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AN EXISTENCE THEOREM CONCERNING ORDINARY

SHAPE OF CARTESIAN PRODUCTS

SIBE MARDEŠIĆ

Abstract. The paper is devoted to the question when is the Cartesian prod-
uct X×P of a compact metric space X and a polyhedron P a product in the

shape category of topological spaces. The question consists of two parts. The
existence part, which asks whether, for every topological space Z, every shape
morphism F : Z → X and every homotopy class of mappings [g] : Z → P ,
there exists a shape morphism H : Z → X ×P , whose compositions with the

canonical projections of X×P equal F and [g], respectively. The uniqueness
part asks whether H is unique. It is known that, in general, the uniqueness
part does not hold even when Z is a polyhedron. The main result of the

paper asserts that the existence part always holds. The proof is based on an
analogous result for strong shape.

1. Introduction

In an arbitrary category the (direct) product of two objects is well defined. It
may not exist, but if it does, it is unique up to natural isomorphism. It is well
known that in the category of topological spaces Top the product of two spaces
X and Y exists and consists of the Cartesian product X × Y and of the canonical
projections πX : X × Y → X and πY : X × Y → Y . Similarly, in the homotopy
category of topological spaces H the Cartesian product X × Y and the homotopy
classes [πX ], [πY ] of the canonical projections πX , πY form the product of X and
Y . Since shape is a modification of homotopy, it is natural to ask the following
questions.

Question 1. Does every pair of topological spaces X,Y admit a product in the
shape category Sh?

Question 2. Is the Cartesian product X × Y of a pair of spaces X,Y a product
in the shape category Sh?

When we say that X×Y is a product in Sh we mean that, for every topological
space Z and shape morphisms F : Z → X and G : Z → Y , there exists a unique
shape morphism H : Z → X × Y such that S[πX ]H = F and S[πY ]H = G. Here
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S : H → Sh denotes the shape functor, which keeps objects (spaces) fixed and
assigns to every homotopy class of mappings the corresponding shape morphism
(see[7], 8.2).

In the case when both spaces X and Y are compact Hausdorff spaces, it is well
known that the answer to Question 2 is positive [3]. J. Dydak and S. Mardešić [1]
showed that the Cartesian product of a dyadic solenoid and the wedge (pointed
sum) of a sequence of copies of the 1-sphere S1 is not a product in Sh.

In 1972 Y. Kodama proved that the Cartesian product of an FANR and a
paracompact space is a product in Sh ([4], Theorem 3′). An open problem of
Kodama, raised in 1977 [4], asks whether the Cartesian product of a movable
metric compactum X and a metric space Y is a product in Sh. Even in the simple
case, when X is the Hawaiian earring and Y is the wedge of a sequence of copies
of the 1-sphere S1, this author does not know if X × Y is a product in Sh.

Question 1 is wide open. In the present paper we consider Question 2 in the
important case when X is a compact metric space and Y = P is a (non-compact)
polyhedron (CW-topology). The universal property characterizing products in a
category consists of an existence part and a uniqueness part. A positive answer
to Question 2 for a compact metric space X and a polyhedron P (CW-topology)
is just the assertion that the following statements (ES)Z and (US)Z are true, for
every topological space Z.

(ES)Z For every shape morphism F : Z → X and every homotopy class of
mappings [g] : Z → P , there exists a shape morphism H : Z → X × P such that
S[πX ]H = F and S[πP ]H = S[g].

(US)Z If Hi : Z → X × P , i = 1, 2, are two shape morphisms such that
S[πX ]H1 = S[πX ]H2 and S[πP ]H1 = S[πP ]H2, then H1 = H2.

The results of this paper refer to the existence property (ES)Z (see Theorem 1).
Unfortunately, up to now, the author was unable to obtain significant affirmative
results concerning the uniqueness property (US)Z . According to [1], if X is the
dyadic solenoid and P is the pointed union of a sequence of 1-spheres, (US)P is
false.

The main result of the paper is the following theorem.

Theorem 1. Let X be a compact metric space and let P be a polyhedron. Then
the existence condition (ES)Z holds, for every topological space Z.

Denote by S : H → SSh the strong shape functor from the homotopy category
H to the category of strong shape of topological spaces SSh. This functor keeps
objects (spaces) fixed and associates with every homotopy class of mappings the
corresponding strong shape morphism (see[7], 8.2). We will derive Theorem 1 from
the following recently proved theorem on strong shape (see [8], Theorem 2).

Theorem 2. Let X be a compact metric space and let P be a polyhedron. Then,
for every topological space Z, the following condition holds.
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(ESS)Z For every strong shape morphism F : Z → X and every homotopy class
of mappings [g] : Z → P , there exists a strong shape morphism H : Z → X × P
such that S[πX ]H = F and S[πP ]H = S[g].

Denote by E : SSh → Sh the forgetful functor, which keeps spaces fixed and
maps strong shape morphisms H : Z → X to the corresponding shape morphism
H : Z → X by “forgetting” the richer structure of strong shape (see 8.2 in [7]). To
prove Theorem 1, we also need the following result.

Theorem 3. Every shape morphism F : Z → X of a topological space Z to a
compact metric space X admits a strong shape morphism F : Z → X such that
E(F ) = F .

Remark 1. If Z is a compact metric space, the assertion of Theorem 3 is contained
in [2], Theorem 4.3.

Question 3. Is Theorem 3 valid for compact Hausdorff spaces X?

Proof of Theorem 1. Let X be a compact metric space and P a polyhedron.
Let F : Z → X be a shape morphism and let [g] : Z → P be a homotopy class
of mappings. We must exhibit a shape morphism H : Z → X × P such that
S[πX ]H = F and S[πP ]H = S[g]. By Theorem 3, there exists a strong shape
morphism F : Z → X such that E(F ) = F . By Theorem 2, there exists a strong
shape morphism H : Z → X × P such that

S[πX ]H = F , S[πP ]H = S[g]. (1)

Put H = E(H) : Z → X × P . Application of the forgetful functor E to (1) yields
the desired relations S[πX ]H = F and S[πP ]H = S[g], because ES = S (see
Theorem 8.9 in [7]). �

In Section 2 we recall the definitions of homotopy mappings and coherent ho-
motopy mappings (shorter, coherent mappigs) and their relations to shape mor-
phisms and strong shape morphisms, respectively. This will enable us to reduce
the proof of Theorem 3 to a result on homotopy mappings and coherent mappings
(see Lemma 1). In Section 3 we prove Lemma 1 and thus, complete the proof of
Theorem 1.

2. Homotopy mappings and coherent mappings

2.1 Let X = (Xi, pii′ ,N) be an inverse sequence of compact polyhedra. Recall
that a mapping f : Z → X from a topological space Z to X is a sequence of
mappings fi : Z → Xi, i ∈ N, such that

fi = pii′fi′ , i ≤ i′. (2)

If in (2) equality = is replace by homotopy ≃, one obtains the notion of a homotopy
mapping, i.e., a homotopy mapping f : Z → X is a sequence of mappings fi : Z →
Xi, i ∈ N, such that

fi ≃ pii′fi′ , i ≤ i′. (3)

Clearly, every mapping f : Z → X is a homotopy mapping.
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A coherent mapping f : Z → X consists of a collection of mappings fi =
fi0...in : Z×∆n → Xi0 , where ∆

n = [e0, . . . , en] ⊆ Rn+1 is the standard n-simplex
and i = (i0, . . . , in) is a multiindex in N of length |i| = n ≥ 0, i.e., i is an increasing
sequence i0 ≤ . . . ≤ in of n+ 1 elements from N. One requires that the following
two coherence conditions be fulfilled. The boundary condition:

fi(z, djt) =

{
pı0i1fd0i(z, t), j = 0
fdji(z, t), 1 ≤ j ≤ n.

, (4)

where dj : ∆
n−1 → ∆n are the standard boundary operators and dj is the operator

which omits ij from i = (i0, . . . , in), i.e., d
ji = (i0, . . . , îj , . . . , in). Condition (4)

makes sense only when n > 0.

The degeneracy condition:

fi(z, sjt) = fsji(z, t), 0 ≤ j ≤ n, (5)

where sj : ∆
n+1 → ∆n are the standard degeneracy operators and sj is the oper-

ator which repeats ij , i.e., s
ji = (i0, . . . , ij , ij , . . . , in).

Coherent mappings can be viewed as generalizations of mappings, because with
every mapping f : Z → X one can associate a coherent mapping C(f) : Z → X
which consists of the mappings fi : Z ×∆n → Xi0 , where fi(z, t) = fi0(z).

2.2. Two homotopy mappings f ,f ′ : Z → X, given by mappings fi, f
′
i , i ∈ N,

are homotopic, f ≃ f ′, provided for every i ∈ N,

fi ≃ f ′
i , (6)

Two coherent mappings f ,f ′ : Z → X, given by mappings fi, f
′
i are homo-

topic, f ≃ f ′, provided there exists a coherent mapping F : Z × I → X, given
by mappings Fi : Z × I × ∆n → Xi0 , which satisfy the corresponding coherence
conditions and

Fi(z, 0, t) = fi(z, t), Fi(z, 1, t) = f ′
i(z, t). (7)

The homotopy relation≃ for homotopy mappings and coherent mappings f : Z →
X are equivalence relations and the corresponding homotopy classes [f ] of f are
well defined.

Recall that questions concerning shape and strong shape reduce to questions
concerning homotopy classes of homotopy mappings and homotopy classes of co-
herent mappings using the following facts, which are immediate consequences
of the definition of shape morphisms and strong shape morphisms. If X =
(Xi, pii′ ,N) is an inverse sequence of compact polyhedra with limit X, then there
exists a bijection between the set Sh(Z,X) of all shape morphisms F : Z → X
and the set of all homotopy classes [f ] of homotopy mappings f : Z → X (see
[9], I,§2, Theorem 5). We say that F and [f ] are associated with each other.
Analogously, there is a bijection between the set SSh(Z,X) of all strong shape
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morphisms F : Z → X and the set of all homotopy classes [f ] of coherent map-
pings f : Z → X (see [7], 8.2). We say that F and [f ] are associated with each
other.

2.3. Denote by E the forgetful functor, which keeps inverse sequences fixed and
maps coherent mappings to homotopy mappings by “forgetting” higher homotopies
(see [7], 1.4). The following lemma is used in the proof of Theorem 3.

Lemma 1. Let X = (Xi, pii′ ,N) be an inverse sequence of compact polyhedra,
let Z be a topological space and let [f ] : Z → X be a homotopy class of homotopy
mappings. Then there exists a homotopy class of coherent mappings [f ] : Z → X
such that E[f ] = [f ].

Proof of Theorem 3. Let F : Z → X be a shape morphism. Choose an inverse
sequence X = (Xi, pii′ ,N) of compact polyhedra such that X = limX. With F
is associated a homotopy class of homotopy mappings [f ] : Z → X. By Lemma
1, there exists a homotopy class of coherent mappings [f ] : Z → X such that
E[f ] = [f ]. With [f ] is associated a strong shape morphism F : Z → X. By
the definition of E (see [7],page 161), E(F ) is the shape morphism associated with
E[f ]. Since E[f ] = [f ] and F is also associated with [f ], it follows that E(F ) = F .
Consequently, the strong shape morphism F has the property required by Theorem
3. �

3. Proof of Lemma 1

3.1. Recall that the concatenation F ∗G : Z × I → X of homotopies F,G : Z ×
I → X is defined by the following formula.

F ∗G(z, t) =

{
F (z, 2t), 0 ≤ t ≤ 1/2,
G(z, 2t− 1), 1/2 ≤ t ≤ 1.

(8)

Recall that F ∗G is well defined, provided F (z, 1) = G(z, 0). Also recall that, for
homotopies F, F ′ : Z × I → X such that F (z, 0) = F ′(z, 0) and F (z, 1) = F ′(z, 1),
for z ∈ Z, the expression F ≃ F ′ (rel ∂I) means that there is a 2-homotopy
H : Z × I × I → X, which connects F to F ′, i.e., H(z, t, 0) = F (z, t), H(z, t, 1) =
F ′(z, t) and H(z, 0, s) and H(z, 1, s) do not depend on s ∈ I.

To prove Lemma 1, we need three elementary facts on concatenations of ho-
motopies, analogous to facts used in defining the fundamental group. They are
stated in the following lemma.

Lemma 2. (i) (The unit law). If F : Z×I → X connects mappings f, f ′ : Z → X,
then

F ≃ f ∗ F (rel ∂I); F ≃ F ∗ f ′ (rel ∂I). (9)

(ii) (The associativity law). If F, F ′, F ′′ : Z × I → X are homotopies, such that
F (z, 1) = F ′(z, 0) and F ′(z, 1) = F ′′′(z, 0), for z ∈ Z, then

(F ∗ F ′) ∗ F ′′ ≃ F ∗ (F ′ ∗ F ′′) (rel ∂I). (10)
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(iii) (The homotopy invariance). If F, F ′, G,G′ : Z × I → X are homotopies
such that

F ≃ F ′ (rel ∂I), G ≃ G′ (rel ∂I), (11)

then also
F ∗G ≃ F ′ ∗G′ (rel ∂I). (12)

In (i) f ∗ F denotes the concatenation of the constant homotopy (z, t) 7→ f(z)
with F ; an analogous interpretation applies to F ∗ f ′.

Proof. (i) the 2-order homotopy H : Z × I × I → X, given by

H(z, t, s) =

{
f(z), 0 ≤ t ≤ s

2 ,
F (z, 2t−s

2−s ),
s
2 ≤ t ≤ 1,

(13)

has the property that H(z, t, 0) = F (z, t), H(z, t, 1) = (f ∗ F )(z, t), H(z, 0, s) =
f(z) and H(z, 1, s) = f ′(z), which shows that the first part of (9) holds. Similarly,
the 2-order homotopy H ′ : Z × I × I → X, given by

H ′(z, t, s) =

{
F (z, 2t

2−s ), 0 ≤ t ≤ 2−s
2 ,

f ′(z), 2−s
2 ≤ t ≤ 1,

(14)

has the property that H ′(z, t, 0) = F (z, t), H ′(z, t, 1) = (F ∗ f ′)(z, t). Moreover,
H ′(z, 0, s) = f(z) and H ′(z, 1, s) = f ′(z), which shows that also the second part
of (9) holds.

(ii) The 2-order homotopy H : Z × I × I → X, given by

H(z, t, s) =


F (z, 4t

s+1 ), 0 ≤ t ≤ s+1
4 ,

F ′(z, 4t− s− 1), s+1
4 ≤ t ≤ s+2

4 ,
F ′′(z, 4t−s−2

2−s ), s+2
4 ≤ t ≤ 1,

(15)

has the property that H(z, t, 0) = ((F ∗ F ′) ∗ F ′′)(z, t), H(z, t, 1) = (F ∗ (F ′ ∗
F ′′))(z, t), H(z, 0, s) = F (z, 0) and H(z, 1, s) = F ′′(z, 1), which shows that (10)
holds.

(iii). Let H,H ′ : Z× I× I → X be homotopies rel (∂I), which realize (11), i.e.,

H(z, t, 0) = F (z, t), H(z, t, 1) = F ′(z, t),
H(z, 0, s) = f(z), H(z, 1, s) = f ′(z).

(16)

H ′(z, t, 0) = G(z, t), H ′(z, t, 1) = G′(z, t),
H ′(z, 0, s) = f ′(z), H ′(z, 1, s) = f ′′(z).

(17)

Then K : Z × I × I → X, given by

K(z, t, s) =

{
H(z, 2t, s), 0 ≤ t ≤ 1/2,
H ′(z, 2t− 1, s), 1/2 ≤ t ≤ 1,

(18)

is well defined, because H(z, 1, s) = f ′(z) = H ′(z, 0, s). Moreover, K realizes (12),
becauseK(z, t, 0) = (F ∗G)(z, t), K(z, t, 1) = (F ∗G)(z, t), K(z, 0, s) = HK(z, 0, s)
and K(z, 1, s) = H ′(z, 1, s). �

3.2. Proof of Lemma 1. The coherent category of height 1, here denoted
by CH(1), was first defined by Yu. T. Lisitsa in [5] (see [7], 3.1). It occupies
an intermediate position between the categories CH and pro-H. Then in [6] two
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forgetful functors E(1) : CH→CH(1) and E(10) : CH(1)→pro-H were defined and it
was proved that the restriction of E(1) to inverse sequences is an isomorphism
of categories ([6], Theorem 1, also see [7], Theorem 3.7). In particular, if X =

(Xi, pii′ ,N) is an inverse sequence of spaces and [f (1)] : Z → X is a morphism of

CH(1), then there exists a morphism [f ] : Z → X of CH such that E(1)[f ] = [f (1)].

Since E(10)E(1) = E, it suffices to find such an f (1) that E(10)(f (1)) = f , because

then [f ] will have the desired property that E[f ] = E(10)(E(1)[f ]) = E(10)[f (1)] =

[E(10)(f (1))] = [f ].

Recall that a homotopy mapping f : Z → X consists of a sequence of mappings
fi : Z → Xi, i ∈ N, such that fi ≃ pii′fi′ , for i ≤ i′. By definition and [7], Lemma

3.3, a 1-coherent mapping f (1) : Z → X consists of mappings fi : Z → Xi, i ∈ N,
and homotopies fii′ : Z × I → Xi, i ≤ i′, which connect fi to pii′fi′ . Moreover,
one requires that fii(z, t) = fi(z) and

fii′ ∗ pii′fi′i′′ ≃ fii′′ (rel ∂I), (19)

for i ≤ i′ ≤ i′′. Note that the left side of (19) is well defined, because fii′(z, 1) =
pii′fi′(z) = pii′fi′i′′(z, 0).

By definition, E(10)(f (1)) is the homotopy mapping obtained by “forgetting”
the homotopies fii′ . Consequently, to complete the proof of Lemma 1, it suffices
to exhibit homotopies fii′ : Z × I → Xi, i ≤ i′, such that fii′(z, 0) = fi(z),
fii′(z, 1) = pii′fi(z), fii(z, t) = fi(z) and that (19) holds.

We define the homotopies fii′ : Z×I → Xi, i ≤ i′. by induction on j = i′−i ≥ 0.
If j = 0, i.e., i = i′, we put fii = fi, i.e., fii(z, t) = fi(z). If j = 1, i.e., i′ = i+1, we
choose homotopies fii′ = fi,i+1 : Z×I → Xi in such a way that fi,i+1(z, 0) = fi(z)
and fi,i+1(z, 1) = pi,i+1fi+1(z). If we have already defined fii′ , where i

′−i = j ≥ 1,
we define fi,i′+1 as the concatenation fi,i′+1 = fii′ ∗ pii′fi′,i′+1, i.e., the mapping
fi,i′+1 is given by

fi,i′+1(z, t) =

{
fii′(z, 2t), 0 ≤ t ≤ 1/2,
pii′fi′,i′+1(z, 2t− 1), 1/2 ≤ t ≤ 1.

(20)

Note that fi,i′+1(z, t) is well defined by (9), because fii′(z, 1) = pii′fi′+1(z) =
pii′fi′,i′+1(z, 0). By (20) and the induction hypothesis, fi,i′+1(z, 0) = fii′(z, 0)
= fi(z). Also fi,i′+1(z, 1) = pii′fi′,i′+1(z, 1) and fi′,i′+1(z, 1) = pi′,i′+1fi′+1(z).
Consequently, fi,i′+1(z, 1) = pii′pi′,i′+1fi′+1(z) = pi,i′+1fi′+1(z). It remains to
verify (19).

If i = i′ = i′′, both sides of (9) equal fi and the assertion holds. If i = i′ < i′′,
then fii′ ∗ pii′fi′i′′ = fi ∗ fii′′ and the assertion follows from the first part of (9).
If i < i′ = i′′, then fii′ ∗ pii′fi′i′′ = fii′ ∗ pii′fi′ and the assertion follows from the
second part of (9).

It remains to prove the assertion in the case when i < i′ < i′′. This is done by
induction on l = i′′ − i′ ≥ 1. If l = 1, i.e., i′′ = i′ + 1, then, by definition, fii′′ =
fi,i′+1 = fii′ ∗ pii′fi′i′′ and (9) holds. Now assume that we have proved (9), for a
given l ≥ 1. Let us prove it for l + 1. By the inductive assumption, F = fi,i′+l ≃
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F ′ = fii′ ∗ pii′fi′,i′+l (rel ∂I). Putting G = pi,i′+lfi′+l,i′+l+1 and using (12), we
see that fi,i′+l ∗ pi,i′+lfi′+l,i′+l+1 ≃ (fii′ ∗ pii′fi′,i′+l) ∗ pi,i′+lfi′+l,i′+l+1 (rel ∂I).
However, by definition, fii′′ = fi,i′+l+1 = fi,i′+l ∗pi,i′+lfi′+l,i′+l+1 and thus, fii′′ ≃
(fii′∗pii′fi′,i′+l)∗pi,i′+lfi′+l,i′+l+1 (rel ∂I). Concatenation with G was possible, be-
cause fi,i′+l(z, 1) = pi,i′+lfi′+l(z) and also pi,i′+lfi′+l,i′+l+1(z, 0) = pi,i′+lfi′+l(z).
Application of the associativity law (10) shows that fii′′ ≃ fii′ ∗ (pii′fi′,i′+l ∗
pi,i′+lfi′+l,i′+l+1) (rel ∂I). Since pi,i′+l = pii′pi′,i′+l, one readily concludes that
pii′fi′,i′+l ∗ pi,i′+lfi′+l,i′+l+1 = pii′(fi′,i′+l ∗ pi′,i′+lfi′+l,i′+l+1) and thus, one ob-
tains the relation fii′′ ≃ fii′ ∗pii′(fi′,i′+l ∗pi′,i′+lfi′+l,i′+l+1) (rel ∂I). However, the
expression in the parenthesis equals, by definition, fi′,i′+l+1 = fi′i′′ and we have
obtained the desired relation fii′′ ≃ fii′ ∗ pii′fi′i′′ (rel ∂I). �
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EDNA TEOREMA ZA EGZISTENCIJA VO VRSKA SO
STANDARDEN OBLIK NA PROIZVOD

Sibe Mardexiḱ

R e z i m e

Vo ovoj trud se razgleduva praxaǌeto koga direktniot proizvod X×P
na kompakten metriqki prostor X i poliedar P e proizvod vo kategori-
jata na oblik na topoloxki prostori.
Praxaǌeto se sostoi od dva dela:
Delot za egzistencija, t.e. dali za sekoj topoloxki prostor Z i sekoj
morfizam na oblik F : Z → X i sekoja klasa na homotopija na pres-
likuvaǌa [g] : Z → P postoi morfizam na oblik H : Z → X × P qii
xto kompozicii so kanoniqnite proekcii na X×P se ednakvi na F i [g],
soodvetno.
Delot za edinstvenost se odnesuva na praxaǌeto dali H e edinstveno.

Poznato e deka, vo opxt sluqaj, delot za edinstvenost ne va�i duri
i koga Z e poliedar.

Glavniot rezultat vo ovoj trud e dokazot deka delot za egzistencija
sekogax va�i.

Dokazot se bazira na analogen rezultat za jak oblik.

Department of Mathematics
University of Zagreb

P.O.Box 335
10 002 Zagreb
Croatia
E-mail address: smardes@math.hr


