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SOME 2-SUBSPACES OF 2-SPACE

ALEKSA MALCHESKI∗, VESNA MANOVA-ERAKOVIK∗∗

Abstract. In the paper, some 2-subspaces of 2-vector space are considered

and characterized.

The idea of considering a family of subsets of Xn, among which is the class of
the 2-subspaces (case n = 2), came from the study of 2-norms, 2-seminorms and
the skew-symmetric forms.

Let X denote the vector space over the field Φ (Φ is the field of the real numbers
or the field of the complex numbers). Mn(Φ) denotes the set of quadratic matrixes
of order n. ∆2 denotes the set of all ordered pairs (x, y), elements of X2, such that
the vectors x, y are linearly dependent. Let Sn denote the set of all permutations
of {1, 2, . . . , n}.

Definition 1. The function || ·, . . . , · || : Xn → R, n ≥ 2, which satisfies the
conditions:

a) ||x1, x2, ..., xn|| = 0 if and only if the vectors x1, x2, ..., xn are linearly depen-
dent;

b) ||xπ(1), xπ(2), ..., xπ(n)|| = ||x1, x2, ..., xn||, for any x1, x2, ..., xn ∈ X and for
every π ∈ Sn;

c) ||αx1, x2, ..., xn|| = |α| ||x1, x2, ..., xn||, for any x1, x2, ..., xn ∈ X and for every
scalar α ∈ Φ;

d) ||x1+x′
1, x2, ..., xn||≤||x1, x2, ..., xn||+||x′

1, x2, ..., xn||, for any x1, x
′
1, x2, ..., xn ∈

X,

is called n-norm of the vector space X, and the ordered pair (X, || ·, ..., ·||) is called
n-normed space.

As a direct consequence from the definition of 2-norm is the equality

||x, y|| = ||x, y + ax|| (1)

where x, y ∈ X and α ∈ Φ are arbitrarily chosen.
Using (1) and the definition of 2-norms, it can easily be proved that

||a11x1 + a12x2, a21x1 + a22x2|| = |a11a22 − a12a21| ||x1, x2||, (2)

for an arbitrary a11, a12, a21, a22 ∈ Φ and an arbitrary x1, x2 ∈ X.

Definition 2. The function p : Xn → R which satisfies the conditions:

a) p(x1, x2, ..., xn) = 0 if x1, x2, ..., xn are linearly dependent vectors;
27
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b) p(xπ(1), xπ(2), ..., xπ(n)) = p(x1, x2, ..., xn), for any x1, x2, ..., xn ∈ X and for
every π ∈ Sn;

c) p(αx1, x2, ..., xn) = |α| p(x1, x2, ..., xn), for any x1, x2, ..., xn ∈ X and for scalar
α ∈ Φ;

d) p(x1+x1
′, x2, ..., xn) ≤ p(x1, x2, ..., xn)+p(x1

′, x2, ..., xn), for any x1, x1
′, x2, ...,

xn ∈ X,

is called n-seminorm of the vector space X, and the ordered pair (X, p) is called
n-seminormed space.

As in the case of 2-norm, it is easy to prove that p(x, y) = p(x, y+αx), for any
x, y ∈ X and any α ∈ Φ.

Even more, the following equality

p(a11x1 + a12x2, a21x1 + a22x2) = |a11a22 − a12a21| p(x1, x2) (3)

holds for any a11, a12, a21, a22 ∈ Φ and any x1, x2 ∈ X.
In respect to the n-seminorms and n-norms, the most suitable class of function-

als for consideration are the skew-symmetric linear forms.

Definition 3. The function Λ : X2 → Φ which satisfies the conditions:

a) Λ(x1 + x2, x3) = Λ(x1, x3) + Λ(x2, x3), for any x1, x2, x3 ∈ X;
b) Λ(x1, x2) = −Λ(x2, x1), for any x1, x2 ∈ X;
c) Λ(αx1, x2) = αΛ(x1, x2), for any x1, x2 ∈ X and α ∈ Φ,

is called 2-skew-symmetric linear form.

Immediate consequence of this definition is the following equality

Λ(a11x1 + a12x2, a21x1 + a22x2) = (a11a22 − a12a21) Λ(x1, x2). (4)

Having in mind the equalities (2), (3) and (4), we introduce the denotation (a11x1+

a12x2, a21x1 + a22x2) = A(x1, x2)
T , where A =

[
a11 a12
a21 a22

]
∈ M2(Φ), and the

multiplication on the right hand side of the last equality is the same as the multi-
plication of a matrix with a vector. For simplification, we can use the denotation
A(x1, x2)

T = A(x1, x2).
On X2, the following operations are defined:

i) (x1, x3) + (x2, x3) = (x1 + x2, x3);
ii) (x3, x1) + (x3, x2) = (x3, x1 + x2);
iii) A(x1, x2) = (a11x1 + a12x2, a21x1 + a22x2),

for an arbitrary x1, x2, x3 ∈ X and an arbitrary A =

[
a11 a12
a21 a22

]
∈ M2(Φ). X

2,

with the defined operations, is called 2-vector space over the field Φ or simply
2-space.

Now, the definitions of 2-norm, 2-seminorm and 2-skew-symmetric linear form
get simpler form.

Definition 4. The function || ·, · || : X2 → R which satisfies the conditions:

a) ||x1, x2|| = 0 if and only if x1, x2 are linearly dependent vectors;
b) ||A(x1, x2)|| = |detA| ||x1, x2||, for any x1, x2 ∈ X and for every A ∈ M2(Φ);
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c) ||x1 + x2, x3|| ≤ ||x1, x3||+ ||x2, x3||, for any x1, x2, x3 ∈ X,

is called 2-norm of the vector space X, and the ordered pair (X, || ·, ·||) is called
2-normed space.

Definition 5. The function p : X2 → R, which satisfies the conditions:

a) p(A(x1, x2)) = | detA| p(x1, x2), for any x1, x2 ∈ X and for every A ∈ M2(Φ);
b) p(x1 + x2, x3) ≤ p(x1, x3) + p(x2, x3), for any x1, x2, x3 ∈ X,

is called 2-seminorm of the vector space X, and the ordered pair (X, p) is called
2-seminormed space.

Definition 6. The function Λ : X2 → Φ which satisfies the conditions:

a) Λ(x1 + x2, x3) = Λ(x1, x3) + Λ(x2, x3), for any x1, x2, x3 ∈ X;
b) Λ(A(x1, x2)) = (detA)Λ(x1, x2), for any x1, x2 ∈ X and for every A ∈ M2(Φ)

is called 2-skew-symmetric linear form.

It is easy to prove that the definitions 1 and 4, 2 and 5, and 3 and 6, in the case
n = 2, are equivalent.

Definition 7. The set W ⊆ X2, where X is a vector space over the field Φ, is
2-invariant if AW ⊆ W for every A ∈ M2(Φ) for which detA = 1.

Let ||·, ·||, p : X2 → R and Λ : X2 → Φ be 2-norm, 2-seminorm and 2-skew-
symmetric linear form, respectively. We consider the following sets

N||·,·|| = {(x1, x2) |x1, x2 ∈ X, ||x1, x2|| = 0}
Np = {(x1, x2) |x1, x2 ∈ X, p(x1, x2) = 0}
NΛ = {(x1, x2) |x1, x2 ∈ X, Λ(x1, x2) = 0}
Using the definitions of 2-norm, 2-seminorm and 2-skew-symmetric linear form,

we get:
(x1, x3) + (x2, x3) ∈ S;
(x3, x1) + (x3, x2) ∈ S;
A(x1, x2) ∈ S,

for any (x1, x3), (x2, x3), (x3, x1), (x3, x2) ∈ S and A ∈ M2(Φ), when S is any of
the sets N||·,·||, Np or NΛ.

The following definition comes naturally.

Definition 8. Let X be a vector space over the field Φ. The subset S ⊆ X2 which
satisfies the conditions:

(x1, x3) + (x2, x3) ∈ S;
(x3, x1) + (x3, x2) ∈ S;
A(x1, x2) ∈ S,

for any (x1, x3), (x2, x3), (x3, x1), (x3, x2) ∈ S and for every A ∈ M2(Φ) is called
2-subspace of the 2-space X2.

In [2] we proved the following theorems.

Theorem 1. The intersection of an arbitrary family of 2-subspaces of X2 is a
2-subspace.
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For the set B, B ⊆ X2, with SB , we denote the family of all 2-subspaces which
contain the set B.

If B is an arbitrary subset of X2, the smallest 2-subspace which contains the
set B will be denoted with PB .

Theorem 2. If B, B ⊆ X2 is an arbitrary set, then PB =
∩

S∈SB

S.

Note. If the 2-subspace contains the pair (x, y) then it, also, contains the pair
(y, x) and, therefore when (x, y) is a generator element of the 2-subspace, we do
not consider the pair (y, x) as a generator element of 2-subspace.

Theorem 3. Every 2-subspace of the 2-vector space X2 is 2-invariant.

In the subsequent part, we will consider special cases for B. The elements for
each considered pair of B are linearly independent vectors.

In the subsequent part, we will consider the sum of two ordered pairs with
respect to first coordinate (the second coordinates of the ordered pairs are the
same). The considerations in the other case are analogues because of Theorem 1,
Theorem 2, Theorem 3 and the note after Theorem 2.

L(u, v) denotes a vector subspace of X generated with the vectors u and v.

Case 1. B = {(x1, x2)}.
In this case, it is easy to prove that PB = {(a11x1+a12x2, a21x1+a22x2) | a11, a12,

a21, a22 ∈ Φ}. It is clear that, for every S ∈ SB , {(a11x1 + a12x2, a21x1 +
a22x2) | a11, a12, a21, a22 ∈ Φ} ⊆ S, and {(a11x1+a12x2, a21x1+a22x2) | a11, a12, a21,
a22 ∈ Φ} is a 2-subspace which contains B = {(x1, x2)} as its subset.
We note that in this case we have PB = L(x1, x2)× L(x1, x2).

Case 2. B = {(x1, x2), (x3, x4)}. Let L be the subspace of X which is generated
with the vectors x1, x2, x3, x4, i.e. L = L(x1, x2, x3, x4). There are 3 possible sub
cases.

Sub case 1. dimL = 4.
Since x1, x2 and x3, x4 are linearly independent, we get that L(x1, x2)∩L(x3, x4) =

{0}. Because of case 1, we have
PB1 = L(x1, x2)×L(x1, x2), PB2 = L(x3, x4)×L(x3, x4), for B1 = {(x1, x2)} and
B2 = {(x3, x4)}. Then PB1 ∩ PB2 = {(0, 0)} and therefore PB = PB1 ∪ PB2 ∪
P{αx1+βx2+γx3+δx4 |α,β,γ,δ∈Φ}.

Sub case 2. dimL = 2.
If dimL(x1, x2) = 2 and dimL(x3, x4) = 2 we have

PB1 = {(a11x1 + a12x2, a12x1 + a22x2) | a11, a12, a12, a22 ∈ Φ},
PB2 = {(b11x3 + b12x4, b12x3 + b22x4) | b11, b12, b12, b22 ∈ Φ},
and therefore PB1 = PB2 = PB .
The other possibilities of this sub case 2 are trivial and we do not consider them.

Sub case 3. dimL = 3.
Without loss of generality, we may assume that x1, x2, x3 are linearly indepen-

dent vectors. Then x4 = αx1+βx2+γx3, and the 2-subspace generated with B1 =
{(x1, x2)} is the same with the 2-subspace generated with B2 = {(αx1+βx2, x2)},
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i.e. PB1
= PB2

. On the other hand, the 2-subspace generated with B3 = {(x3, x4)}
is the same with the 2-subspace generated with B4 = {(x3, αx1 + βx2)}, i.e.
PB3

= PB4
, and the 2-subspace generated with B = {(x1, x2), (x3, x4)} is the

same with the 2-subspace generated with {(αx1 + βx2, x2), (x3, αx1 + βx2)}.
Let y1 = x1, y2 = αx1 + βx2, y3 = x3. Then this 2-subspace is completely

described in [2], and it is equal to PB =
∪

σ∈π(y1,y3;y2)

σ × σ, where σ is two dimen-

sional subspace defined with the vectors αy1+βy3 and y2, i.e. σ = L(αy1+βy3, y2).
Therefore PB =

∪
α,β∈Φ

L(αy1 + βy3, y2)× L(αy1 + βy3, y2).

Note. If A =

[
a11 a12
a21 a22

]
∈ M2(Φ) such that detA ̸= 0, then the vectors

a11y1 + a12y3, a21y1 + a22y3 are linearly independent. Let us suppose that there

exist α, β ∈ Φ and B =

[
b11 b12
b21 b22

]
∈ M2(Φ), such that

A(y1, y3) = B(αy1 + βy3, y2),
(a11y1+a12y3, a21y1+a22y3) = (b11(αy1+βy3)+ b12y2, b21(αy1+βy3)+ b22y2).

The last equality is possible if b12 = b22 = 0 and a11y1 + a12y3 = b11(αy1 +
βy3), a21y1 + a22y3 = b21(αy1 + βy3).
The last equalities are not possible because the vectors b11(αy1+βy3) and b21(αy1+
βy3) are linearly dependent.

Therefore, PB ̸= L× L, where L = L(y1, y2, y3).

Note. Before we go to the next sub case, we will consider one 2-subspace generated
with 3 elements, i.e. generated with the set B = {(x1, x2), (x2, x3), (x3, x1)}, where
x1, x2, x3 are linearly independent vectors. We will show that, in this case, the
2-subspace generated with the set B is L× L, where L = L(x1, x2, x3).

Indeed, if x = a11x1 + a12x2 + a13x3 and y = b11x1 + b12x2 + b13x3, then
(x, y) = (a11x1 + a12x2 + a13x3, b11x1 + b12x2 + b13x3)

=

([
a11 a12
b11 0

]
(x1, x2) +

[
0 a13
b11 0

]
(x1, x3)

)
+

+

([
a11 a12
0 b12

]
(x1, x2) +

[
0 a13
b12 0

]
(x2, x3)

)
+

([
a11 0
0 b13

]
(x1, x3) +

[
a12 a13
0 b13

]
(x2, x3)

)
.

This example gives motivation to define one characteristic type of 2-subspace of
2-vector space X2.

Definition 9. Let X be a vector space over the field Φ and let L ⊆ X be its
vector subspace. The set L × L, which is 2-subspace of X2, will be called kernel
2-subspace.

We note that the dimension of L might be an arbitrary one.
Considering the case 2, it becomes clear that consideration of 2-subspaces gen-

erated with the subsets of X2 which have more than two generator elements, would
be very complicated in this way. Therefore, we will continue the considerations in
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a different way.

Case 3. Let L be the subspace of X generated with the linearly independent
vectors x1, x2, x3, x4, i.e. L = L(x1, x2, x3, x4). If Q = {x1, x2, x3, x4} then the set
(Q×Q) \∆2, has 6 elements, i.e. U = (Q×Q) \∆2 = {(x1, x2), (x1, x3), (x1, x4),
(x2, x3), (x2, x4), (x3, x4)}.

The subsets of U with one or two elements are of no interest since they generate
2-subspaces which are, already, described in the previous cases.

There are 20 subsets of U with 3 elements, 15 subsets of U with 4 elements and
6 subsets of U with 5 elements. So, there are 41 different 2-subspaces generated
with 3, 4 or 5 elements that have to be described.

For an easier characterization of the 2-subspaces in this case, we will give a
schematic description for each of them. The vectors will be represented with points
in the plane and the ordered pair, which is a generator element, will be represented
with a segment that connects the elements of the ordered pair. Considering all
the possible schemes for a generator set with 3 elements that generates 2-subspace
different than the previously described, we notice that there are two different
types. They will be described in the sub cases 1 and 2. Considering all the
possible schemes for the 2-subspaces generated with 4 elements, we notice that
there are two different types of 2-subspaces and that they will be described in the
sub cases 3 and 4.

Schematic description of the types of generator sets (with 3 and 4 generator ele-
ments) which are subsets of {(x1, x2), (x1, x3), (x1, x4), (x2, x3), (x2, x4), (x3, x4)},
where x1, x2, x3, x4 are linearly independent vectors:

Types of generator sets with 3 elements:

Types of generator sets with 4 elements:

Sub case 1. B = {(x1, x2), (x1, x3), (x1, x4)} (type 3)
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The 2-subspace generated with the elements of the subsetB1 = {(x1, x2), (x1, x3)}
is described in the sub case 3 of the case 2. This 2-subspace is of the form∪

α,β∈Φ

L(αx2 + βx3, x1)× L(αx2 + βx3, x1),

and, at the same time, it is 2-subspace of PB .
If y ∈ L(x2, x3, x4) is an arbitrary chosen element, i.e. y = αx2 + βx3 + γx4,

then
(y, x1) = (αx2 + βx3 + γx4, x1) = (αx2 + βx3, x1) + (γx4, x1),

and since (αx2+βx3, x1), (γx4, x1)=

[
α 0
0 1

]
(x4, x1) ∈ PB, we get that (y, x1) ∈

PB.
It is not hard to prove that

∪
α,β,γ∈Φ

L(αx2+βx3+γx4, x1)×L(αx2+βx3+γx4, x1)

is 2-subspace, which is 2-subspace of every 2-subspace S, S ∈ SB. Therefore
PB =

∪
α,β,γ∈Φ

L(αx2 + βx3 + γx4, x1)× L(αx2 + βx3 + γx4, x1)

=
∪

u∈L(x2,x3,x4)

L(u, x1)× L(u, x1)

Sub case 2. B = {(x1, x2), (x2, x3), (x3, x4)} (type 1).
For the sets B1 = {(x1, x2), (x2, x3)} and B2 = {(x2, x3), (x3, x4)}, the 2-

subspaces PB1 and PB2 are 2-subspaces of every 2-subspace S, S ∈ SB. Let
(a11(αx1+βx3)+a12x2, a21(αx1+βx3)+a22x2) and (b11(γx2+δx4)+b12x3, b21(γx2+
δx4) + b22x3) be an arbitrary elements of PB1 and PB2 , respectively. Adding two
elements is possible if and only if

a21αx1 + a21βx3 + a22x2 = b21γx2 + b21δx4 + b22x3.
Because of the assumed linear independence, the last equality is possible if and

only if a21α = 0, b21δ = 0, a21β = b22 and b21γ = a22.
i) a21 = 0, b21 = 0.
Then a22 = 0, b22 = 0 and the result of the adding is an element of ∆2, i.e.
(a11(αx1 + βx3) + a12x2, 0) + (b11(γx2 + δx4) + b12x3, 0) =
= (a11αx1 + (a11β + b12)x3 + (a12 + b11γ)x2 + b11δx4, 0) ∈ ∆2.
ii) α = 0, b21 = 0
In this case, a22 = 0 and the adding is possible if and only if a21β = b22 = s,

and the result of the adding is
(a11βx3 + a12x2, sx3) + (b11(γx2 + δx4) + b12x3, sx3) =
= ((a11β + b12)x3 + (a12 + b11γ)x2 + b11δx4, sx3).
Because of the 2-invariance of PB , we get that the ordered pair on the right

hand side of the last equality is an element of PB2 .
iii) a21 = 0, δ = 0.
In this case, b22 = 0 and the adding is possible if and only if b21γ = a22 = t, and

the result of the adding is (a11(αx1 + βx3) + a12x2, tx2) + (b11γx2 + b12x3, tx2) =
(a11αx1 + (a11β + b12)x3 + (a12 + b11γ)x2, tx2)

Again, because of the 2-invariance of PB , we get that the ordered pair on the
right hand side of the last equality is an element of PB1 .

iv) α = 0, δ = 0.
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In this case, the adding is possible if and only a21β = b22 = s and b21γ = a22 =
t, and the result of the adding is

(a11βx3 + a12x2, sx3 + tx2) + (b11γx2 + b12x3, tx2 + sx3) =
= ((a12 + b11γ)x2 + (a11β + b12)x3, tx2 + sx3).
The element from the right hand side of the last equality belongs to PB1 and

to PB2 .
The other possibilities of adding elements of PB are trivial.
From the above discussion, in this case we get that PB = PB1 ∪ PB2 .
From the 2-subspaces generated with 4 elements, it is enough to consider two

types.
Sub case 3. B = {(x1, x2), (x2, x3), (x3, x1), (x1, x4)} (type 5) .
In the sub case 3 of the case 2, we saw that the 2-subspace generated with the

set B1 = {(x1, x2), (x2, x3), (x3, x1)} is PB1 = L(x1, x2, x3) × L(x1, x2, x3). Let
u ∈ L(x1, x2, x3) be an arbitrary element. If S is any 2-subspace which contains
B, then (u, x1) and (x4, x1) belong to S, therefore S contains∪

α,δ∈Φ

L(αu+ δx4, x1)× L(αu+ βx4, x1), as its 2-subspace.

On the other hand, since α and β are arbitrary and having in mind the form of
u, it is not hard to see that∪
u∈L(x1,x2,x3)

∪
η,δ∈Φ

L(ηu+ δx4, x1)× L(ηu+ βx4, x1) =

=
∪

α,β,γ,δ∈Φ

L(αx1 + βx2 + γx3 + δx4, x1)× L(αx1 + βx2 + γx3 + δx4, x1) =

=
∪

v∈L(x1,x2,x3,x4)

L(v, x1)× L(v, x1)

is 2-subspace of S, S ∈ SB. Therefore PB =
∪

v∈L(x1,x2,x3,x4)

L(v, x1)× L(v, x1).

Sub case 4. B = {(x1, x2), (x2, x3), (x3, x4), (x4, x1)} (type 4) For the sets
B1 = {(x1, x2), (x2, x3)}, B2 = {(x2, x3), (x3, x4)}, B3 = {(x3, x4), (x4, x1)} and
B4 = {(x4, x1), (x1, x2)}, the 2-subspaces

PB1 =
∪

α,β∈Φ

L(αx1 + βx3, x2)× L(αx1 + βx3, x2)

PB2 =
∪

γ,δ∈Φ

L(γx2 + δx4, x3)× L(γx2 + δx4, x3)

PB3 =
∪

µ,ν∈Φ

L(µx1 + νx3, x4)× L(µx1 + νx3, x4)

and
PB4 =

∪
η,θ∈Φ

L(ηx2 + θx4, x1)× L(ηx2 + θx4, x1)

are 2-subspaces which are 2-subspaces of every 2-subspace S, S ∈ SB .
On the other hand, P◦=

∪
α,β,γ,δ

L(αx1 + βx3, γx2+δx4)×L(αx1+βx3, γx2+δx4)

is 2-subspace which is 2-subspace of every 2-subspace S, S ∈ SB .
Using the results of the sub case 2 of this case, it is not hard to prove that

P = PB1 ∪ PB2 ∪ PB3 ∪ PB4 ∪ P◦ is 2-subspace which is 2-subspace of every 2-
subspace S, S ∈ SB.

Therefore PB = PB1 ∪ PB2 ∪ PB3 ∪ PB4 ∪ P◦.
There exists only one type of 2-subspaces generated with 5 elements.
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Sub case 5. B = {(x1, x2), (x2, x3), (x3, x4), (x4, x1), (x1, x3)}.
We note that, in this case the 2-subspaces of PB are the kernel 2-subspaces gen-

erated withB1 = {(x1, x2), (x2, x3), (x3, x1)} andB2 = {(x1, x4), (x4, x3), (x3, x1)}.
Their form is

PB1 = L(x1, x2, x3)× L(x1, x2, x3) and PB2 = L(x1, x3, x4)× L(x1, x3, x4).
For two elements (a11x1 + a12x3 + a13x4, a21x1 + a22x3 + a23x4) and (b11x1 +

b12x2 + b13x3, b21x1 + b22x2 + b23x3) of PB2 and PB1 , respectively, the adding is
possible if and only if a23 = b22 = 0, and, because of the linear independence, we
have that a21 = b21 = s and a22 = b23 = t. In this case, we have

(a11x1+ a12x3+ a13x4, sx1+ tx3)+ (b11x1+ b12x2+ b13x3, sx1+ tx3) = ((a11+
b11)x1 + b12x2 + (a12 + b13)x3 + a13x4, sx1 + tx3)

Since a11, b11, b12, a12, b13, a13 ∈ Φ are arbitrarily chosen, we get that

T =
∪

u∈L(x1,x2,x3,x4)
v∈L(x1,x3)

L(u, v)× L(u, v)

is 2-subspace of every 2-subspace S, S ∈ SB . Therefore T ⊆ PB.
We notice that the sum of two elements in PB1 is an element in PB1 , the sum

of two elements in PB2 is an element in PB2 , the sum of two elements in T is an
element in T , and the sum of an element in T and an element in PB1

or PB2
is an

element in T .
Therefore PB1

∪ PB2
∪ T is 2-subspace of every 2-subspace S, S ∈ SB . Finally,

PB = PB1 ∪ PB2 ∪ T .
The further on approach in this way, like in the case 2 and in the case 3, as well

as the previous approaches in the description of the 2-subspaces of 2-vector space
X2 is very complicated and technically almost impossible. We have to consider
enormous number of cases, i.e. types of 2-subspaces in respect to the number of
generator elements.

For example, if we consider 5 vectors x1, x2, x3, x4, x5 which are linearly inde-
pendent, then the set (R×R) \∆2, where R = {x1, x2, x3, x4, x5} has 10 elements,
i.e.

W = (R×R) \∆2 = {(x1, x2), (x1, x3), (x1, x4), (x1, x5), (x2, x3), (x2, x4),
(x2, x5), (x3, x4), (x3, x5), (x4, x5)}.

Now, the number of different generator subsets of W is 210 − 1 = 1023. There
are 252, 210, 120, 45 and 9 generator sets with 5, 6, 7, 8 and 9 elements, respectively,
and the number of different 2-subspaces is the same, i.e. 636. So, in this case, for
complete description, should, also, be considered some other 2-subspaces generated
with 4 elements.

Schematic description of the types of generator subsets (with 5 elements) of the
set W :
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If we consider 6 vectors x1, x2, x3, x4, x5, x6 which are linearly independent and
then repeat the same procedure as before, we get that the number of 2-subspaces
generated with the elements of the set (T×T )\∆2, where T = {x1, x2, x3, x4, x5, x6},
is 215 − 1 = 22787. The number of different types of 2-subspaces generated with
the elements is smaller than 22787, but still it is a big number.

What we can see from the schematic description is that some of the 2-subspaces
have a specific structure. So, the 2-subspace from the sub case 4 is generated with
elements of the form {(a, b), (b, c), (c, d), (d, a)}, where the elements a, b, c, d are
linearly independent vectors. We will call these 2-subspaces cycle 2-subspaces
and give a general definition of this type of 2-subspaces.

Definition 10. Let X be a vector space over a field Φ, and let x1, x2, ..., xn, n > 3
be linearly independent vectors. The 2-subspace generated with the elements of the
set {(x1, x2), (x2, x3), ..., (xn−1, xn), (xn, x1)} will be called cycle 2-subspace.

From the description of the sub case 2 of the case 2, we notice another type of
specific 2-subspace of the 2-vector spaceX2. So, if a, b, c, d are linearly independent
vectors then the 2-subspace generated with the set {(a, b), (b, c), c, d)} will be called
branch 2-subspace. These types of 2-subspaces may be considered in a general
case (with more than 3 generator elements).

Definition 11. Let X be a vector space over a field Φ, and let x1, x2, ..., xn, ...
be linearly independent vectors. The 2-subspace generated with the elements of the
set {(x1, x2), (x2, x3), ..., (xn−1, xn), ...} will be called branch 2-subspace.

Note. The generator set in the previous definition might be finite one.
The 2-subspaces in the case 3 give motivation for the definition, in a general

sense, of another type of 2-subspaces of 2-vector space.

Definition 12. Let x1, x2, x3, ...., xn, ... be linearly independent vectors of the vec-
tor space X. The 2-subspace generated with the set {(x1, xi) | i = 2, 3, 4, ...} will be
called loop 2-subspace.

Note. The generator set in the previous definition might be finite one.
The 2-subspaces which do not have cycle 2-subspases and kernel 2-subspace as

their own subspaces will be called tree 2-subspaces.
The discussion in the sub case 2 of the case 3 is a motivation for complete

description of the branch 2-subspaces.
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Theorem 4. If M is a branch 2-subspace generated with the set
{(x1, x2), (x2, x3), ..., (xm−1, xm), ...}, where {x1, x2, x3, ...., xm, ...} is linearly in-
dependent set, then

M =
∪

i∈N\{1}

∪
ai−1,ai+1∈Φ

L(ai+1xi+1 + ai−1xi−1, xi)× L(ai+1xi+1 + ai−1xi−1, xi).

Proof. Let Bi−1 = {(xi−2, xi−1), (xi−1, xi)} and Bi+1 = {(xi, xi+1), (xi+1, xi+2)}.
Then the 2-subspaces generated with Bi−1 and Bi+1 are

PBi−1 =
∪

α,β∈Φ

L(αxi−2 + βxi, xi−1)× L(αxi−2 + βxi, xi−1)

PBi+1 =
∪

γ,δ∈Φ

L(γxi + δxi+2, xi+1)× L(γxi + δxi+2, xi+1)

Arbitrary two elements from PBi−1 and PBi+1 ,
(a11(αxi−2 + βxi) + a12xi−1, a21(αxi−2 + βxi) + a22xi−1) and
(b11(γxi + δxi+2) + b12xi+1, b21(γxi + δxi+2) + b22xi+1)

may be added if and only if a22 = b22 = 0, a21α = 0, b21δ = 0 and a21β = b21γ = s.
If α = δ = 0, then
(a11βxi + a12xi−1, sxi)+ (b11γxi + b12xi+1, sxi) = (a12xi−1 +(a11β+ b11γ)xi +

b12xi+1, sxi) ∈ PBi where Bi = {(xi−1, xi), (xi, xi+1)}.
The rest of the cases a21 = 0, δ = 0; b21 = 0, α = 0 or a21 = 0, b21 = 0 reduce

to adding of elements of ∆2.
Therefore, for two elements whose sum is defined, the sum always belongs to

some of the 2-subspaces PBk
, where Bk = {(xk−1, xk), (xk, xk+1)}.

Repeating the procedure from the sub case 2 of the case 3 for the subspaces
PBi−1 and PBi , for i = 2, 3, 4, ... and using the previous part of the proof of the
theorem, we conclude the proof. �

Note. If the generator set in the previous theorem is finite, {(x1, x2), (x2, x3), ...,
(xn−1, xn)}, then

M =
n−1∪
i=2

∪
ai−1,ai+1∈Φ

L(ai+1xi+1 + ai−1xi−1, xi)× L(ai+1xi+1 + ai−1xi−1, xi).

Because of the description of the 2-subspace in the sub case 1 of the case 3, and
using the principle of mathematical induction, we can easily prove the following
theorem.

Theorem 5. If M is loop 2-subspace generated with the set {(x1, xi) | i = 2, 3, 4, ...},
then

M =
∪

u∈L(x2,x3,...)

L(u, x1)× L(u, x1),

where L = L(x2, x3, ...) is the subspace of X generated with {x2, x3, ...}.

Proof. The proof follows from the sub case 1 of the case 3, using the principle of
mathematical induction. �

Theorem 6. The cycle 2-subspace generated with the elements of the set
{(x1, x2), (x2, x3), ..., (xn−1, xn), (xn, x1)} for n ≥ 5 is
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M =
∪

α,β∈Φ

[L(αx1 + βx3, x2)× L(αx1 + βx3, x2)] ∪

∪
∪

γ,δ∈Φ

[L(γx2 + δx4, x3)× L(γx2 + δx4, x3)] ∪

∪ ... ∪
∪

θ,η∈Φ

[L(θxn−1 + ηx1, xn)× L(θxn−1 + ηx1, xn)].

Proof. The proof is a direct consequence from theorem 4 and the sub case 2 of the
case 3. �
Note. A cycle 2-subspace for n = 4 is described in the sub case 4 of the case 3.
A cycle 2-subspace for n = 3 is a kernel 2-subspace described in the note after the
sub case 3 of the case 2.

The following problem concerning the 2-subspaces of 2-vector space X2 arises
from the consideration of the previous examples of the 2-subspaces.
Problem. Whether every 2-subspace S of a given 2-vector space has at least one
minimal generator set {(xα, xβ) |α, β ∈ A}, i.e. a set which satisfies

(xγ , xδ) /∈ PB , where B = {(xα, xβ) |α, β ∈ A}\{(xγ , xδ)}, for every (xγ , xδ) ∈
{(xα, xβ) |α, β ∈ A} and S = PB?

Such minimal generator set of 2-subspace S, if it exists, will be called 2-base
of S.
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