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SOME 2-SUBSPACES OF 2-SPACE
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Abstract. In the paper, some 2-subspaces of 2-vector space are considered
and characterized.

The idea of considering a family of subsets of X", among which is the class of
the 2-subspaces (case n = 2), came from the study of 2-norms, 2-seminorms and
the skew-symmetric forms.

Let X denote the vector space over the field ® (P is the field of the real numbers
or the field of the complex numbers). M, (®) denotes the set of quadratic matrixes
of order n. Ay denotes the set of all ordered pairs (z, y), elements of X2, such that
the vectors z, y are linearly dependent. Let S,, denote the set of all permutations
of {1,2,...,n}.

Definition 1. The function ||-,...,-|| : X™ = R, n > 2, which satisfies the

conditions:

a) ||z1,z2, ..., xn|| = 0 if and only if the vectors x1,xa, ...,x, are linearly depen-
dent;

b) |51y Tr2ys oo ZTa)l| = |21, %2, 0y 20|, for any x1,20,...,2, € X and for
every m € Sy;

¢) |laxy, oy .oy || = |af |21, 22, ..., 0|, for any x1, 9, ...;zn, € X and for every

scalar o € ®;
d) |14, zo, o za|| < |21, T2, ooy ||+ |2Y, 22, -0y TR |, for any x4, 2, 20y 1y €
X,
is called n-norm of the vector space X, and the ordered pair (X,|| -, ...,+||) is called
n-normed space.

As a direct consequence from the definition of 2-norm is the equality
lz,yll = |,y + ax|] 1)

where z,y € X and a € ® are arbitrarily chosen.
Using (1) and the definition of 2-norms, it can easily be proved that

[la1121 + a1222, a2121 + agexa|| = |a11a22 — a12a21] |71, 22|, (2)
for an arbitrary a1, a12,a21,a22 € ® and an arbitrary xq,x2 € X.

Definition 2. The function p : X™ — R which satisfies the conditions:

a) p(x1,x2, ..., Tpn) =0 if &1, Ta, ..., are linearly dependent vectors;
27
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b) p(Tr(1)s Tr(2)s o Tr(n)) = P(T1,22,..., ), for any x1,22,...,0, € X and for
every m € Sy;

¢) plaxy, xa,...,x,) = |a|p(x1, T2y ...y Ty), for any x1,x2, ..., 2, € X and for scalar
a€ d;

d) p(x1t+a1’, 29,y xn) < p(a1, T2, ooy k) +0(21, 24 o0y ), for any 1,21’ 22, ...,
T, € X,

is called n-seminorm of the vector space X, and the ordered pair (X,p) is called

n-seminormed space.

As in the case of 2-norm, it is easy to prove that p(z,y) = p(x,y + ax), for any
z,y € X and any a € ®.
Even more, the following equality

p(ani?l + ai1272,a2171 + 0221”2) = |a11a22 - a12a21|p(:c1,:1:2) (3)
holds for any aq1,a12,a21,a22 € ® and any x1,x2 € X.

In respect to the n-seminorms and n-norms, the most suitable class of function-
als for consideration are the skew-symmetric linear forms.

Definition 3. The function A : X? — ® which satisfies the conditions:
a) ANx1 + x2,23) = A1, 23) + A2, 23), for any 21,29, 23 € X;
b) A(z1,22) = —A(z2,21), for any x1,20 € X;
c) Maxy,z9) = al(xy,x2), for any z1,29 € X and a € D,
is called 2-skew-symmetric linear form.
Immediate consequence of this definition is the following equality
A(a1121 + a12%2, a2171 + azew2) = (11022 — a12a21) A(w1, 22). (4)
Having in mind the equalities (2), (3) and (4), we introduce the denotation (a1;21+
a19T2, A2121 + G22%9) = A(x1,79)T, where A = 211 le ] € My (®), and the
21 (22
multiplication on the right hand side of the last equality is the same as the multi-
plication of a matrix with a vector. For simplification, we can use the denotation
A(.’ﬂl, $2)T = A(xl, .’EQ).
On X2, the following operations are defined:
i) (v1,23) + (x2,73) = (1 + T2, 73);
ii) (z3,21) + (23, 22) = (23,21 + 22);
iii) A(z1,22) = (@1171 + @122, 2171 + a2222),
for an arbitrary 1, xs, 23 € X and an arbitrary A = le 212 } € My(®). X2,
21 G22
with the defined operations, is called 2-vector space over the field ® or simply
2-space.
Now, the definitions of 2-norm, 2-seminorm and 2-skew-symmetric linear form
get simpler form.

Definition 4. The function || -,-|| : X2 — R which satisfies the conditions:

a) ||x1,z2]| = 0 if and only if 1,22 are linearly dependent vectors;
b) ||A(x1, z2)|| = | det Al ||z, z2]|, for any x1,x2 € X and for every A € My(®);
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¢) |lxy + xg, a5 < [|21, 3] + || w2, 23]|, for any 21, 22,23 € X,

is called 2-norm of the vector space X, and the ordered pair (X,||-,-||) is called
2-normed space.

Definition 5. The function p : X?> — R, which satisfies the conditions:

a) p(A(zy1,22)) = | det A| p(x1,x2), for any x1,22 € X and for every A € My (®);
b) p(x1 + x2,23) < p(z1,23) + p(22,73), for any x1,22,23 € X,

is called 2-seminorm of the vector space X, and the ordered pair (X,p) is called
2-seminormed space.

Definition 6. The function A : X? — ® which satisfies the conditions:

a) ANxy + x2,23) = A1, 23) + A2, 23), for any 21,29, 23 € X;
b) A(A(x1,22)) = (det A)A(x1,x2), for any x1,22 € X and for every A € My (D)

is called 2-skew-symmetric linear form.

It is easy to prove that the definitions 1 and 4, 2 and 5, and 3 and 6, in the case
n = 2, are equivalent.

Definition 7. The set W C X2, where X is a vector space over the field ®, is
2-invariant if AW C W for every A € Ma(®) for which det A = 1.

Let ||-,+||,p : X? = Rand A : X2 — & be 2-norm, 2-seminorm and 2-skew-
symmetric linear form, respectively. We consider the following sets
Nijgp = (@1, 22) |21, 22 € X, [[21, 22]] = 0}

N, ={(z1,z2) | 21,22 € X, p(x1,22) =0}

NA = {(xl,xg) |£L’1,ZL’2 c X, A($1,$2) = 0}

Using the definitions of 2-norm, 2-seminorm and 2-skew-symmetric linear form,
we get:

(x1,23) + (22,23) € S;

(z3,21) + (x3,22) € S

A(zy,x2) € S,
for any (z1,x3), (z2,23), (x3,21), (x3,22) € S and A € My(®), when S is any of
the sets Nj..||, INp or Ny.

The following definition comes naturally.

Definition 8. Let X be a vector space over the field ®. The subset S C X2 which
satisfies the conditions:

(:El,l‘g) + ($2,SC3) es;

(z3,21) + (23, 22) € S;

A(.’Eh 1’2) S S,
for any (x1,x3), (z2,x3), (3,21), (x3,22) € S and for every A € Ma(®P) is called
2-subspace of the 2-space X2.

In [2] we proved the following theorems.

Theorem 1. The intersection of an arbitrary family of 2-subspaces of X2 is a
2-subspace.
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For the set B, B C X2, with Sp, we denote the family of all 2-subspaces which
contain the set B.

If B is an arbitrary subset of X2, the smallest 2-subspace which contains the
set B will be denoted with Pg.

Theorem 2. If B, B C X2 is an arbitrary set, then Pg = [\ S.

SeSp
Note. If the 2-subspace contains the pair (z,y) then it, also, contains the pair
(y,x) and, therefore when (x,y) is a generator element of the 2-subspace, we do
not consider the pair (y,x) as a generator element of 2-subspace.

Theorem 3. Every 2-subspace of the 2-vector space X? is 2-invariant.

In the subsequent part, we will consider special cases for B. The elements for
each considered pair of B are linearly independent vectors.

In the subsequent part, we will consider the sum of two ordered pairs with
respect to first coordinate (the second coordinates of the ordered pairs are the
same). The considerations in the other case are analogues because of Theorem 1,
Theorem 2, Theorem 3 and the note after Theorem 2.

L(u,v) denotes a vector subspace of X generated with the vectors u and v.

Case 1. B = {(x1,x2)}.

In this case, it is easy to prove that Pg = {(a11214+a1222, ao1x1+a2022) | a11, a12,
asy,ase € ®}. It is clear that, for every S € Sp, {(a1121 + a1222,a0121 +
as®2)|a11,a12,a21,a22 € @} C S, and {(a1121+a1222, a2121+0a2222) | a11, @12, as1,
agz € P} is a 2-subspace which contains B = {(x1,x2)} as its subset.

We note that in this case we have Pg = L(x1,x2) X L(x1,23).

Case 2. B = {(x1,22),(x3,24)}. Let L be the subspace of X which is generated
with the vectors x1,x2, 23,24, i.e. L = L(x1,22,23,24). There are 3 possible sub
cases.
Sub case 1. dim L =4.

Since x1, x5 and x3, x4 are linearly independent, we get that L(z1, 22)NL(z3,24) =
{0}. Because of case 1, we have
]DB1 = L(l‘l,xg) X L(Z‘l,.rg), P32 = L($3,$4) X L(x3,x4), for Bl = {(.731,.132)} and
By = {(x3,74)}. Then Pp, N Pp, = {(0,0)} and therefore P = Pp, U Pp, U
fﬁam1+6m2+vx3+6x4|a4&7ﬁ6®}'
Sub case 2. dim L = 2.

If dim L(z1,z2) = 2 and dim L(x3,24) = 2 we have
Pp, = {(a1121 + a1222, a1271 + a22%2) | a11, a12, 412, a2 € P},
Pp, = {(b1123 + b1224, b1ox3 + baoxy) | b11, b12, bio, bo € P},
and therefore Pp, = Pp, = P5.
The other possibilities of this sub case 2 are trivial and we do not consider them.

Sub case 3. dim L = 3.

Without loss of generality, we may assume that x1, 29, z3 are linearly indepen-
dent vectors. Then x4 = a1+ Bzs+yx3, and the 2-subspace generated with B, =
{(21,x2)} is the same with the 2-subspace generated with By = {(ax1 + 2, 22)},
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i.e. Pp, = Pp,. On the other hand, the 2-subspace generated with Bs = {(x3,z4)}
is the same with the 2-subspace generated with By = {(z3,az1 + Bz2)}, ie.
Pp, = Pp,, and the 2-subspace generated with B = {(x1,22), (z3,24)} is the
same with the 2-subspace generated with {(ax1 + Sz2,x2), (23, ax1 + Bx2)}.

Let y1 = x1,y2 = ax1 + Bxo,y3 = x3. Then this 2-subspace is completely
described in [2], and it is equal to Pg = U o X o, where o is two dimen-

o€m(y1,Y35y2)
sional subspace defined with the vectors ay; +5ys and yo, i.e. 0 = L(ay1+Pys, y2).

Therefore Pp = |J L(ay1 + Bys, y2) x Loy + Bys, y2).
a,BeP

a1 Q22
a11Y1 + a12Y3, a21y1 + as0y3 are linearly independent. Let us suppose that there
exist a, 8 € ® and B = bii biz ] € My (®), such that
ba1  b2a
A(yla y3) = B(ayl + ﬁy?n y2)7
(@191 + a12y3, a21y1 +a22ys) = (bi1(ayr + Bys) + b2y, ba1 (ayr + Bys) + ba2ys).
The last equality is possible if b12 = b22 = 0 and a1y + a12yYs3 = bll(ayl +
By3), az1y1 + ays = bai(ay1 + Bys).
The last equalities are not possible because the vectors by1 (ay; 4+ Bys) and bay (ayr +
Bys) are linearly dependent.
Therefore, Pg # L x L, where L = L(y1, Y2, y3)-

Note. If A = [ @i } € My (®) such that det A # 0, then the vectors

Note. Before we go to the next sub case, we will consider one 2-subspace generated
with 3 elements, i.e. generated with the set B = {(x1,z2), (2, z3), (x3, 1)}, where
1, %2, x3 are linearly independent vectors. We will show that, in this case, the
2-subspace generated with the set B is L x L, where L = L(x1, z2, z3).
Indeed, if z = a11T1 + a1222 + a13T3 and Yy = bllxl + blgl‘g + b135€37 then
(7,y) = (a1121 + @122 + 1373, b1121 + biaxa + b1373)

= ({ ZE a52 } (z1,22) + { b(1)1 a(l)B } (x1,z3)) +
(R LR P )
a 0 a a
H(L e+ 0 | e,

This example gives motivation to define one characteristic type of 2-subspace of
2-vector space X?2.

Definition 9. Let X be a wvector space over the field ® and let L C X be its
vector subspace. The set L x L, which is 2-subspace of X2, will be called kernel
2-subspace.

We note that the dimension of L might be an arbitrary one.

Considering the case 2, it becomes clear that consideration of 2-subspaces gen-
erated with the subsets of X2 which have more than two generator elements, would
be very complicated in this way. Therefore, we will continue the considerations in
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a different way.

Case 3. Let L be the subspace of X generated with the linearly independent
vectors 1, T2, T, L4, i.e. L = L(xy,Ta,x3,24). If Q = {21, 22, 23,24} then the set
(Q x Q) \ Ag, has 6 elements, i.e. U= (Q x Q)\ Az = {(z1,x2), (x1,23), (x1,24),
(x27 1’3), (x27 1'4)7 (1’3, 1'4)}

The subsets of U with one or two elements are of no interest since they generate
2-subspaces which are, already, described in the previous cases.

There are 20 subsets of U with 3 elements, 15 subsets of U with 4 elements and
6 subsets of U with 5 elements. So, there are 41 different 2-subspaces generated
with 3, 4 or 5 elements that have to be described.

For an easier characterization of the 2-subspaces in this case, we will give a
schematic description for each of them. The vectors will be represented with points
in the plane and the ordered pair, which is a generator element, will be represented
with a segment that connects the elements of the ordered pair. Considering all
the possible schemes for a generator set with 3 elements that generates 2-subspace
different than the previously described, we notice that there are two different
types. They will be described in the sub cases 1 and 2. Considering all the
possible schemes for the 2-subspaces generated with 4 elements, we notice that
there are two different types of 2-subspaces and that they will be described in the
sub cases 3 and 4.

Schematic description of the types of generator sets (with 3 and 4 generator ele-
ments) which are subsets of {(z1,x2), (z1,3), (21, x4), (T2, 23), (X2, 24), (x3,24)},
where 1, T2, T3, x4 are linearly independent vectors:

Types of generator sets with 3 elements:

AN

{
type 1 type 2 type 3

Types of generator sets with 4 elements:

type 4 type 5

Sub case 1. B = {(z1,x2), (x1,x3), (x1,24)} (type 3)
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The 2-subspace generated with the elements of the subset By = {(z1, z2), (x1,23)}
is described in the sub case 3 of the case 2. This 2-subspace is of the form

U L(axs+ Brs,x1) X L(aws + Bas,x1),
a,BeP
and, at the same time, it is 2-subspace of Pg.

If y € L(x9,x3,24) is an arbitrary chosen element, i.e. y = axs + fas + Y4,
then
(y,21) = (aw2 + Bas + ya4, 21) = (ax2 + Bg, v1) + (Y4, 71),

and since (axa+Bxs3, 1), (Y24, 21) = g ﬂ (x4,71) € Pp, we get that (y,x1) €
Pp.
It is not hard to prove that |J L(axza+Brs+y2s, x1) X L(aze+LBas+yxye, 21)

a,B,7e®
is 2-subspace, which is 2-subspace of every 2-subspace S, S € Sp. Therefore

Pp= U L(azy+ fxs+yxg,x1) X L(axe + Brs + yr4, 21)
a,B,yeP
= U L(u,z1) x L(u,z1)
uweL(x2,x3,x4)
Sub case 2. B = {(z1,x2), (x2,23), (x3,24)} (type 1).

For the sets By = {(z1,22), (z2,23)} and By = {(z2,3), (x3,24)}, the 2-
subspaces Pp, and Pp, are 2-subspaces of every 2-subspace S, S € Sp. Let
(@11 (az1+Bx3)+a12x2, ao (az1+8x3)+azers) and (b1 (yre+0xa)+bioxs, bar (Yo +
0x4) + baaws) be an arbitrary elements of Pg, and Pg,, respectively. Adding two
elements is possible if and only if

ag1021 + a21 873 + a2 = ba1yra + ba1624 + 2223,

Because of the assumed linear independence, the last equality is possible if and
only if a1 v = 0, b215 = O, aglﬁ = bgg and bgl’}/ = ag2.

1) a1 = O, b21 =0.

Then ass = 0, bes = 0 and the result of the adding is an element of As, i.e.

(a11(oxq + Bx3) + a122,0) + (b1 (yx2 + 024) + bi2xs, 0) =

= (CLHOzCL'l + (auﬁ + b12)$3 + (CL12 + b11’7)l'2 + b115$4,0) € As.

11) a:O, b21:0

In this case, azs = 0 and the adding is possible if and only if a8 = bas = s,
and the result of the adding is

(a11Bx3 + aia2, sx3) + (b11(yw2 + 024) + bi2xs, sT3) =
= ((a118 + b12)xs + (@12 + b117y)T2 + b11024, 523).

Because of the 2-invariance of Pg, we get that the ordered pair on the right
hand side of the last equality is an element of Pp,.

lll) a1 = O, 6=0.

In this case, bos = 0 and the adding is possible if and only if by1y = ass = ¢, and
the result of the addmg is (an(ole + Bl‘g) + a12x2, tl‘z) + (bll’}/IQ + b12x3, t.IQ) =
(a11021 + (a118 + bi2)xs + (ai2 + bi1y)we, tr)

Again, because of the 2-invariance of Pg, we get that the ordered pair on the
right hand side of the last equality is an element of Pp, .

iv)a=0,6=0.
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In this case, the adding is possible if and only as1 8 = bas = s and bo1y = age =
t, and the result of the adding is

(11823 + ai2w2, 573 + txg) + (br1ywe + biaws, txg + sw3) =

= ((a12 + b117)x2 + (a118 + b12)xs, txs + sz3).

The element from the right hand side of the last equality belongs to Pp, and
to PB2.

The other possibilities of adding elements of Pg are trivial.

From the above discussion, in this case we get that Pp = Pp, U Pp,.

From the 2-subspaces generated with 4 elements, it is enough to consider two
types.

Sub case 3. B = {(z1,22), (v2,23), (v3,21), (x1,24)} (type 5) .

In the sub case 3 of the case 2, we saw that the 2-subspace generated with the
set By = {(z1,x2), (x2,23), (x3,21)} is Pp, = L(x1,22,23) X L(z1,22,23). Let
u € L(x1,z2,x3) be an arbitrary element. If S is any 2-subspace which contains
B, then (u, 1) and (x4, 1) belong to S, therefore S contains

U L(au+ dzyg,z1) X L(cu + Bxg,x1), as its 2-subspace.
a,0eP
On the other hand, since a and g are arbitrary and having in mind the form of

u, it is not hard to see that
U U Lpu+dxg,x1) X L(nu+ Bry,z1) =
weL(z1,x2,23) N,0€D
= U L(axy + Bra+yx3 + dz4,21) X Llaxy + Pre + yas + dxg,71) =
a,B,v,0€P
= U L(v,z1) X L(v,z1)
vEL(x1,x2,x3,T4)
is 2-subspace of S, S € Sp. Therefore Pp = U L(v,z1) X L(v,x1).
vEL(x1,r2,x3,T4)
Sub case 4. B = {(x1,x2), (22, 23), (z3,24), (x4, 21)} (type 4) For the sets
By = {(w1,%2), (v2,%3)}, B2 = {(2,23), (x3,24)}, Bs = {(¥3,74), (v4,71)} and
By = {(x4,21), (21, 22)}, the 2-subspaces
Pp, = U Loz + Bas,x2) x L(az1 + Bz, x2)

a,fed

Pp, = U L(yxz + 0x4,23) X L(yzs + 014, 23)
v¥,0€P

Pp,= U L(pzi + ves,zs) X L(pzy + ves, x4)
u,ved

and

P, = U L(nwe+ 0xs,x1) X L(nre + 04, 1)

n,0€®

are 2-subspaces which are 2-subspaces of every 2-subspace S, S € Sp.
On the other hand, Po= |J L(azy + Bxs,yxo+0dx4) X L(axt + Sxs, yro+0xy)
a,B,7,6
is 2-subspace which is 2-subspace of every 2-subspace S, S € Sp.

Using the results of the sub case 2 of this case, it is not hard to prove that
P = Pp, UPp, U P, UPp, UPF, is 2-subspace which is 2-subspace of every 2-
subspace S, S € Sp.

Therefore Pg = Pg, U P, U Pp, U Pp, UP,.

There exists only one type of 2-subspaces generated with 5 elements.
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Sub case 5. B = {(z1,22), (x2,x3), (3, 24), (x4, 21), (x1,23)}.

We note that, in this case the 2-subspaces of Pp are the kernel 2-subspaces gen-
erated with By = {(x1,x2), (x2,x3), (x3,21)} and By = {(21,x4), (x4, x3), (x3,21)}.
Their form is

Pg, = L(x1,z2,23) X L(x1,x2,23) and Pg, = L(x1,x3,14) X L(x1,x3,24).

For two elements (a1121 + a1223 + a1324, 2121 + a2223 + agzx4) and (b11z1 +
biaxa + b13xs3, bo1x1 + booxa + baszs) of Pp, and Pp,, respectively, the adding is
possible if and only if as3 = bag = 0, and, because of the linear independence, we
have that as; = ba1 = s and ags = beg = t. In this case, we have

(a11$1 +a1273 4+ a13x4, ST1 + txg) + (5111‘1 +bioxs + bi3x3, ST + thg) = ((a11 +
bi1)x1 + bioxy + (@12 + b13)x3 + 1324, 521 + t13)

Since a1, b11, b12,a12,b13,a13 € ® are arbitrarily chosen, we get that

T= U L(u,v) x L(u,v)
wEL(x1,x2,23,T4)
vEL(z1,x3)
is 2-subspace of every 2-subspace S, S € Sp. Therefore T' C Pg.

We notice that the sum of two elements in Pp, is an element in Pp,, the sum
of two elements in Pp, is an element in Pp,, the sum of two elements in 7" is an
element in 7', and the sum of an element in 7" and an element in Pp, or Pg, is an
element in 7T

Therefore Pg, U Pp, UT is 2-subspace of every 2-subspace S, S € Sp. Finally,
PB:PBIUPBzUT.

The further on approach in this way, like in the case 2 and in the case 3, as well
as the previous approaches in the description of the 2-subspaces of 2-vector space
X2 is very complicated and technically almost impossible. We have to consider
enormous number of cases, i.e. types of 2-subspaces in respect to the number of
generator elements.

For example, if we consider 5 vectors x1, T2, T3, T4, x5 which are linearly inde-
pendent, then the set (R x R)\ Ay, where R = {x1, x2, 3, x4, x5} has 10 elements,
ie.

W= (R X R) \ Ay = {(xl’ 1'2>’ ($1, 1’3)7 (1’1; (E4), (Ila (ﬂ5), (an x3)a (x27 £C4),

(l'?v ;C5)7 (‘7337 $4), (£C3, $5), ($47 .%'5)}

Now, the number of different generator subsets of W is 2'° — 1 = 1023. There
are 252,210,120, 45 and 9 generator sets with 5,6, 7, 8 and 9 elements, respectively,
and the number of different 2-subspaces is the same, i.e. 636. So, in this case, for
complete description, should, also, be considered some other 2-subspaces generated
with 4 elements.

Schematic description of the types of generator subsets (with 5 elements) of the
set W:
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R

type 1 type 2 type 3 type 4 type 5 type 6

If we consider 6 vectors 1, T2, X3, X4, x5, g which are linearly independent and
then repeat the same procedure as before, we get that the number of 2-subspaces
generated with the elements of the set (T'xXT)\Aq, where T' = {x1, x2, x3, T4, T5, Ts },
is 21 — 1 = 22787. The number of different types of 2-subspaces generated with
the elements is smaller than 22787, but still it is a big number.

What we can see from the schematic description is that some of the 2-subspaces
have a specific structure. So, the 2-subspace from the sub case 4 is generated with
elements of the form {(a,b), (b,¢), (¢,d),(d,a)}, where the elements a,b,c,d are
linearly independent vectors. We will call these 2-subspaces cycle 2-subspaces
and give a general definition of this type of 2-subspaces.

Definition 10. Let X be a vector space over a field ®, and let x1,x2,...,xn, 1 >3
be linearly independent vectors. The 2-subspace generated with the elements of the
set {(x1,22), (X2, 23), oy (Tn—1, Tn), (Tn,x1)} will be called cycle 2-subspace.

From the description of the sub case 2 of the case 2, we notice another type of
specific 2-subspace of the 2-vector space X2. So, if a, b, ¢, d are linearly independent
vectors then the 2-subspace generated with the set {(a, b), (b, ¢), ¢, d)} will be called
branch 2-subspace. These types of 2-subspaces may be considered in a general
case (with more than 3 generator elements).

Definition 11. Let X be a vector space over a field ®, and let x1,x2,..., Ty, ...
be linearly independent vectors. The 2-subspace generated with the elements of the
set {(x1,22), (X2, 23), oy (Tn—1,Tn), ...} will be called branch 2-subspace.

Note. The generator set in the previous definition might be finite one.
The 2-subspaces in the case 3 give motivation for the definition, in a general
sense, of another type of 2-subspaces of 2-vector space.

Definition 12. Let x1, 3,3, ...., Ty, ... be linearly independent vectors of the vec-
tor space X. The 2-subspace generated with the set {(x1,x;) i =2,3,4,...} will be
called loop 2-subspace.

Note. The generator set in the previous definition might be finite one.

The 2-subspaces which do not have cycle 2-subspases and kernel 2-subspace as
their own subspaces will be called tree 2-subspaces.

The discussion in the sub case 2 of the case 3 is a motivation for complete
description of the branch 2-subspaces.
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Theorem 4. If M is a branch 2-subspace generated with the set

{(z1,22), (2,23), oo, (Trm—1,Tm), ...}, where {1,Ta, T3, ..., T, ...} is linearly in-
dependent set, then
M= U Lz +aisimioa, @) x L{aiamig + aio1mio1, 1)

i€N\{1} a;—1,a;41€P

Proof. Let Bi_1 = {(xi—2,zi—1), (xi—1,2;)} and Bip1 = {(x4, Tit1), (Tig1, Tit2) }-
Then the 2-subspaces generated with B;_; and B, are

Pp,_, = U L(awi—o+ Bri,xi-1) X L(axi—s + Br;, xi—1)
a,Bed

Pp,., = U L(vai + 0xive, Tis1) X L(yx; 4+ 0%iq2, Tit1)

v,6€®

Arbitrary two elements from Pp, , and Pp,_,,

(a11(ai—o + Bx;) + a12xi—1, a1 (ax;—2 + Bx;) + azex;—1) and

(b1 (vs + 0xit2) + b1azit1, b1 (Y2; + 0xit2) + baowif)
may be added if and only if ags = by = 0, a1 = 0, b210 = 0 and a218 = ba1y = s.

If « =6 =0, then

(a110x; + a12wi—1, sx;) + (b11yx; + biaxiy1, sx;) = (ar12xi—1 + (@118 + b11y)x; +
b12$i+1, SZL'Z) S PBi where B; = {(‘Ii_hl’i), (SCZ‘,SCH_l)}.

The rest of the cases a1 = 0,6 = 0; byy = 0, = 0 or az; = 0,b21 = 0 reduce
to adding of elements of As.

Therefore, for two elements whose sum is defined, the sum always belongs to
some of the 2-subspaces Pp, , where By = {(xx_1, k), (Tg, Tp+1) }-

Repeating the procedure from the sub case 2 of the case 3 for the subspaces
Pp, , and Pp,, for i = 2,3,4,... and using the previous part of the proof of the
theorem, we conclude the proof. O

Note. If the generator set in the previous theorem is finite, {(x1, z2), (z2, z3), ...,
(Tp—1,%n)}, then

n—1
M = U U L(aip1®ip1 + ai—12i—1,03) X L(ai112i41 + ai—125-1, ;).
1=2 a;_1,a;+1€P
Because of the description of the 2-subspace in the sub case 1 of the case 3, and
using the principle of mathematical induction, we can easily prove the following
theorem.

Theorem 5. If M is loop 2-subspace generated with the set {(x1,x;) |1 =2,3,4,...},
then
M = U L(u,21) x L(u,z1),
w€L(za,x3,...)
where L = L(xq,x3,...) is the subspace of X generated with {2, x3,...}.

Proof. The proof follows from the sub case 1 of the case 3, using the principle of
mathematical induction. O

Theorem 6. The cycle 2-subspace generated with the elements of the set
{(z1,22), (2,23), ey (Tn—1,Zp), (Xn,x1)} forn > 5 is
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M= U [L(axy + Br3,x2) x L(ax; + 3, x2)] U

a,Bed
@] U [L(’YZEQ + x4, 1‘3) X L(’yl‘g + 5334,%‘3)] U
v,0€P
U..U U [LOxp—1+nz1,2,) X L(0x,—1 + nx1,2,)].

0,ned

Proof. The proof is a direct consequence from theorem 4 and the sub case 2 of the
case 3. (|

Note. A cycle 2-subspace for n = 4 is described in the sub case 4 of the case 3.
A cycle 2-subspace for n = 3 is a kernel 2-subspace described in the note after the
sub case 3 of the case 2.

The following problem concerning the 2-subspaces of 2-vector space X? arises
from the consideration of the previous examples of the 2-subspaces.
Problem. Whether every 2-subspace S of a given 2-vector space has at least one
minimal generator set {(zq,zg) |, 8 € A}, i.e. a set which satisfies

(y,5) ¢ Pp, where B = {(zq,23) |, 8 € A}\{(2,x5)}, for every (z,,zs5) €
{(xa,zp) |, € A} and S = Pg?

Such minimal generator set of 2-subspace S, if it exists, will be called 2-base

of S.
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