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SOME RELATIONS CONCERNING TRIANGLES
AND BICENTRIC QUADRILATERALS IN CONNECTION
WITH PONCELET’S CLOSURE THEOREM

MIRKO RADIC

Abstract. Some relations concerning triangles and bicentric quadrilaterals
in connection with Poncelet’s closure theorem are found. These relations may
be interesting and useful. So. using relations given by (2.4) and (3.15) we
give in a very simple way an other proof of the Poncelet’s closure theorem
for triangles and bicentric quadrilaterals when conics are circles one inside of
the other.

1. PRELIMINARIES

A polygon which is both chordal and tangential will be called a bicentric poly-
gon. The first who concerned with bicentric polygons was German mathematician
Nicolaus Fuss (1755 — 1826), a friend of Leonhard Euler. Ho posed himself the
following problem (known as Fuss’ problem of the bicentric quadrilateral):

Find the relation between the radii and the line segment joining the centers of
the circles of circumscription and inscription of a bicentrical quadrilateral.

He found that:

20%(r? + 2%) = (r? - 2%)?, (1.1)

where r and p are radii and z is the distance between the centers of the circles
of circumscription and inscription.

This problem is listed and considered in [?, p.188] as one of the 100 great
problem of elementary mathematics.

Fuss also found corresponding formulas for bicentric pentagon, hexagon, hep-
tagon and octagon (Nova Acta Petropol., XII, 1798).

The corresponding formula for triangle is

r? — 22 = 2rp, (1.2)

and had already been given by Euler.
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The very remarkable theorem concerning bicentric polygon is given by French
mathematician Poncelet (1788-1867). In the formulation of this theorem will be
used the so-called Poncelet traverse. In short about this.

Let C; and C3 be two circles in a plane. If from any point on Cy we draw a
tangent to C1, extend the tangent line so that it intersects C'3, and draw from the
point of intersection a new tangent to C1, extend this tangent similarly to intersect
C9 and continue in this way, we obtain the so-called Poncelet traverse which, when
it consists of n chord of the circle Cy (circle of circumscription), is called n-sided,

The Poncelet’s theorem (for circles) can be expressed as follows:

If on the circle of circumscription there is one point of origin for which n-sided
Poncelet traverse is closed, then the n-sided traverse will also be closed for any
other point of origin on the circle.

The Figure 1 is an illustration for triangle. If |OM | = z and (1.2) is valid, then
there are infinitely many triangles whose incircle and circumcircle are C'; and Cs.

Figure 1

Poncelet demonstrated that analogously hold for conic sections so that general
theorem reads:

Poncelet’s closure theorem. If an n-sided Poncelet traverse constructed for two
given conic sections is closed for one position of the point of origin, it is closed for
any position of the point of origin.
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A lot of interesting informations concerning Poncelet’s closure theorem we have
found in [4] and references therein.

2. SOME RELATIONS CONCERNING TRIANGLES

First on notation which will be used in this section.

Let r,p and z be any given lengths (in fact positive numbers) such that holds
Euler’s relation (1.2). Let M and O be points and C; = M (p) and Cy = O(r) be
circles such that holds |OM | = z.

If AjA2Ag3 is a considered triangle whose incircle is C; and circumcircle Co,
then by ¢y, o, t3 will be denoted the lengths of its tangents, that is

t; +tip1 = |AjAsa], 1 =1,2,3.

Of course, indices are calculated modulo 3.
As an illustration see Figure 2.

Figure 2

Now in short about one well-known relation concerning triangles which will be
used in the following theorem. This relation is:

(t1 + 12 + t3)p° = titats

The following proof do not use trigonometry and may be useful in the following
considerations.
Since
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[(t1 + t2 + t3)p]> = (area of A;A2A3)?,
we have to prove that also

(tl + i + t3)t1t2t3 = (area of A1A2A3)2,

It is easy, since from

t1+t2=a, la+iz=0b, tg+t1 =c,
where a = |A1As|, b = |A3A3], ¢ = |A3A4], it follows that

21 =a—-b+e¢, 2g=a+b—-c ,2t3=—-a+b+c,

or
t1=s8—b, to=s8—c¢ ,t3=35—a,
a+b+c
wheres:T.
Thus

(t1 + to + t3)t1tats = s(s — a)(s — b)(s — ¢) = (area of A;A5A3)%
Now we can prove the following theorem.

Theorem 2.1. Let ABC and PQR be any two triangles whose incircles have
equal radii. Then circumcircles of these triangles have also equal radii iff

titg + tot3 + t3ty = uius + uguz + uzur, (2.1)

where
t1 +ty = |AB|, to+t3=|BC|, tz+t1 =|CA|
U]+ ug = |PQ|, U2+U3=|QR|, ugz + U =|RA|.

Proof. From (t, + tg + t3)p? = titat3 we have

PPt + )

ts = 2.2
3= T 2 (2.2)

and we can write

p2(t1 +t2) | p*(t1+12)
titg — p? tity — p?

titg + totsy + t3ty = t1ta +t2 - -1,
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32 + p2 (12 + t2) + p2tyte
t1tg — p? .
Now, let by J be denoted the area of ABC. Then from

t1to + tols + tat; = (2.3)

B abe
C4J
where a =t + tg, b = tg + t3, ¢ = t3 + t1, it follows that

J=(l1+ta+1l3)p, 7

drp(ty +to +t3) = (t1 + t2)(t2 + t3)(ts + t1).
The above relation, using (2.2), can be written as

_ 113 + 0% (1] +13) + o

drp
tity — p?

: (2.4)

from which, adding p? on both sides, we obtain

1262 4 p2(12 + 12) + o2ty
47“p+p2: 165 + p=(t7 2)2 prt1 .
tila — p

Hence, since (2.3) holds, we have

drp + p? = t1tg + tots + t5t;. (2.5)

In the quite same way we find that

drip + p? = urug + ugus + usu1, (2.6)

where r1 is the radius of circumcircle to the triangle PQR.
Thus, (2.1) is valid iff 7 = r;. Theorem 2.1 is proved. O

Corollary 2.1.1. Two triangles ABC and PQR have congruent incircles and
congruent circumcircles iff (t1,t2,t3) and (u1,u2,u3) are solutions of the equations

(z1 + 22 + :1:3);)2 = 21T2T3, T1T2+ Toz3 + T371 = 4rp + p°.

In the following theorem will be shown that such triangles there are infinity
many, namely, that for every (z1,z2,23) € Ri which satisfy the above two equa-
tions, there exists a triangle of such kind. )

Before we make a statement of the following theorem, in short about some
relations which will be used.

Let ABC be a triangle and let C1 and Cj be its incircle and circumcircle as
shown in Fig.2. Then

(t1 4+ t2)(ta +t3)(t3 + t1)
4r

(t1 +ta+t3)p = = area of ABC. (2.7)
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IQQ

Figure 3

In connection with I'ig.3 let us remark that

2 2 2 42 2 2
Lm,:(r - Z) P, [’]\/[:(T—}kz) - P
where t,, is the length of the least tangent that can be drawn from Cs to C'y,
and {7 is the length of the largest tangent that can be drawn from Cy to C'.
Now we can prove the following theorem.

Theorem 2.2. Let v, p and z be any given positive numbers that (1.2) satisfied
and let L, and Ly be given by

tm = /(r —2)% = p2, tm=/(r+2)%-p% (2.8)

Then every positive solution (L1, l2,13) € Rj of the equalions

titg + Loty + L3ty = drp + p°, (L1 + Lo+ 13)p* = t1lats (2.9)

18 given by

t1 is a positive number such that L, < 1 < L, (2.10)

_ 2rpt1 + VD

2.11
p2_|_L% ) ( )

Lo
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- 2rpty — \/B 9192
3= p2 + t% ’ ( . )
where
D = 4r2p%3 — p%(p? + t2)(4rp + p% + £2). (2.13)
Proof. The relations (2.9) can be written as
t1(ta + t3) + tatz = 4rp + p?, (2.14)
—p%(t2 + t3) + t1(tats) = p2ts, (2.15)
from which it follows that
drpty p*(4rp + p* + 1)
tg + 13 = ——s, Lotz = .
2 3 P2 + t% 23 p2 + t%
It is easy to find that ¢t and t3 are given by (2.11) and (2.12).
Now we have to prove that
422 — (p2 + 12)(4rp + p% +12) 2 0 (2.16)

for every t; such that ¢,, < t; < tpr. For that purpose, of course, it is sufficiently
to prove that the left-hand side of (2.16) is equal to zero for t; = t,, and t; = L.
It

is easy to show that

4r?22 — (p* +t2)arp+ 2 +t2) =0 & (1.2),
4%, — (02 + t3)(drp+ 02 +t3) =0 & (1.2),

where (1.2) denotes Euler’s relation given by (1.2). So, for t; = t,, we can write

ar?l, — (p° +t5)(drp +p* + 13) =
Ar — 2)2(r2 =22 = 2rp) =0
since r2 — 22 — 2rp = 0 by (1.2).
Thus, from (2.11) and (2.13) it is clear that ¢ > 0 for every ¢; such that

tm < t1 < tm-
Also from (2.12), since obviously

2rpty — p\/4r2t¥ — (02 + t%)(p2 +4rp +t%) > 0,

it is clear that t3 > 0 for every ¢; such that ¢, < t; < tpr.
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This completes the proof of Theorem 2.2.
O

Although ¢; is not given explicitely but by condition t,, < t; < lyy, it is easy
to check that

orpt1 + VD 2rpt; + VD 2rpty — VD n 2rpty — VD

Lite + lotg +t3ty =11 - : .
P2+ 13 P2+ P2+ 0 P2+ 13
drp + 2 2+t2
_ {rp ’ )(p2 2 St
pe+ 1y

Also the second relation in (2.9) can be easily checked.
Before we state some corollaries of Theorem 2.2 here is an example.

A

4
Example 1. Let » = 3 and z = 1. Using (1.2) we find that p = 3 Since i, =

1.490711985, tpy = 3.771236166 we can take for ¢; any number from interval
[1.490711985, 3.771236166]. If we take ¢t; = 1.6 then, by (2.11) and (2.12), we
have

Lo = 2.34075236, t3 = 3.56088681.

The corresponding triangle is shown in Figure 4.

Figure 4

Notice 1. It is easy to see that proving Theorem 2.2 we give in fact another proof
of the Poncelet’s closure theorem for triangles using very simple and elementary
mathematical facts. Therefore this proof may be interesting in itself.

In this, as can be seen, the relation (2.5) has a main role.

Corollary 2.2.1. Let Ay be any given point on Co and let 1y be length of the
tangent ATy drawn from

.[1
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Cqy to Cy. Then the lengths to and t3 of the other two consecutive tangents
drawn from Cy to Cy are given by (2.11) and (2.12).

Corollary 2.2.2. Every positive solution (t1,t2,t3) € Ri of the equation

drp(ty +ta +t3) = (41 + t2)(ta + t3)(ts + t1) (2.17)
s gwen by (2.10),(2.11) and (2.12).

Proof. See (2.7). If ABC is a triangle whose incircle is Cy and circumcircle Cy
then hold relations (2.9). It is easy to see that equation (2.17) for ¢1,t2,13 given
by (2.10),

(2.11) and (2.12) become identity

(0% + 6 + 4rp)(p° + t7) = (0 + 1] + 4rp) (0 + 1)

Corollary 2.2.3. For every tangent drawn from Cy to Cy holds

42 > (p® + %) (p® + % + 4rp).

Proof. The relation (2.13) holds.
O

Corollary 2.2.4. Let t; be a length of any given tangent drawn from Cy to Cy
and let ty be given by (2.11), that is

2rpt D
- ”’;___.i__\z/— (2.11)
p= + 1y
Then holds (2.4), that is
1242 4 2042 4 42 4
drp = 12+P(1+22)+P' (2.4)
tila —p
Proof. From (2.14) and (2.15), that is, from
2
t1 +t
tita + tols + taty = drp + p2, 3= il———i—)
tita — p
we get
(p? + 1212 — drptyta + p>(t} + drp + p?) = 0, (2.18)

which can be written as (2.4). Now, from (2.18) we get

ha 2rpty + VD
’ p2+t2
where D is the same as that given by (2.13).
Let us remark that (in the case of a triangle) both of (¢2); and (t2)2 are con-

secutive to ty since (t2)2 = t3.
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Thus, using relation (2.4) instead of relations (2.14) and (2.15) we also obtain
the solutions given by (2.10) — (2.12).

a
Corollary 2.2.5. For every ti,ts,t3 given by (2.10) — (2.12) it holds
3
Y (P +)(P* +12y) = 8rp*(2r — p). (2.19)
i=1
Proof. From (2.4) it follows
9 i 2372 42
-+ +
tity = p2 + (p D(p 2).
4drp
Analogously we have
2 4 42Y( 2 1 42
+3)(p? + ¢
baty = pPf (p 2)(p 3),
4drp
O S 42W: 2 o £
+1 +1
haky = pz + (p 3)(p 1)'
4drp
By adding, since ttg + tatz + t3t; = 4rp + p?, we get (2.19).
|

Corollary 2.2.6. Let t,, and tp be given by (2.8). Then the relation (2.5) can
be written as

ttar )\
mtM
t1to + tols 4+ tgt] = <mT> .

Proof. Since from the Euler’s relation (1.2) it follows that

(r2 - 22)2 = 4r2p2, 22=r2_ 2rp

we can write

2,3y = (1% = 22)% = p2((r = )7+ (r +2)7) + p*
=4r2p? — 2p%(r? 4+ 22) 4+ p*
=4r2p% — 2p2(r? 4+ 1% — 2rp) + p* = 4rp3 + p*.

In connection with relation(2.19) and the Euler’s relation (1.2) the following

remark will be made.
Let AjA3A3 and B1B2Bg3 be axial symmetric triangles in relation to line O M

as shown in Figure 5. Then, concerning triangle A; A3 A3, we have

11 =tm =/ (r — 2)2 = p?, to =13 = /12— (p — 2)? (2.20)
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ti+tip1 = 'AiAi+1l, 1= 1,23

Using, t1,t2,t3 given by (2.20), the equality (2.19) can be written as

(r® = 2rp — 22)(3r% + r(6p — 42) — 4p% + 2%) = 0.

A,
\
\ B.\
\ 7z
\ 7’
e
I P
Bi V3 £ Z f_ AI
r 0 M
B,
A;
Figure 5

Concerning triangle B;ByB3 we have

t1 =tym =V (r+2)% - p?, to =tz =+/r2—(p+2)?, (2.21)

t; +tiy1 = |BiBit1|, 1=1,2,3.

Using t1,t2,t3 given by (2.21), the equality (2.19) can be written as

(7"2 — 2rp = ‘7,2)(37'2 +r(6p +4z) — 4p% + 22) = 0.
Similarly holds for every t1,t2,t3 given by (2.10) — (2.12). The reason for this
lie in . '
the fact that (2.19) holds for every t1,ts,t3 given by (2.10) — (2.12) and that
72 — 2rp — 22 = 0. Therefore the equality (2.19) can be written as

(r? —2rp — 2%) f(r,p,2,t1) =0,

where f(r,p,z,t1) is a polynomial in r, p, 2, t1.
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3. SOME RELATIONS CONCERNING BICENTRIC QUADRILATERALS

First about notation which will be used in this section.

Let AjA32A3A4 be a given bicentric quadrilateral. See Figure 6. Then by Cy
and Cy will be denoted its incircle and circumcircle. By ¢1, o, t3, 4 will be denoted
the lengths of its tangents such that

t; + ti—l—l = IAiAi+1|7 1= 17 27 37 4.
The radius of C; will be denoted by p and that of Cs by r. By z will be denoted
the distance between the centers of C; and Cyq, that is, z = |OM|.

Figure 6

Now about some relations which will be used in this section.
First about relation

(t1 + to + t3 + ta)p® = titats + totsts + tatats + tatito, (3.1)

which has an important role in the following considerations. In short about its
proof.
Let $; = measure of AM A;A;11, i=1,2,3,4 (see Fig.6). Then obviously

B1+ B2+ B3+ By = .
Thus

tan(B1 + B2) = —tan(Bs + B4)

or

T1+T2 _ T3+T4

(3.2)

1—7’17’2 1—7’37’4
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where 7, = tang3;, ¢ = 1,2,3,4. Since tang; = tﬂ’ 1=1,2.8,, the equality

i
(3.2) can be written as (3.1).
Also, in the following will be used the well-known elementary fact concerning
area of a bicentric quadrilateral, namely, that it holds

ps = /(s —a)(s — b)(s — c)(s — d) = Vabed, (3.3)

where

a=1t;+ty, b=ta+1t3, c=t3+ts, d=ts4+1t1

a+b+c+d
S=—2-—=t1+t2+t3+t4.

Using the above relations, the following theorem can be proved.
Theorem 3.1. Let A1A3A3A4 be a tangential quadrilateral and let t1,to,t3,t4 be
“lengths such that '

ti+tig1 = |AiAinl, 1=1,2,3,4.

Then this quadrilateral is also a chordal one, that is a bicentric one, iff

tg = —, ty'= — (34)
where p is the radius of the inscribed circle into A1AsA3Ay.

Proof. The tangential quadrilateral A;A;A3A4, according to (3.3.), will also be
chordal one iff

(t1+ ta + ts + ta)p = /(b1 + t2)(t2 + t3)(ts + ta) (ta + t1). (3-5)
Since according to (3.1) it holds

p2 L titoty 4 Lotsly 4 t3tgty + tatite
i +ita+1i3+1ty
the relation (3.5) can be written as

, (3.6)

(tl +to +t3 + t4)(t1t2t3 + tolsty + t3taty + t4t1t2)
= (t1 + t2)(t2 + t3)(ts + ta)(ta + t1)

from which it follows that

t262 — 2tytotsty + 1313 = 0

or

(titz — tatg)® = 0.
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Thus

t1t3 = taly. (3.7)

i1t
Now, from (3.6), putting t4 = —;—i, we find that
2

g t1t3(t1 + t2)(12 + t3)
(t1 +t2)(t2 + t3)

or

p2 = t1t3 (38)

Also is valid p? = 154 since (3.7) is valid.
Theorem (3.1) is proved.

2
In this connection let us remark that (3.1), putting ¢35 = f— and t4 = .
1 2
become an identity

2 2 4 4
(tr F1g + 5= + £ il et e,
ty  t2 t1 2

Theorem 3.2. Let ABCD and PQRS be two bicentric quadrilaterals whose in-
scribed circles have equal radii. Then circumcircles of these quadrilaterals have
also equal radii iff

tito + totg + L3ty + tgt1 = urug + uguz + ugug + uguy, (3.9)

where tq,ta,13,t4 and uy, us, us, uq are the lengths of the (consecutive) tangents
ofABCD and PQRS respectively.

Proof. Using the expression for ¢3 and ¢4 given by (3.4) we find that

3+ 3+ ) + "
tita ’
Now let r be the radius of the circumcircle to ABCD. We have to prove that
r is equal to the radius of the circumcircle to PQRS iff holds (3.9).
In the proof we shall use the well-known relations which hold for bicentric
quadrilateral:

tite + totg + i3ty + L4ty =

(3.10)

2 _ (ab+ cd)(ac + bd)(ad + bc)

e 162 ’

where a =t + 13, b=t + 13, c=t3+14,d=1t4+t;, J = area of ABCD.
Using (3.11) we find that

J? = abed (3.11)

bc bed cda  dab
16r2=a2+b2+c2+d2+gzg+—tc—l—+%+%,
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which can be written as

2 2 2
tita + p2 t1 + to)p? titg + p?
16r% = (£ + t2)? + (u) 5 (M) N (u N

t1 t1to to

2
((11 +12)P) 4 ((t1t2+P2)P>2 n ((tl +t2)P>2+ (i1t2+p2)2
3] t1t2 t2 p

2 2 22| | 1 1 1 p?
= [p°(t1 + t2)" + (tat2 + p%) S t+tst+t5+53
p 8 T 4g
or
2
16r2p%t242 = [tft% + 023 +13) + o' + 2p2t1tz] ~ 4p%22,

from which it follows that

2
1212 1 p2(42 4 42 4
16r2p2+4p4=[12+"(1+2)+” +2p2%] . (3.12)
tito
Analogously for the bicentric quadrilateral PQRS we have
o ST T 4 2
161292 + 4p° = [“1“2 te(uitug) e | 2p2} : (3.13)
UUQ
where 71 is the radius of the circumcircle of PQRS.
Thus, if (3.9) is valid, then r; = r. Theorem 3.2 is proved.
O

Now we shall prove that the left-hand side of (3.12) can be written as 4(r? +
p? — 2%)%. For this purpose we shall prove that '

16r2p% + 4p% — 4(r2 + p% - 22)2 = 0 & (1.1),
where (1.1) stands instead of Fuss’ relation for bicentric quadrilaterals. Namely,
starting from the Fuss’ relation

2[)2(1‘2 + 22) - (7‘2 = 22)2
or

20212 + 20222 = ¢t — 27222 4 0
and adding p? + 2r2p? on both sides, we can write

(p* + 2r2p%) + (2r2p% + 2p%22) = (p* + 2r%p%) + (r1 — 2r%2% 4+ 27)
or

pt 4+ 4r2p% = (r2 4 p? - 22)% (3.14)



50 MIRKO RADIC

Thus the equality (3.12) can be written as

2
t313 + p*(t3 + t3) + p*
4(T2+p2_z2): 1t + p~ (13 2) P+2p2 ’
tito
from which it follows that
1313 + p° (4] +13) + p*
it +p(tr+13) +p = 92(r2 — 22). (3.15)

t1to

Since hold (3.9) and (3.10) it follows that for every bicentric quadrilateral whose
incircle is C'; and circumcircle Cy we have the equality

tilg + tats + tats + tat; = 2(r2 = 22). ' (3.16)

Now we shall deduce some other relations.

D
Figure 7

First in connection with Fuss’ relation for bicentric quadrilaterals we shall prove
that

P —tmty =06 (r2 =222 - 2p%2(r2 +22) =0, (3.17)
where

tm =V =22 %t =G +2) -7

See Fig. 7. The quadrilateral ABCD is a bicentric one, where

ti=tm, t2=p, t3=tym, t4=p. (3.18)

As can be seen, t,, and tps are the lengths of the least and the largest tangent
that can be drawn from C3 to C;. By (3.8) it holds
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P2 =tmty. (3.19)
Since p? =12 ¢3,, it can be written
pt=(r? = 2rz 4+ 2% — pA)(r2 + 2rz + 22 — p?)
or
0= (r? —22)%2 — 2p%(r? + 2?),

from which it is clear that holds (3.17).
Also it can be easily proved that

p(tm +tar) =72 — 22, (3.20)

tm . tm
(r—2)2  (r+2)?

(3.21)

bm  _ _tm
PPt Pty
These relations concern bicentric quadrilateral ABC' D shown in Fig.7. So the
relation
(3.20) follows from (3.16) using the expressions given by (3.18). The relation
(3.21) follows from (3.15) taking first t1 = t,,, to = p, and then taking t; = p,
to = tpr. The relation (3.22) follows from (3.21) using expressions for t,, and
Lag.
Now we can prove the following theorem (analogous to Theorem 2.2).

(3.22)

Theorem 3.3. Let 7,z and p be any given positive numbers such that (1.1) is
satisfied and let t,, and tp; be given by

tm =\ (r—2)2=p2, iy =+/(r+2)2%-p2 (3.23)

Then every positive solution (t1,t2,t3,14) € Ri of the equations

t1to + totg + t3tg + tat1 = 2(7‘2 o 22), ti1ty3 = p2, toty = p2 (3.24)

s given by

t1 is a positive number such that t,, < t; < tpy, (3.25)

b = (7‘2 e 22)t1 + \/5 (3 26)
i p? 17 '
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2
el (3.27)

31

”
gy = ) (3.28)

to

where

D = (r2 — 22)%2 — p%(p? + t3)2. (3.29)

Proof. The equation t1t2 + talg + tats + tat1 = 2(r% — 22), using equations t1t3 =
tots = p?, can be written as

(P + )3 — 2(r% = 2%)t1ta + p2 (0% + 11)2 = 0,
from which it follows that

(r2 — 22ty + VD

p? + 13

It is unessential which of (¢2)1 and (t2)2 will be taken for ¢o since

(t2)12 =

2 _ p2(p? + t%) _ (r2 - 22)t1 ~%D efiials
(t2)1  (r2 =22t +VD p?+t2
If we take to = (t2); then 5 = (t2)2, that is, by (3.28), (t2)2 = t4. But if we
take ty = (t2)2 then g = (t2)1. Thus in this case (t2); = t4.

Now, since in the expression of ¢, appears term v D, we have to prove that
D > 0 for every t; such that t,, < t; < tp. Of course, for this purpose it is
sufficient to prove that D = 0 for t; = t,, and t; = t),.

It is easy to show that

(r2 — 2222, — %P2 +12)2 =0« (1.1),
(r? — 2222, — p2(p® +13)2 = 0 & (1.1),

where (1.1) stands instead of Fuss’ relation given by (1.1). So for t; = t,, we
can write

(r2 = 22)22, — 2o + £2,)?
=(r —2)2 [(r2 —22)2 - 2p2(r2 + 22)] =10.
This completes the proof of Theorem 3.3.
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Although ¢; is not given explicitely but by condition t,, < t1 < tar, it is easy
to check that for tq, to, {3, {4 given by (3.25) — (3.28) in the end we get

(r2 — 2%ty + VD i (r? — 22t — VD
t1 3]
Before we state some of the corollaries of the Theorem 3.3 here is an example.

tita +tatg + 3ty + tats = = 2r? - 25).

Example 2. Let r = 3 and z = 1. Using (1.1) we find that p = 1.788854382.
Since  t,, = 0.894427191, tp = 3.577708764 we can take for ¢; any number
from interval

[0.894427191, 3.577708764]. If we take t; = 1.7 then, by (3.26) — (3.28), we have

1o = 3.56997291, (3 = 1.882352941, ¢4 = 0.896365343.
The corresponding quadrilateral is shown in Figure 8.

Figure 8

Notice 2. It is easy to see that proving the Theorem 3.3 we in fact give another
proof of the Poncelet’s closure theorem for bicentric quadrilaterals using very sim-
ple and elementary mathematical facts. Therefore this theorem may be interesting
in itself.

The following corollaries of Theorem 3.3 may also be interesting.

Corollary 3.3.1. The positive solutions of the equation

p2(ty + tg + tg 4 ta)? = (b1 + t2)(t2 + t3)(ts + ta)(ta + t1)
are given by (3.25) — (3.28).

(See (3.3.))
Corollary 3.3.2. For every tangent drawn from Cq to Cy it holds

(r? = 2t > (r* + t%)p. (3.30)
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Proof. 1t follows from D > 0 for t,, <t < tp.

O
Corollary 3.3.3. Instead of t,,, <t < tpr it can be written
Pz r+z
p <t < - p. .
r+z = T r—z A (&31,)
Proof. It holds
(2 =222 =202 + 22 & T — 22— = — -,
Pt 2
(r? =222 = 202(r2 + 22 & V(r +2)2 — p2 = :jj - p.
So from
TR W i z>2 2
(r=2]"=p (T —5) 7
it follows
(r® = 22)? = p*((r — 2)* + (r + 2)?)
(r? —2%)2 = 2p%(r? 4+ 22).
Obviously, the converse is also valid.
O
Corollary 3.3.4. It holds
r? > 2% 4 2p% (3.32)
Proof. Using (3.30) it can be written
pt® ~ (r? = 2"t + p° =0,
(= S
2 3
from which it follows that (r2 — 22)% — 4p* > 0.
O

Corollary 3.3.5. It holds

titg + totz + tgtg + taty > dlmin,

where equality holds if z = 0.
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Proof. From (3.32) it follows that 2(r? — 22) > 4p2. Since holds (3.16) and (3.19),

we can write

bito + tots + taty + taty = 2(r% — 22) > 4p% = At tn.

If z = 0, then 2(r? — 22) = 4p? since 72 = 2p? if z = 0.
O

The following two theorems are in fact some corollaries of the Theorem 3.1 and
the Theorem 3.2.

Theorem 3.4. For every bicentric quadrilateral it holds

A(Llal’2al'3at3) '}I(t17['27L3:L4) :P27 (333)

where A(ty,l2,t3,13) and H (L1,12,13,l4) are arithmetic and harmonic mean of
Ly, ta, 3, Ly Tespectively.

Proof. From Lyl3 = totg = p? it follows that t;lat3ty = p?. Thus the equality

(ty +ta+ L3+ L4)p2 = b1lolz + Lolaly + L3lgly + Latyto

can be written as

4 4 4 1
(31 (3 L3 Ly
or
1 1 1 T =P -
¢ T tntn

Theorem 3.4 is proved.
O

Theorem 3.5. Let ABC D be any bicentric quadrilateral whose incircle is C'y and
circumecircle Co. Then

ef =2(r2 4 2p% — 2?), (3.34)

where e = |AC|, f = |BD|. In other words, for every bicentric quadrilateral
whose incircle is Cy and circumcircle Cy the product of its diagonals is a constant,
i.e., is 2(r2 + 2p% - 22).

Proof. Let a = L1 +to, b =ty + t3, ¢ = L3 + L4, d = lq + {1 be the lengths of the
sides of ABCD. Then by Ptolomy’s theorem

ef =ac+ bd,

and we can write

ac+bd = (11 + t2)(ts + ta) + (t2 + t3)(ta + t1)
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= (t1ta + tot3 + tats + tat1) + 2(t1t3 + toty)
=2(r* - 2%) + 2(o* + p°)
= 2(r? + 2p% - 23).

O
Theorem 3.6. For every ty,12,t3,t4 given by (3.25) — (3.28) it holds
4
D PP+ )0+ t2) = 407 - 222 (3.35)
t=1
Proof. From (3.15) it follows
t3t3 + % (82 + 12) + p* = 2(r? — 2211ty
Analogously we have
£33 + p2(t3 + 3) + p* = 2(r% — 2%)tats,
t3t5 + p2(t3 + t3) + p* = 2(r% — 2%)taty,
t382 + p2(12 + t3) + p* = 2(r? — 22)t4ty,
By adding, since 1l + tatz + tats + tat1 = 2(r? — 22) we get (3.35).
Theorem 3.6 is proved.
|

Theorem 3.7. For every bicentric quadrilateral whose incircle is C1 and circum-
circle Cy it holds
2 titjty ]

ti+1t; + 1tk

where t;, t;,ty are the lengths of any three consecutive tangents.

tit; + titk + tit; > p2, p

Proof. We shall prove more general assertion, namely, that the above inequalities
hold for every tangential quadrilateral which have the same incircle.
First we shall prove the following lemma.

Lemma 1. Let t1,t2,t3,t4 be any given lengths and let pg be the length such that

(b1 + t2 + t3 + ta)pg = titats + tatsts + tatats + tatito.
Then

(t1 + ta + t3)pd > tatats. (3.36)
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Proof. There is a length pp such that

(t1 + to + t3)p2 = titals.
Let A1 A3A3 be corresponding triangle shown in Figure 9a and let B ByB3By
be corresponding tangential quadrilateral shown in Figure 9b. It is easy to sec
that holds (3.36), namely, from Figure 10b it is

(I) [))

Figure 9
clear that only ¢1,t2, (3 (without t4) are not enough for closing. But it is enough
for radius pp. (More about tangential n-gons can be seen in [5].)
Now, Theorem 3.7 can be easily proved. Namely, from

(L1 +to + 13 + l4)p2 = lytats + totglg + L3laly + Lalilo.

it follows that

(t1 + ta + t3)p° — Litats
Lty + tots + tgty — p?
Since, according to above lemma,

lyq

(1,1 +lo + ig)pQ — tytoty > 0
and t4 > 0, it follows that

t1to + tots + f5ty — p= > 0.
Theorem 3.7 is proved.
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Theorem 3.8. Let a.b,c be any given lengths (in fact positive numbers) such that

a—b+c>0. (3.37)

Then there exists unique bicentric quadrilateral ABC D such that

a=|AB|, b=|BC|, ¢=|CD|.

Proof. Since the area of a bicentric quadrilateral whose sides have the lengths
a,b, ¢, d is given by Vabed, it can be written

(s —a)(s —b)(s —c)(s — z) = abez, (3.38)

where

2s=a+b+c+z.
The equation (3.38) can be written as

2t = 2(a® 4+ b% + ¢?)2? 4 8abez + at + b* + ¢ = 2(ab? + b2c2 + c2a?) = 0.

Its solutions are
1 =—a+b+c, zo=a—b+ec, zz3=a+b=c T4 =—a—b—c.
Accordingly, if one of the following three conditions

—a+b+c>0, a—b+c>0, a+b—c>0

is fulfilled, say the condition (3.37), then there is unique bicentric quadrilateral
described in Theorem (3.8).

Theorem (3.8) is proved.
O
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