
Math. Maced.
Vol. 6 (2008)
15-19

ON GENERALIZATION OF THE HERMITE-HADAMARD
INEQUALITY III

MATLOOB ANWAR∗) AND J. PEČARIĆ∗∗)
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Abstract. Generalized form of Hermite-Hadamard inequality for (2n)-convex
and (2n-1)-concave or convex Lebesgue integrable functions are obtained
through generalization of Taylor’s Formula.

1. Introduction and Preliminaries

The classical Hermite-Hadamard inequality gives us an estimate, from below and from
above, of the mean value of a convex function f : [a, b] → R (see [4], pp. 137.):

f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

2
. (1)

In [2] S. S. Dragomir and A. Mcandrew gave the following generalization of (1):

Theorem 1. Assume that f : [a, b] −→ R is monotonic and convex on (a, b). Then we
have:

1

2

(
f(a) + f(b)

2
+ f

(
a + b

2

))
− 1

b− a

∫ b

a

f(x)dx

≥
∣∣∣∣
1

4
[f(b)− f(a)] +

1

b− a

∫ b

a

sgn

(
a + b

2
− x

)
f(x)dx

∣∣∣∣ .

In [3] Sabir Hussain and Matloob Anwar gave the following generalization of Theorem
1:
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Theorem 2. Assume that f : [a, b] −→ R is monotone on [a, b] and convex on (a, b).
Then

1

2

[
f(x) +

f(b)(b− x) + f(a)(x− a)

b− a

]
− 1

b− a

∫ b

a

f(y)dy

≥
∣∣∣∣

1

b− a

∫ b

a

sgn(x− y)f(y)dy − 1

2(b− a)
[f(x)(a + b− 2x)+

+(a− x)f(a) + (b− x)f(b)]|
for all x ∈ (a, b).

In this paper we will give generalizations of Theorem 1 and Theorem 2 for (2n)-
convex functions. Let us note that using Taylor’s Formula in [1] Matloob Anwar and J.
Pečarić proved generalizations of Theorem 2.1 and Theorem 2.2 of [2] and Theorem 1
and Theorem 2 of [3] for (2n)-convex functions i.e they proved the following results:

Theorem 3. Assume that f : [a, b] → R is a continuous and (2n)-convex function. Then

1

(b− a)

∫ b

a

f(y)dy − (b− a)f(x)−
2n−1∑

1

(b− y)k+1 − (a− x)k+1

(k + 1)!(b− a)
f (k)(x)

≥
∣∣∣∣∣

1

(b− a)

∫ b

a

∣∣∣∣∣f(y)− f(x)−
2n−2∑

1

(y − x)k

k!
f (k)(x)

∣∣∣∣∣ dy−

−
∣∣∣f (2n−1)(x)

∣∣∣ (a− x)2n + (b− x)2n

(2n)!(b− a)

∣∣∣∣
for all x ∈ (a, b).

Theorem 4. Assume that f : [a, b] → R is a continuous and (2n)-convex function. Then

f(x)− 2n

(b− a)

∫ b

a

f(y)dy −
2n−1∑

1

2n− k

k!(b− a)
[(x− b)kf (k−1)(b)− (x− a)kf (k−1)(a)]

≥
∣∣∣∣∣

1

b− a

∫ b

a

∣∣∣∣∣f(x)− f(y)−
2n−2∑

1

(x− y)k

k!
f (k)(y)

∣∣∣∣∣ dy−

− 1

b− a

∫ b

a

∣∣∣∣
(x− y)2n−1

(2n− 1)!
f (2n−1)(y)

∣∣∣∣ dy

∣∣∣∣ .

Let f be a real valued function defined on [a, b]. A k-th order divided difference of f
at distinct points x0, x1, ..., xn ∈ [a, b] may be defined recursively by(see [1] p-14):

[xi]f = f(xi) i = 0, 1, ..., k

and

[x0, x1, ...., xk]f =
[x1, ...., xk]f − [x0, x1, ...., xk−1]f

xk − x0
.

The value of [x0, x1, ...., xk]f is independent of the order of the points x0, x1, ...., xk.
A function f : [a, b] −→ R is said to be (n)-convex, n ≥ 0 on [a, b] if and only if for all
choices of (n+1) distinct points in [a, b],

[x0, x1, ...., xn]f ≥ 0.

Letting
Gk(x) = [c, c, ..., c, x]f =
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=

{
(x− c)−k

(
f(x)− f(c)−∑k−1

j=1
f(j)(c)

j!
(x− c)j

)
, for x 6= c;

1
k!

f (k)(c), for x = c.
(2)

The following result for the function Gk(x) is valid(see [4], p-16).

Theorem 5. If f is an (n)-convex on [a, b] for n ≥ 2, then for every c ∈ (a, b)

(1) the function Gn−1 is increasing on [a, b];
(2) the function Gk(n ≥ 3, k ∈ {1, 2, ..., n− 2}) is (n− k)-convex on [a,b].

From this theorem we have the following lemma.

Lemma 1. Let f be as in Theorem 4 then we have

(
f(x)− f(c)−∑k−1

j=1
f(j)(c)

j!
(x− c)j

)
≥ 0, x ≥ c

≤ 0, x ≤ c.
(3)

Lemma 2. Let f be integrable on (a, b) and k time differentiable function then the
following is valid

∫ b

a

(x− y)kf (k)(y)dy =

=

k−1∑
i=0

k!

(i + 1)!

(
(x− b)i+1f (i)(b)− (x− a)i+1f (i)(a)

)
+ k!

∫ b

a

f(y)dy. (4)

2. Main results

We have the following generalization of Theorem 2.

Theorem 6. Assume that f : [a, b] −→ R is a (2n − 1)-times differentiable and f is
(2n− 1) and (2n)-convex function(or (2n− 1)-concave and (2n)-convex function). Then

f(x)− 2n

(b− a)

∫ b

a

f(y)dy −
2n−1∑

1

2n− k

k!(b− a)
[(x− b)kf (k−1)(b)− (x− a)kf (k−1)(a)]

≥ 1

b− a

∣∣∣∣∣(2x− a− b)f(x) +

2n−2∑
i=0

1

(i + 1)!

(
(x− a)i+1f (i)(a) + (x− b)i+1f (i)(b)

)

+

2n−2∑

k=1

k−1∑
j=0

1

(j + 1)!

(
(x− a)j+1f (j)(a) + (x− b)j+1f (j)(b)

)
−

−(2n− 3)

∫ b

a

sgn(x− y)f(y)dy

∣∣∣∣ .
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Proof. First assume that f is (2n)-convex and (2n-1)-convex.

∫ b

a

∣∣∣∣∣f(x)− f(y)−
2n−2∑

1

(x− y)k

k!
f (k)(y)

∣∣∣∣∣ dy =

=

∫ x

a

∣∣∣∣∣f(x)− f(y)−
2n−2∑

1

(x− y)k

k!
f (k)(y)

∣∣∣∣∣ dy+

+

∫ b

x

∣∣∣∣∣f(x)− f(y)−
2n−2∑

k=1

(x− y)k

k!
f (k)(y)

∣∣∣∣∣ dy

(using Lemma 1 we have)

=

∫ x

a

(
f(x)− f(y)−

2n−2∑
1

(x− y)k

k!
f (k)(y)

)
dy−

−
∫ b

x

(
f(x)− f(y)−

2n−2∑
1

(x− y)k

k!
f (k)(y)

)
dy

(by using Lemma 2 we get)

= (2x− a− b)f(x)+

+

2n−2∑

k=1

k−1∑
j=0

1

(j + 1)!

(
(x− a)j+1f (j)(a) + (x− b)j+1f (j)(b)

)

−(2n− 2)

∫ b

a

sgn(x− y)f(y)dy. (5)

∫ b

a

∣∣∣∣
(x− y)2n−1

(2n− 1)!
f (2n−1)(y)

∣∣∣∣ dy =

=

∫ x

a

∣∣∣∣
(x− y)2n−1

(2n− 1)!
f (2n−1)(y)

∣∣∣∣ dy +

∫ b

x

∣∣∣∣
(x− y)2n−1

(2n− 1)!
f (2n−1)(y)

∣∣∣∣ dy.

( f is (2n− 1)-convex function)

=

∫ x

a

(
(x− y)2n−1

(2n− 1)!
f (2n−1)(y)

)
dy −

∫ b

x

(
(x− y)2n−1

(2n− 1)!
f (2n−1)(y)

)
dy.

( using Lemma 2 we get)

= −
(

2n−2∑
i=0

1

(i + 1)!

(
(x− a)i+1f (i)(a) + (x− b)i+1f (i)(b)

))
+

+

∫ b

a

sgn(x− y)f(y)dy. (6)

By substituting (5) and (6) in Theorem 3 we get
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f(x)− 2n

(b− a)

∫ b

a

f(y)dy −
2n−1∑

1

2n− k

k!(b− a)
[(x− b)kf (k−1)(b)− (x− a)kf (k−1)(a)]

≥ 1

b− a

∣∣∣∣∣(2x− a− b)f(x) +

2n−2∑
i=0

1

(i + 1)!

(
(x− a)i+1f (i)(a) + (x− b)i+1f (i)(b)

)

+

2n−2∑

k=1

k−1∑
j=0

1

(j + 1)!

(
(x− a)j+1f (j)(a) + (x− b)j+1f (j)(b)

)
−

−(2n− 3)

∫ b

a

sgn(x− y)f(y)dy

∣∣∣∣ .

In similar way we can prove for (2n)-convex and (2n-1)-concave functions.

Corollary 1. Assume that f : [a, b] −→ R is a (2n − 1)-times differentiable and f is
(2n− 1) and (2n)-convex function(or (2n− 1)-concave and (2n)-convex function). Then

f

(
a + b

2

)
− 2n

(b− a)

∫ b

a

f(y)dy+

+

2n−1∑
1

(2n− k)(b− a)k−1

2kk!
[f (k−1)(a)− (−1)kf (k−1)(b)]

≥
∣∣∣∣∣
2n−2∑
i=0

(b− a)i

2i+1(i + 1)!

(
f (i)(a)− (−1)if (i)(b)

)
+

2n−2∑

k=1

k−1∑
j=0

(b− a)j

2j+1(j + 1)!

(
f (j)(a)− (−1)jf (j)(b)

)
−

− (2n− 3)

b− a

∫ b

a

sgn(
a + b

2
− y)f(y)dy

∣∣∣∣ . (7)

Proof. Substituting x = a+b
2

in Theorem 6 we get (7).

Remark 1. Corollary 1 is the generalization of Theorem 1 for (2n)-convex functions.
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