = 29.29191935°

Bo = 40.7961328°,
Be = 82.8939347°

B = 71.56505118°,
Bs = 79.14302949°,

B4 = 56.30993247°,
B1+ B3 + Bs = B2 + Ba + P = 180°.

The corresponding hexagon is represented in Figure 7.

Figure 7

Let now be an other choice for ¢, say t; = 5. Then analogously as for t; =1,

we get
ts = 0.504842108

t3 = 1.176380598,
to = 3.961634674, t4 =04, ts=1.700130046.

Also, for 3; = arctan fjf, i=1,...,6, we get
3 = 68.58852015°

1 = 30.96375653°, B2 = 37.1353055°,
B4 = 82.40535663°, Bs = 80.44772146°, Be = 60.45933777°

B1+ B3+ Bs = B+ Pu+ B = 180°.

The corresponding hexagon is represented in Figure 8.

In connection with (2.15), let us remark that

a |a?
5 VT b = 0.504842108 = ts.

Remark 5. It is easy to see that proving Theorem 1 and Theorem 2 we in fact
give another proof of the Poncelet’s closure theorem for bicentric hexagons, when

conics are circles one inside of the other.
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Figure 8

Theorem 3. Let A; ... Ag be a bicentric hexagon and let
titst
p? = tits + tats + tst;, h®=p*- 1270

where ti+tiy1 = |A7;Ai+1l, i=1,...,6. Then
- 3h2
Zt tz—H p

6

Ztiti+1ti+2ti+3 = p* - 3h%,
§=1

(t1 + 3+ ts)(ta +ta + tg) =

Proof. From (t1t3 + t3ts + t5t1)(t2t4 + tatls + t6t2) = p4, using equalities

L1ty = tots = tatg = h,
we get relation (2.32).

Now, using the relation (2.32) and relations (2.34), we get

6

6
Z titip1tigatizs = h(z Litss)s
i=1

i=1

i.e.

6
p* —3h? = h(z titiv1),
1=1

which can be written as (2.31).

t1 +t3+ts

(2.31)

(2.32)

(2.33)

(2.34)
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In order to prove (2.33), we can write

6
(t1 +t3 + t5)(t2 +itat+tg) = Ztiti+1 + 3h,
=1

since tyty +tats +t3tg = 3h. The above equality, since holds (2.31), can be written

as (2.33). O
Corollary 3.1. Let A;...As and B; ... Bg be any two bicentric hexagons with
the same 7, p and z and let u; + u;41 = |B;iBit+1], 1 =1,...,6. Then
6 6
Z titiv1 = Z Uiliy1,
=1 =1
6 6
Z titig1tivotivs = Z Uili 11 Ui2Uiy3,
i=1 i=1

(t1 +t3 +1t5)(ta +ta +te) = (u1 + us + us)(u2 + us + us).

3. SOME RELATIONS CONCERNING BICENTRIC OCTAGONS

First about some relations which will be used. Very important role in-the
following will play the Fuss’ relation given by (1.5), here written as

[pZ(pZ + q2) _ p2q2]4 — 16p4q4p4h2,
where
h? = (p* — p*)(¢* - p°).
This relation is equivalent to
[0 + ¢°) = p*¢* — 2papVR[p*(P* + ¢°) — P*¢® + 2pgpVh] = 0,

where

P*(0* +¢°) = p°¢* — 2pgpVh = 0 (3.1)
is Fuss’ relation for 1-bicentric octagon and
P (0° +4°) — p°¢* + 2pgpVh = 0 (3:2)

is Fuss’ relation for 3-bicentric octagon.

From (3.1) we see that p?(p? + ¢%) > p2g®. Since h? = (p? — p?)(¢® — p?) =
p*q® — p*(p® + ¢?) + p*, we have the following inequality

P20+ ¢°) > PP (P* + ) — p* + A2,
from which follows that

p® > h.
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In the same way we find that from (3.2) follows that
% < b

Now in short about some relations concerning the angles Ay, ..., Os.

Let Ay ... Ag be a 1-bicentric octagon. Since in this case

8 8
D ;i =1080°, ) B =540°
=1 =1

we have, according to (1.16), the following relatioms

B1+ B3+ Bs + Br = B2 + Ba + B + Bs = 270°. (3.3)
Since
cot(B1 + B3 + Bs + B7) =0,
we have
Ci—-C5+1=0, (3.4)
where

C; = S;(cot By, cot B3, cot 5, cot f7), 7 = 2,4.
Using relations % =cot f;, 1 =1,3,5,7, the equality (3.4) can be written as
p* — PP (tits + tats + tsty + trty + tits + taty) + tatststy = 0.
In the same way, starting from fs + 84 + B + Oz = 270°, we get
p* — p*(tats + tate + tets + tsto + tote + tatg) + totatets = 0.

In the case when A; ... Ag is 3-bicentric octagon, then

8 8

Z a; = 360°, Z B; = 180°.

i=1 i=1
Let us remark that

8
D" Bi = (8 — 2k)90° = 180° for k = 3.
According to (1.15) it holds
B1+ Bs+ PBs + Br = B2+ Ba + P + Bs = 90°.
Since
cot(By + fs + Bs + Br) = cot(Bz2 + B4 + B + Ps) = 0,

we get the relations which have the same form as these obtained when (3.3) holds.

Now we can prove the following theorem.
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Theorem 4. Let t,, and tpr be given by

tn= VTP~ tu=TT PP (35)
where v, p and z satisfy Fuss’ relation for 1-bicentric octagon
P’ (0> + ¢*) — p°q* = 2pgpV/h, (3.6)

where p =r+z, q=1—2, h =tuty. Let t1 and ty be any given lengths such
that t1 = |A1Th|, ta = |A2T1|, where A1 Az is a chord of Ca which touches circle
Cy at point Ty. Then there are t3, ..., ts so that

tm <ti <trp, i=3,...,8 (3.7)

p* — P2 (t1ts + tats + tstr + trty + tats + tatr) + titatsty = 0, (3.8)

p4 = p2(t2t4 + t4tlg + tetsg + tglo + Lot + t4f13) + totatets = 0, (39)

t1ts = tate = taty = t4ts = h. (3.10)

Proof. In order to prove this theorem, we have to examine the system of the above
equations in tg, ..., ts which satisfies the conditions

tm <t <tpi=3,...,8 (3.11)

First, using relations (3.10), let ts, g, t7, tg in (3.8) and (3.9) be replaced
respectively by

h h h h
E’E’g, E. (3-12)
Then we have the relations which can be written as
P2 (h 4+ t2)t2 — (0* — 2hp? + h2)t1ts + p*(h + t2)h = 0, (3.13)
P> (h+ t3)t; — (p* — 2hp® + B3)tats + p*(h + t2)h = 0. (3.14)
From (3.13) we have
(0> —h)’t, £ VD
i = a
e =m0 o
where
D = (p* — h)*t3 — dhp*(h +t2)2. (3.16)

It can be easily shown that D = 0 iff t; = {,, or t; = ¢y, i.c.
(p* — h)*2, — 4hp*(h +12,)> = 0 < (3.6)
(p* — h)*3, — 4hp*(h +12,)2 = 0 & (3.6)

where (3.6) denotes Fuss’ relation for 1-bicentric octagon.

Thus, t; is such that t,, <t < tp.
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Of course, also holds t,,, < t3 < £, since from (3.13) we get

(0% = )% £ /(7 — R)HE — Aho'( + B
202 (h +13) '

(t1)1,2 = (3.17)

As can be seen from (3.17), it holds
(t1)1 - (t1)2 = h. (3.18)
Since by (3.10) holds ¢1t5 = h, it follows that one of (¢1); and (¢1)2 must be 5.
Also, from (3.15) it can be seen that
(ta)1 - (ta)2 = h. (3.19)
Since by (3.10) holds tst7 = h, it follows that one of (t3); and (t3)2 must be t7.

It is easy to see that also must be t,, < t5 < tar, tin < t7 <ty So, from
t1ts = tmtas (since h = tytpr) it follows that can not be t5 >t since then
L

b=t —= <tm.
5

In the same way, using (3.14) instead of (3.13), we find that analogously holds
for tg, ﬁ4, ts, tg. |

Corollary 4.1. It holds
t1tsts + t3tsty + tstrty + trtits

h = , 3.20
t1 +ts+t5 +tr ( )
totyt tatet totst tgtot
h:246+468+682+824' (3.21)
to +1t4 + 1t +tg j
Proof. From (3.10) it follows
h h
t1+it3+ts+tr =t +t3+ — 4+ —,
1 13
h h
ti1lsts + t3tsty + tstrty + triits = h(tg -+ t_ -+ t—‘ -+ tl).
1 3
J

Corollary 4.2. Let (3.8) be written as
pt—ap?+b=0, (3.22)
where a = tits + tsgts + tstr + tyty + tits + taty, b = titststy. If

(P2 =5 %4/(5) b, (3.23)

then
(p*)1 > h, (3.24)
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(p*)2 < h. (3.25)
(The proof is easy.)
Theorem 5. Let tq,...,tg have the same meaning described in Theorem 4. Then
there is a 1-bicentric octagon A ...Ag such that
ti+ b = |A1‘Ai+1|, g =L 550 8s (326)

Proof. First let us remark that Fuss’ relation for 1-bicentric octagon is given by
(3.6) and that in this relation we have

h=tmtayr =/ (r — 2)% — p2\/(r + 2)% — p2. (3.27)

Thus, here we have to prove that there are p = r + z, ¢ = r — z such that
®* - P*)(¢® - %) = I, (3.28)
P*(0* +¢*) — p’¢* = 2pgpVh. (3.29)

It can be easily found that
5 o _ (p' = 1?)?

=M v 3.30
p°q 7 (3.30)
4 2\2 27 ¢ 4 5
2, 2 _ (p"—h")* +4p°h(p" — 1)
= . 31
P +q ih (3.31)
Since p? and h are completely determined by ti,...,ts, the same holds for r

and z.
It is easy to see that r, p, z in the above theorem are the same as in Theorem
4, _ O

Here let us remark that Theorem 5 is in some way analogous to the Theorem 2
and that we can give to it an appendix analogous to the given in Theorem 2. But
for the brevity of the article we omit it.

Example 3. Let p =3 and h = 1. Using (3.30) and (3.31) we get
r = 3.718489007, =z =0.70272837.

Now we shall calculate the lenghts of two consecutive tangents and then to find

all other using relations(3.15), (3.17) and (3.10). For this purpose we shall use the
equations

(=2 +y* =p°, 2®+y" =12
Let us take, for example, A;(—2,3.134830218) on the circle Cy. Then we have
t1 = |A1T| = 2.851648846, to = |T'As| = 2.990887753
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where
T(—2.282513013,0.29721017), Ao (—2.578820413, —2.678963595).

Using relations (3.15) and~(3.17) we find tha
t3 = 1.592775033, t4 = 0.690680502.

Now, by (3.10) we get
ts = 0.350674313, tg = 0.334348912
t7 = 0.627835054, tg = 1.447847445.

Figure 9

It can be checked that for the angles §; = arctan {%, t=1,...,8it holds

1 = 46.452253301°, B2 = 45.08714975°
B3 = 62.03504957°, B4 = 77.03489245°
05 = 83.33286979°, Be = 83.64064938°
B = 78.17982764°, fs = 64.23730843°

B1+ B3 + Bs + Br = P2+ Ba + Ps + Ps = 270°.

The corresponding 1-bicentric octagon is shown in Figure 9.

Before the following example, we shall consider in short 3-bicentric octagon.

As we have seen, there is a complete analogy between relations for a 1-bicentric
octagon and these for 3-bicentric octagon. So, for example, for a 3-bicentric octa-

gon hold the following relations

PP(h+t)t5 — (p° — h)2tats + p*(h + t3)h = 0,

p*(h +13)t5 — (p° — h)*tats + p*(h + t3)h = 0,
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which have the same form as these given by (3.13) and (3.14) for a 1-bicentric
octagon. Of course, here it holds p? < h, whereas in (3.13) and (3.14) holds p? > h.
Therefore for a 3-bicentric octagon hold theorems analogous to the Theorem 4 and
Theorem 5. Here is an example.

Example 4. Let r = 3.718489007, z = 0.70272837 be as in Exaqmple 3. Putting
in Fuss’ relation for bicentric octagon given by (1.5) instead of r and z the given
values, we get the equation which can be written as

p® — 13.29936284p° + 392.4704253p* — 38447.315735p% + 5969.973647 = 0.

Its positive roots are
p1 =3, p2=1.378216239.
As we can see, p; is the same as p in Example 3. It is because p; = 3 is the
positive root of the Fuss’ relation for 1-bicentric octagon given by (3.1), whereas

p2 = 1.378216239 is the positive root of the Fuss’ relation for 3-bicentric octagon
given by (3.2).

In the case when p = py we have
h=/(r—2)2—p2-\/(r+2)% - p? = 11.26858218.
If we take A;(—2,3.134830218), as in Example 3, we find that
t1 = |A;T| = 3.902873425, ty = |A2T| = 3.391949986

where

T(—0.581194658, —0.501020765), A2(0.651875502, —3.660904099).

Using the equations (3.32) and (3.33) we find
t3 = 2.844927483, t4 = 4.199807966.

Then we find
h h
g = = 2.887252789, tg = 5= 3.32215458
1 2
h h
ty = e 3.960938283, tg = == 2.683118436.
3 4
It can be checked that
£ = 19.44958348°, [o = 22.11287806°
B3 = 25.84772318°, (s = 18.16785632°
Bs = 25.51725199°, Os = 22.53141832°
[r = 19.18544141°, [s = 27.18784737°

Br+ B3+ Ps + B7 = Bo + Ba + B + Bz = 90°.

The corresponding 3-bicentric octagon is shown in Figure 10.
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Figure 10

Remark 6. It can be easily shown that there is not a 2-bicentric octagon different
from ”double bicentric quadrilateral”.
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