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Abstract. The aim of the talk is to examine a vector valued semigroup
automata as a discrete random process. There will be established a relation-
ship between a transition function from one to other state of vector valued
semigroup automata and an appropriate matrix probabilities for transition
from one to other state. Then, using this matrix probabilities the proper-
ties of vector valued semigroup automata will be examined. Also it will be
discussed the ergodicity on the set of states over the matrix probability with
their properties and the probability of all states after n-transitions which

forms a matrix of final probabilities.

1. Introduction

The notion of semigroup automaton is introduced in [1] and [2]. Here we recall
the necessary definitions and known results on vector valued semigroup automata.

From now on, let n, k be positive integers, such that 1 ≤ k ≤ n.
Let B be a nonempty set and let { } : Bn+k → Bn be a mapping (Bi denotes

the i-th Cartesian power of B). Then we say that (B, { }) is (n+ k, n)-groupoid
or vector valued groupoid. If { }((x1, ..., xn+k)) = (y1, ..., yn), then we denote

{xn+k
1 } = (yn1 ); the symbol zji will denote the sequence zizi+1...zj when i ≤ j, and

empty sequence when i > j.

An (n+k, n)-groupoid (B, { }) is called (n+k, n)-semigroup or vector valued

semigroup iff {{xn+k
1 }xn+2k

n+k+1} = {xj
1{x

j+n+k
j+1 }xn+2k

j+n+k+1} for every 1 ≤ j ≤ k.

Key words and phrases. vector valued semigroup automata, random process, matrix of
probability.
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Example 1.1. Let B = {a, b}, n = 2, k = 1 and
let { } : B3 → B2 be given by the Table 1.1.
Than (B, { }) is a (3, 2)-semigroup.

This example of (3, 2)-semigroup
is generated by an appropriate computer program.

{ }
a a a (b,a)
a a b (a,a)
a b a (a,a)
a b b (b,a)
b a a (a,a)
b a b (b,a)
b b a (b,a)
b b b (a,a)
Table 1.1

A semigroup automaton is a triple (S, (B, •), f), where S is a set, (B, •) is
a semigroup, and f : S ×B → S is a map satisfying

f(f(s, x), y) = f(s, x • y) for every s ∈ S, x, y ∈ B.

The set S is called the set of states of (S, (B, •), f) and f is called the transition

function of (S, (B, •), f).
An (n+k, n)-semigroup automaton or vector valued semigroup automa-

ton (VVSA) is a triple (S, (B, { }), f), where S is a set, (B, { }) is (n + k, n)-
semigroup, and f : S × Bn → S × Bn−k is a map satisfying f(f(s, xn

1 ), y
k
1 ) =

f(s, {xn
1y

k
1}) for every s ∈ S, x1, ..., xn, y1, ..., yk ∈ B.

The set S is called set of states of (S, (B, { }), f) and f is called transition

function of (S, (B, { }), f).
Example 1.1’. Let (B, { }) be (3, 2)-semigroup from Example 1.1 and S =
{s0, s1, s2}. The (3, 2)-semigroup automaton (S, (B, { }), f)is a set S together
with a mapping f : S × B2 → S × B satisfying f(f(s, x2

1), x3) = f(s, {x3
1}) for

every s ∈ S, x1, x2, x3 ∈ B.
This (3, 2)-semigroup automaton is given by the Table 1.1’ and the Figure 1.

f (a, a) (a, b) (b, a) (b,b)
s0 (s1, b) (s2, b) (s2, b) (s1, b)
s1 (s1, b) (s0, a) (s2, b) (s1, b)
s2 (s2, b) (s0, b) (s1, b) (s2, b)

Table 1.1′

This example of (3, 2)-semigroup automaton is generated by computer.
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Figure 1

Let {Xt, t ∈ T } b a random process with the argument t ∈ T .
In the theory of random processes terms such as probability vector and stochas-

tic matrix are used, so we will define them first.
The vector p = (p1, p2, ..., pr) is called probability vector if its components

are nonegative numbers and their sum is 1, i..
r

∑

i=1

pi = 1.

Square matrix P = [pij ] is called stochastic matrix if every row is a probability
vector, i.e. if every element of the matrix is nonegative number and the elements’
sum in every row is 1.

The stochastic matrix P is a regular matrix if all elements on a degree Pn, n ∈
N are positive numbers.

The basic properties of regular matrix are explained in the following theorem.

Theorem 1.1. Let P be regular stochastic matrix. Then:

a) for the matrix P there is only one fixed vector t which components are positive
numbers and it is true that tP = t;

b) the array of degrees P, P 2, P 3, ... on the matrix P converges to the matrix T
which rows are equal to the fixed vector t on the matrix P ;

c) if p is a probability vector then the vectors array pP, pP 2, pP 3, ... converges to
the fixed vector t.

2. Vector valued semigroup automata and random process

In this section interpretation of vector valued semigroup automata will be given
through the random processes. Namely, vector valued semigroup automata can be
explained as a mappings set of states set S in itself. On each transition from one
to other state an appropriate probability can be followed. In addition, the proba-
bility of transition which refers to the following vector valued semigroup automata
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transitions, if the present state is fully known, won’t be changed if additional in-
formation are known about the past of vector valued semigroup automata. That’s
why vector valued semigroup automata can be discussed directly as Markov’s dis-
crete processes, which are called Markov’s chains.

Let (S, (B, { }), f) be (n + k, n)-semigroup automaton. The alphabet B and
the set of states S are finite sets, so let |B| = m and |S| = l. We define a mapping
p : S × Bn−k → [0, 1] so p((si, y1, y2, . . . , yn−k)) = h

mn
, where as h is a number

of the pairs ((x1, x2, . . . , xn), (y1, y2, . . . , yn−k)) satisfying f(si, x1, x2, ..., xn) =
(sj , y1, y2, ..., yn−k), for each (sj , y1, y2, . . . , yn−k) ∈ S ×Bn−k.

Let’s prove that p is a well defined mapping. If f(si, x1, x2, ..., xn) = (sj , y1, y2,
..., yn−k) and f(si, x1, x2, ..., xn) = (sl, y1, y2, ..., yn−k), we should prove that
p((sj , y1, y2, ..., yn−k)) = p((sl, y1, y2, ..., yn−k)). But, as f is a transition function
on (n+k, n)-semigroup automaton (S, (B, { }), f), it is uniquely determined, so it
implicates that (sj , y1, y2, ..., yn−k) = (sl, y1, y2, ..., yn−k), i.. p((sj , y1, y2, ..., yn−k)) =
p((sl, y1, y2, ..., yn−k)).

The mapping p is called transition probability on (n + k, n)-semigroup au-
tomaton (S, (B, { }), f).

If the transition probability pij are known for each pair of states (si, sj), then
they are written in square matrix. The matrix with transition probabilities on
(n+k, n)-semigroup automaton (S, (B, { }), f) is called a matrix on transition

in one step on (n+ k, n)-semigroup automaton (S, (B, { }), f):

P =









p11 p12 ... p1l
p21 p22 ... p2l
... ... ... ...
pl1 pl2 ... pll









=
s1
s2
...
sl

s1 s2 ... sl








p11 p12 ... p1l
p21 p22 ... p2l
... ... ... ...
pl1 pl2 ... pll









.

On every state si (i = 1, 2, ..., l) corresponds the probabilities pi1, pi2, ..., pil,

for which
l
∑

j=1

pij = 1, and they consist the i-th row of the matrix P . If (n+ k, n)-

semigroup automaton is in state si, then this row represents the probabilities of
all possible results in the following step. From here the following theorem results.

Theorem 2.1. The probability matrix on transition P on (n + k, n)-semigroup
automaton (S, (B, { }), f) is a stochastic matrix.

Example 2.1. Let’s determine the transition probability of (3, 2)-semigroup au-
tomaton (S, (B, { }), f) from the Example 1.1’. As the functioning of (3, 2)-
semigroup automaton is based on transition of one state to other, the representa-
tion of (3, 2)-semigroup automaton given in Table 1.1’ we transform it into Table
2.1. Here the transition function f(si, x, y) = (sj , z) appropriates to the repre-
sentation (x, y)/z, which signs a transition on the word (x, y) from state si to the
word z in state s.
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f s0 s1 s2
s0 ∅ {(a, a)/b, (b, b)/b} {(a, b)/b, (b, a)/b}
s1 {(a, b)/a} {(a, a)/a, (b, b)/b} {(b, a)/b}
s2 {(a, b)/b} {(b, a)/b} {(a, a)/b, (b, b)/b}

Table 2.1

The probability matrix on transition P on (3, 2)-semigroup automaton (S, (B, { }), f)
is

P =
s0
s1
s2

s0 s1 s2




0 1/2 1/2
1/4 1/2 1/4
1/4 1/4 1/2





.

We note
3
∑

j=1

pij = 1 for i = 1, 2, 3, so P is stochastic matrix.

The state from which vector valued semigroup automata starts can be known
or can be determined after stochastic rule. For some vector valued semigroup
automata an initial vector with probabilities p(0) = (p01, p

0
2, ..., p

0
l ) is given,

in which p0i is a probability that si is an initial state of vector valued semigroup
automata.

The transition probability from state si to state sj for q steps is called transi-

tion probability in q steps and it is signed as p
(q)
ij .

The square matrix formed from the all probabilities p
(q)
ij is called transition

probability mtrix in q steps.

Theorem 2.2. If P = P (1) is a transition probability matrix in one step for
finite (n+k, n)-semigroup automaton (S, (B, { }), f), then the transition probability
matrix in q steps P (q) is

P (q) = P q.

Proof. It is clear that p
(1)
ij = pij , where pij are elements of the matrix P = P (1).

The probability pij(2) is transition probability from state si to state sj in two steps
(Figure 2.). These transitions are si → s1 → sj , si → s2 → sj , . . . , si → st → sj
in dependence of (x1, x2, ..., xn) ∈ Bn. The probabilities of this transitions are
appropriately, pi1 · p1j , pi2 · p2j, . . . , pil · plj . So, the transition probability of
(n+ k, n)-semigroup automaton from state si to state sj in two steps is sum from
these probabilities, i.e.

p
(2)
ij =

l
∑

r=1

pir · prj.
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Figure 2

According to the rule for multipling matixes, the right side of the last formula
is an element of the matrix P 2, which is found in the section of i-th row and j-th
column:

P 2 = P · P =













p11 p12 ... p1j ... p1l
...................................
pi1 pi2 ... pij ... pil
...................................
pl1 pl2 ... plj ... pll

























p11 p12 ... p1j ... p1l
...................................
pi1 pi2 ... pij ... pil
...................................
pl1 pl2 ... plj ... pll













=

=

























l
∑

r=1
p1rpr1

l
∑

r=1
p1rpr2 ...

l
∑

r=1
p1rprj ...

l
∑

r=1
p1rprl

............................................................................
l
∑

r=1
pirpr1

l
∑

r=1
pirpr2 ...

l
∑

r=1
pirprj ...

l
∑

r=1
pirprl

............................................................................
l
∑

r=1
plrpr1

l
∑

r=1
plrpr2 ...

l
∑

r=1
plrprj ...

l
∑

r=1
plrprl

























We can note that the matrix P 2 is equal with the matrix P (2) =
[

p
(2)
ij

]

, i.e.

P (2) = P 2.
Continuing this treatment we come to

pij(q + 1) =

l
∑

r=1

pirp
(q)
rj ,

where according to the mathematical induction criterion we can prove that the
Theorem 2.2 is true for every q. �

In general case, if p0r, for r = 1, 2, . . . , l

(

l
∑

r=1
p0r = 1

)

, are probabilities of the

initial states of (n + k, n)-semigroup automaton (S, (B, { }), f) and if pj(w) are
probabilities after w steps (n+ k, n)-semigroup automaton (S, (B, { }), f) will be
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found in state sj , than

pj(w) =

l
∑

r=1

p0rprj(w).

The probability pj(w) is j-th element in the vector-row, which is gotten with
multiplying the probability vector in the initial state p(0) = (p01, p

0
2, . . . , p

0
t ) and

the matrix Pw. With this the following theorem is proved:

Theorem 2.3. If p(w) is a probability vector with (present) states of (n + k, n)-
semigroup automaton (S, (B, { }), f) after w steps, then

p(w) = p(0) · Pw,

where p(0) is vector with probabilities of the initial states.

Theorem 2.4. Let P be a transition probability matrix of (n + k, n)-semigroup
automaton (S, (B, { }), f). If p = (p1, p2, . . . , pl) is a vector with probabilities of
the initial states, then pP is a vector with probabilities of the following step and
pPw is a vector with probabilities of states in the w-th step. In special case,

p(1) = p(0)P, p(2) = p(1)P = p(0)P 2, . . . , p(w) = p(0)Pw

3. Ergodicity of vector valued semigroup automata

Let S be a set of states, so that S = S′ ∪ S′′ and S′ ∪ S′′ = ∅. If every state of
the set S′ can be approached to every state of the set S′, and in the set S′ can’t
make a transition nor from one state of the set S′′, then the set S′ is called rgodic

set of states. Once (n + k, n)-semigroup automaton has made a transition into
an ergodic set it can no longer leave the set and the further transitions will be
made inside the set.

If the ergodic set is contained from one state, than that state is called absorbing

state. Once (n+ k, n)-semigroup automaton has transited in that state, it stays
in it.

It is proved that a finite (n+k, n)-semigroup automaton must have at least one
ergodic set of states.

Theorem 3.1. If P is a regular transition matrix with dimensions l × l, then:

a) Pw converges to the stochastic matrix T , when w → ∞;
b) every row of the matrix T is a vector (t1, t2, . . . , tl), where t1, t2, . . . , tl are

probabilities and
l
∑

i=1

ti = 1.

The matrix T is called matrix of final probabilities of (n + k, n)-semigroup
automaton (S, (B, { }), f).

Example 3.1. Let’s determine the matrix of final probabilities of the (3, 2)-semigroup
automaton (S, (B, { }), f) from Example 2.1. According to Theorem 1.1 for the
matrix P there is single fixed vector t, whose components are positive numbers and
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for which it is true that tP = t. From this condition, taking t = (x, y, 1 − x − y)
and with solving the equation

(x, y, 1− x− y)





0 1/2 1/2
1/4 1/2 1/4
1/4 1/4 1/2



 = (x, y, 1− x− y),

we have the system

y

4
+

1− x− y

4
= x

x

2
+

y

2
+

1− x− y

4
= y

x

2
+

y

4
+

1− x− y

2
= 1− x− y

,

and with solving it we get x =
1

5
and y =

2

5
. That means the fixed vector is

t = (
1

5
,
2

5
,
2

5
). On the other hand,

P =





0 1/2 1/2
1/4 1/2 1/4
1/4 1/4 1/2



 ; P 2 =





1/4 3/8 3/8
3/16 7/16 3/8
3/16 3/8 7/16



 ;

P 3 =





3/16 13/32 13/32
13/64 13/32 25/64
13/64 25/64 13/32



 ; P 4 =





13/64 51/128 51/128
51/256 103/256 51/128
51/256 51/128 103/256



 ;

P 5 =





102/512 205/512 205/512
205/1024 205/512 409/1024
205/1024 409/1024 205/512



 .

It is proved that the convergation velocity on Pw to T is very high and it is equal
to the convergation velocity of the geometry progression with quotient smaller than
1. In many examples it can be appropriate, i.e. P 5 ≈ T .

Theorem 3.2. If P is a regular transition probability matrix, T is a matrix
with final probabilities on (n + k, n)-semigroup automaton (S, (B, { }), f) char-
acterised with the matrix P and (t1, t2, . . . , tl) is a vector with final probabilities
(limit distribution of probabilities on the states on (n+k, n)-semigroup automaton
(S, (B, { }), f)), then

p(0)Pw → (t1, t2, . . . , tl), when w → ∞,

where p(0) is a vector with initial probabilities.

Proof.

lim
w→∞

p(0)Pw = p(0) lim
w→∞

Pw = p(0)T = (t1, t2, . . . , tl).

�
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