Математички Билтен Vol. 38(LXIV) No. 1 2014 (35-43) Скопје, Македонија

NEW CHARACTERIZATION OF 2-PRE-HILBERT SPACE

Samoil Malčeski¹, Katerina Anevska² and Risto Malčeski³

Abstract. The problem of finding necessary and sufficient conditions a 2-normed space to be treated as 2-pre-Hilbert space is the focus of interest of many mathematicians. Few characterizations of 2-inner product are given in [1], [3], [5], [6], [8] and [9]. In this paper a new necessary and sufficient condition for existence of 2-inner product into 2-normed space is given.

1. Introduction

Let L be a real vector space with dimension greater than 1 and $\|\cdot,\cdot\|$ be a real function on $L\times L$ such that:

- a) $||x,y|| \ge 0$, for all $x,y \in L$ and ||x,y|| = 0 if and only if the set $\{x,y\}$ is linearly dependent,
- b) ||x, y|| = ||y, x||, for all $x, y \in L$,
- c) $\|\alpha x, y\| = |\alpha| \cdot \|x, y\|$, for all $x, y \in L$ and for each $\alpha \in \mathbf{R}$, and
- d) $||x+y,z|| \le ||x,z|| + ||y,z||$, for all $x, y, z \in L$.

The function $\|\cdot,\cdot\|$ is said to be 2-norm of L, and $(L,\|\cdot,\cdot\|)$ is said to be vector 2-normed space ([7]). The inequality in the axiom d) is said to be parallelepiped inequality.

Let n > 1 be a positive integer, L be a real vector space, $\dim L \ge n$ and $(\cdot, \cdot | \cdot)$ be a real function over $L \times L \times L$ such that:

- i) $(x,x|y) \ge 0$, for all $x,y \in L$ and (x,x|y) = 0 if and only if x and y are linearly dependent,
- ii) (x, y | z) = (y, x | z), for all $x, y, z \in L$,
- iii) $(x, x \mid y) = (y, y \mid x)$, for all $x, y \in L$,
- iv) $(\alpha x, y | z) = \alpha(x, y | z)$, for all $x, y, z \in L$ and for each $\alpha \in \mathbf{R}$, and
- v) $(x+x_1, y|z) = (x, y|z) + (x_1, y|z)$, for all $x_1, x, y, z \in L$.

The function $(\cdot,\cdot|\cdot)$ is said to be 2-*inner product*, and $(L,(\cdot,\cdot|\cdot))$ is said to be 2-*pre-Hilbert space* ([3]).

The concepts of 2-norm and 2-inner product are two dimensional analogies of the concepts of norm and inner product. R. Ehret proved ([7]) that if $(L, (\cdot, \cdot | \cdot))$ is a 2-pre-Hilbert space, then

$$||x, y|| = (x, x | y)^{1/2},$$
 (1)

for all $x, y \in L$ defines 2-norm. So, we get vector 2-normed space $(L, \|\cdot, \cdot\|)$ and moreover, for all $x, y, z \in L$ the following equalities are satisfied:

$$(x, y \mid z) = \frac{\|x + y, z\|^2 - \|x - y, z\|^2}{4},$$
 (2)

$$||x+y,z||^2 + ||x-y,z||^2 = 2(||x,z||^2 + ||y,z||^2),$$
 (3)

The equality (3) is actually analogous to the parallelogram equality and it is called parallelepiped equality. Further, 2-normed space L is 2-pre-Hilbert space if and only if for all $x, y, z \in L$ the equality (3) holds true.

2. CHARACTERIZATION OF 2-PRE-HILBERT SPACE

The problem of characterization of 2-pre-Hilbert spaces, i.e. finding the necessary and sufficient conditions the 2-normed spaces to be treated as 2-pre-Hilbert space is of particular interest while studying the 2-normed spaces. Thus, in [1] is given characterization of 2-pre-Hilbert space using the equality of Euler-Lagrange type, in [8] is given characterization using the strictly convex norm with modulus c, and in [9] are given characterizations using the Mercer inequality for 2-normed space and its equivalent inequality. In the following theorem are given some of the already known characterizations of 2-pre-Hilbert spaces, which are necessary for our further considerations.

Theorem 1 ([3]). Let $(L, \|\cdot, \cdot\|)$ be 2-normed space. L is 2-pre-Hilbert space if and only if for each $z \in L \setminus \{0\}$ one of the following conditions is satisfied:

 II_1 . For all $x, y, z \in L$ such that ||x, z|| = ||y, z|| and for all $m, n \in \mathbf{R}$ it holds true that ||mx + ny, z|| = ||nx + my, z||.

 II_2 . ||x+y,z|| = ||x-y,z||, $x, y, z \in L$ implies that

$$||x + y, z||^2 = ||x, z||^2 + ||y, z||^2$$

- II_3 . It exists a real number $\alpha \neq 0, \pm 1$ such that $\|x, z\| = \|y, z\|, x, y, z \in L$ implies that $\|x + \alpha y, z\| = \|\alpha x + y, z\|.$
- II_4 . It exists a real number $\alpha \neq 0, \pm 1$ such that $\|x+y,z\| = \|x-y,z\|$, $x,y,z \in L$ implies that $\|x+\alpha y,z\| = \|x-\alpha y,z\|$.
- II_5 . ||x,z|| = ||y,z||, $x,y,z \in L$ implies that for each real number $\alpha > 0$ it holds true that

$$\|\alpha x + \alpha^{-1}y, z\| \ge \|x + y, z\|.$$

 H_6 . For all $x_1, x_2, x_3, z \in L$ such that $\sum_{i=1}^3 x_i = 0$ and $||x_1, z|| = ||x_2, z||$ it holds true that

$$||x_1-x_3,z|| = ||x_2-x_3,z||$$
.

 II_7 . For all $x_1, x_2, x_3, x_4, z \in L$ such that $\sum_{i=1}^4 x_i = 0$ and $||x_1, z|| = ||x_2, z||$ and $||x_3, z|| = 0$

 $||x_4, z||$ it holds true that

$$||x_1 - x_3, z|| = ||x_2 - x_4, z||$$
 and $||x_2 - x_3, z|| = ||x_1 - x_4, z||$.

 II_8 . For all $x_1, x_2, x_3, z \in L$ the value of the expression

$$F(x_1, x_2, x_3, z) = ||x_1 + x_2 + x_3, z||^2 + ||x_1 + x_2 - x_3, z||^2 - ||x_1 - x_2 - x_3, z||^2 - ||x_1 - x_2 + x_3, z||^2$$

does not depend on x_3 .

 H_9 . For all $x_1,...,x_n,z \in L$, $n \ge 3$ such that $\sum_{i=1}^n x_i = 0$ it holds true that

$$\sum_{i \neq k} \|x_i - x_k, z\|^2 = 2n \sum_{i=1}^n \|x_i, z\|^2 . \blacksquare$$

In the following theorem a new characterization of 2-pre-Hilbert space will be given.

Theorem 2. Let $(L, \|\cdot, \cdot\|)$ be a real 2-normed space. Then L is 2-pre-Hilbert space if and only if the following condition is satisfied

 II_{10} . If $n \ge 3$, $x_1, x_2, ..., x_n, z \in L$ and $\alpha_1, \alpha_2, ..., \alpha_n$ are real numbers such that

$$\sum_{i=1}^{n} \alpha_i = 0$$
, then

$$\| \sum_{i=1}^{n} \alpha_{i} x_{i}, z \|^{2} = - \sum_{1 \le i < j \le n} \alpha_{i} \alpha_{j} \| x_{i} - x_{j}, z \|^{2}.$$

Proof. Let the condition II_{10} be satisfied. If $x_1, x_2, z \in L$, then for $x_3 = 0$ and the condition II_{10} applied to the vectors $x_1, x_2, x_3, z \in L$ and the real numbers $\alpha_1 = \alpha_2 = 1$, $\alpha_3 = -2$ follow the following equalities

$$||x_1 + x_2, z||^2 = ||x_1 + x_2 + (-2) \cdot 0, z||^2$$

$$= -1 \cdot (-2) ||x_1 - 0, z||^2 - 1 \cdot (-2) ||x_2 - 0, z||^2 - 1 \cdot 1 ||x_1 - x_2, z||^2$$

$$= 2 ||x_1, z||^2 + 2 ||x_2, z||^2 - ||x_1 - x_2, z||^2,$$

The latter implies the parallelepiped equality, which actually means that L is 2-pre-Hilbert space.

Let L be 2-pre-Hilbert space. Applying the principle of mathematical induction we will prove that the condition H_{10} is satisfied. Let n=3, $\alpha_1,\alpha_2,\alpha_3$ be real numbers such that $\alpha_1 + \alpha_2 + \alpha_3 = 0$ and $x_1, x_2, x_3, z \in L$. Then by the properties of 2-inner product and since $\alpha_1 + \alpha_2 = -\alpha_3$ we get that

$$\begin{aligned} \|\alpha_{1}x_{1} + \alpha_{2}x_{2} + \alpha_{3}x_{3}, z\|^{2} &= \|\alpha_{1}(x_{1} - x_{3}) + \alpha_{2}(x_{2} - x_{3}), z\|^{2} \\ &= \alpha_{1}^{2} \|x_{1} - x_{3}, z\|^{2} + \alpha_{1}\alpha_{2}(x_{1} - x_{3}, x_{2} - x_{3} | z) \\ &+ \alpha_{1}\alpha_{2}(x_{2} - x_{3}, x_{1} - x_{3} | z) + \alpha_{2}^{2} \|x_{2} - x_{3}, z\|^{2} \\ &= \alpha_{1}^{2} \|x_{1} - x_{3}, z\|^{2} + \alpha_{1}\alpha_{2}(x_{1} - x_{3}, x_{1} - x_{3} + x_{2} - x_{1} | z) \\ &+ \alpha_{1}\alpha_{2}(x_{2} - x_{3}, x_{2} - x_{3} + x_{1} - x_{2} | z) + \alpha_{2}^{2} \|x_{2} - x_{3}, z\|^{2} \\ &= \alpha_{1}^{2} \|x_{1} - x_{3}, z\|^{2} + \alpha_{1}\alpha_{2} \|x_{1} - x_{3}, z\|^{2} + \alpha_{1}\alpha_{2}(x_{1} - x_{3}, x_{2} - x_{1} | z) \\ &+ \alpha_{1}\alpha_{2} \|x_{2} - x_{3}, z\|^{2} + \alpha_{1}\alpha_{2}(x_{2} - x_{3}, x_{1} - x_{2} | z) + \alpha_{2}^{2} \|x_{2} - x_{3}, z\|^{2} \\ &= \alpha_{1}(\alpha_{1} + \alpha_{2}) \|x_{1} - x_{3}, z\|^{2} + \alpha_{2}(\alpha_{1} + \alpha_{2}) \|x_{2} - x_{3}, z\|^{2} \\ &- \alpha_{1}\alpha_{2}[(x_{1} - x_{3}, x_{1} - x_{2} | z) + (x_{3} - x_{2}, x_{1} - x_{2} | z)] \\ &= -\alpha_{1}\alpha_{3} \|x_{1} - x_{3}, z\|^{2} - \alpha_{2}\alpha_{3} \|x_{2} - x_{3}, z\|^{2} - \alpha_{1}\alpha_{2} \|x_{1} - x_{2}, z\|^{2}, \end{aligned}$$

which means that the condition II_{10} holds true.

Let in the 2-pre-Hilbert space L the condition II_{10} be satisfied for some positive integer $n \geq 3$. Let $x_1, x_2, ..., x_n, x_{n+1}, z \in L$ and $\alpha_1, \alpha_2, ..., \alpha_n, \alpha_{n+1}$ be real numbers such

that
$$\sum_{i=1}^{n+1} \alpha_i = 0$$
 and let

$$\beta = \alpha_1 + \alpha_2 + ... + \alpha_{n-1} = -(\alpha_n + \alpha_{n+1})$$
.

Then, since

$$\frac{\beta}{-\alpha_{n+1}} + \frac{\alpha_n}{-\alpha_{n+1}} - 1 = 0$$
 and $1 + \sum_{i=1}^{n+1} \frac{\alpha_i}{\beta} = 0$

the inductive assumption implies that

$$\begin{split} &\| \sum_{i=1}^{n+1} \alpha_i x_i, z \, \|^2 = \alpha_{n+1}^2 \, \| \sum_{i=1}^{n-1} \frac{\alpha_i}{-\alpha_{n+1}} \, x_i + \frac{\alpha_n}{-\alpha_{n+1}} \, x_n + (-1) x_{n+1}, z \, \|^2 \\ &= \alpha_{n+1}^2 \| \frac{\beta}{-\alpha_{n+1}} (\sum_{i=1}^{n-1} \frac{\alpha_i}{\beta} \, x_i) + \frac{\alpha_n}{-\alpha_{n+1}} \, x_n + (-1) x_{n+1}, z \, \|^2 \\ &= \alpha_{n+1}^2 [-\frac{\beta \alpha_n}{\alpha_{n+1}^2} \| \sum_{i=1}^{n-1} \frac{\alpha_i}{\beta} \, x_i - x_n, z \, \|^2 - \frac{\beta}{\alpha_{n+1}} \| \sum_{i=1}^{n-1} \frac{\alpha_i}{\beta} \, x_i - x_{n+1}, z \, \|^2 - \frac{\alpha_n}{\alpha_{n+1}} \| \, x_{n+1} - x_n, z \, \|^2 \\ &= -\beta \alpha_n \, \| \sum_{i=1}^{n-1} \frac{\alpha_i}{\beta} \, x_i - x_n, z \, \|^2 - \beta \alpha_{n+1} \, \| \sum_{i=1}^{n-1} \frac{\alpha_i}{\beta} \, x_i - x_{n+1}, z \, \|^2 - \alpha_n \alpha_{n+1} \, \| \, x_{n+1} - x_n, z \, \|^2 \\ &= -\beta \alpha_n [-\sum_{1 \le i < j \le n-1} \frac{\alpha_i \alpha_j}{\beta^2} \| \, x_i - x_j, z \, \|^2 + \sum_{i=1}^n \frac{\alpha_i}{\beta} \| \, x_i - x_n, z \, \|^2] \end{split}$$

$$\begin{split} &-\beta\alpha_{n+1}[-\sum_{1\leq i< j\leq n-1}\frac{\alpha_{i}\alpha_{j}}{\beta^{2}}\|x_{i}-x_{j},z\|^{2}+\sum_{i=1}^{n}\frac{\alpha_{i}}{\beta}\|x_{i}-x_{n+1},z\|^{2}]\\ &-\alpha_{n}\alpha_{n+1}\|x_{n+1}-x_{n},z\|^{2}\\ &=\frac{\alpha_{n}+\alpha_{n+1}}{\beta}\sum_{1\leq i< j\leq n-1}\alpha_{i}\alpha_{j}\|x_{i}-x_{j},z\|^{2}-\sum_{i=1}^{n}\alpha_{i}\alpha_{n}\|x_{i}-x_{n},z\|^{2}\\ &-\sum_{i=1}^{n}\alpha_{i}\alpha_{n+1}\|x_{i}-x_{n+1},z\|^{2}-\alpha_{n}\alpha_{n+1}\|x_{n+1}-x_{n},z\|^{2}\\ &=-\sum_{1\leq i< j\leq n+1}\alpha_{i}\alpha_{j}\|x_{i}-x_{j},z\|^{2}. \end{split}$$

The latter means that the condition II_{10} also holds true for n+1. So, the principle of mathematical induction implies that II_{10} holds true for each positive integer.

The theorems 1 and 2 imply that in 2-normed space the conditions $II_1 - II_{10}$ are equivalent to each other. In the further considerations we will prove that the condition II_{10} directly implies some of the conditions $II_1 - II_9$.

Lemma 1. Let L be 2-normed space. Then the condition II_{10} implies the condition II_{9} .

Proof. Let $x_1,...,x_n,z\in L$, $n\geq 3$ be such that $\sum_{i=1}^n x_i=0$. Then the condition II_{10} implies the following

$$0 = \|\sum_{i=1}^{n} x_{i}, z\|^{2} = \|x_{1} + x_{2} + ... + x_{n} - n \cdot 0, z\|^{2} = n\sum_{i=1}^{n} \|x_{i} - 0, z\|^{2} - \sum_{1 \le i < k \le n} \|x_{i} - x_{k}, z\|^{2},$$

which implies that

$$\sum_{i \neq k} \|x_i - x_k, z\|^2 = \sum_{1 \le i < k \le n} \|x_i - x_k, z\|^2 + \sum_{1 \le k < i \le n} \|x_k - x_i, z\|^2 = 2n \sum_{i=1}^n \|x_i, z\|^2,$$

i.e. the condition II_9 is satisfied.

Lemma 2. Let L be 2-normed space. Then the condition II_{10} implies the condition II_5 . **Proof.** Let ||x,z|| = ||y,z||, $x,y,z \in L$ and $\alpha > 0$ be real number. Then the condition II_{10} implies the following

$$\|\alpha x + \alpha^{-1} y, z\|^{2} = \|\alpha x + (-\alpha^{-1})(-y) + (\alpha^{-1} - \alpha)0, z\|^{2}$$

$$= -\alpha(\alpha^{-1} - \alpha) \|x, z\|^{2} + \alpha^{-1}(\alpha^{-1} - \alpha) \|y, z\|^{2} + \|x + y, z\|^{2}$$

$$= (-1 + \alpha^{2} + \frac{1}{\alpha^{2}} - 1) \|x, z\|^{2} + \|x + y, z\|^{2}$$

$$= (\alpha + \frac{1}{\alpha})^{2} \|x, z\|^{2} + \|x + y, z\|^{2} \ge \|x + y, z\|^{2},$$

thus $||\alpha x + \alpha^{-1}y, z|| \ge ||x + y, z||$, i.e. the condition II_5 is satisfied.

Lemma 3. Let L be 2-normed space. Then the condition H_{10} implies the condition H_1 . **Proof.** Let $x, y, z \in L$ be such that $||x, z|| = ||y, z|| m, n \in \mathbf{R}$. Then the condition H_{10} implies that

$$|| mx + ny, z ||^2 = || mx + ny + (-m - n)0, z ||^2$$

$$= m(m+n) || x, z ||^2 + n(m+n) || y, z ||^2 - mn || x - y, z ||^2$$

and

$$|| nx + my, z ||^2 = || nx + my + (-m - n)0, z ||^2$$

$$= n(m + n) || x, z ||^2 + m(m + n) || y, z ||^2 - mn || x - y, z ||^2.$$

Further, since ||x, z|| = ||y, z||, the last two equalities imply that

$$||nx + my, z||^2 = ||mx + ny, z||^2$$
, i.e. $||mx + ny, z|| = ||nx + my, z||$,

The latter means that the condition II_1 is satisfied.

Lemma 4. Let L be 2-normed space. Then the condition II_{10} implies the condition II_3 . **Proof.** Let ||x,z|| = ||y,z||, $x,y,z \in L$ an let α be a real number such that $\alpha \neq 0,\pm 1$. Then the condition II_{10} implies that

$$\| x - y, z \|^{2} = \| \frac{1}{\alpha} (\alpha x) + (-y) + (-1 - \frac{1}{\alpha}) 0, z \|^{2}$$

$$= \frac{\alpha + 1}{\alpha^{2}} \| \alpha x, z \|^{2} + \frac{\alpha + 1}{\alpha} \| -y, z \|^{2} - \frac{1}{\alpha} \| \alpha x - (-y), z \|^{2}$$

$$= (\alpha + 1) \| x, z \|^{2} + \frac{\alpha + 1}{\alpha} \| y, z \|^{2} - \frac{1}{\alpha} \| \alpha x + y, z \|^{2}$$

and

$$\begin{aligned} \|x - y, z\|^{2} &= \|x + \frac{1}{\alpha}(-\alpha y) + (-1 - \frac{1}{\alpha})0, z\|^{2} \\ &= \frac{\alpha + 1}{\alpha} \|x, z\|^{2} + \frac{\alpha + 1}{\alpha^{2}} \|-\alpha y, z\|^{2} - \frac{1}{\alpha} \|x - (-\alpha y), z\|^{2} \\ &= \frac{\alpha + 1}{\alpha} \|x, z\|^{2} + (\alpha + 1) \|y, z\|^{2} - \frac{1}{\alpha} \|x + \alpha y, z\|^{2}. \end{aligned}$$

Further, since ||x, z|| = ||y, z|| holds true, the last two equalities imply that

$$\|\alpha x + y, z\|^2 = \|x + \alpha y, z\|^2$$
, T.e. $\|\alpha x + y, z\| = \|x + \alpha y, z\|$,

The latter means that the condition II_3 is satisfied.

Lemma 5. Let L be 2-normed space. Then the condition II_{10} implies the condition II_6 .

Proof. Let
$$x_1, x_2, x_3, z \in L$$
 be such that $\sum_{i=1}^{3} x_i = 0$ and $||x_1, z|| = ||x_2, z||$. For $\alpha = 2$, the Lemma 4 implies that

$$||2x_1 + x_2, z|| = ||x_1 + 2x_2, z||$$

holds true. Further, since $\sum_{i=1}^{3} x_i = 0$ we get that $x_3 = -x_1 - x_2$, thus

$$||x_1 - x_3, z|| = ||x_1 - (-x_1 - x_2), z|| = ||2x_1 + x_2, z|| = ||x_1 + 2x_2, z||$$

= $||x_2 - (-x_1 - x_2), z|| = ||x_2 - x_3, z||$,

The latter means that the condition II_6 is satisfied. \blacksquare

Lemma 6. Let L be 2-normed space. Then the condition II_{10} implies the condition II_7 .

Proof. Let $x_1, x_2, x_3, x_4, z \in L$ be such that $\sum_{i=1}^4 x_i = 0$ and $||x_1, z|| = ||x_2, z||$ and $||x_3, z|| = ||x_4, z||$. Further, since $x_1 + x_2 + (x_3 + x_4) = 0$ and $||x_1, z|| = ||x_2, z||$ holds true, the Lemma 5 implies that $||x_1 - x_3 - x_4, z|| = ||x_2 - x_3 - x_4, z||$. Further, the condition II_{10} implies that

$$||x_1 - x_3 - x_4, z||^2 = ||x_1 - x_3 - x_4 + 0, z||^2$$

$$= -||x_1, z||^2 + ||x_3, z||^2 + ||x_4, z||^2 + ||x_1 - x_3, z||^2 + ||x_1 - x_4, z||^2 - ||x_3 - x_4, z||^2$$
and

$$||x_2 - x_3 - x_4, z||^2 = ||x_2 - x_3 - x_4 + 0, z||^2$$

$$= -||x_2, z||^2 + ||x_3, z||^2 + ||x_4, z||^2 + ||x_2 - x_3, z||^2 + ||x_2 - x_4, z||^2 - ||x_3 - x_4, z||^2$$
and since $||x_1 - x_3 - x_4, z|| = ||x_2 - x_3 - x_4, z||$ and $||x_1, z|| = ||x_2, z||$ we get that

$$||x_1 - x_3, z||^2 + ||x_1 - x_4, z||^2 = ||x_2 - x_3, z||^2 + ||x_2 - x_4, z||^2.$$
 (1)

Analogously can be proven the following

$$||x_3 - x_1, z||^2 + ||x_3 - x_2, z||^2 = ||x_4 - x_1, z||^2 + ||x_4 - x_2, z||^2.$$
 (2)

Finally, (1) and (2) imply that $||x_1 - x_3, z|| = ||x_2 - x_4, z||$ and $||x_2 - x_3, z|| = ||x_1 - x_4, z||$.

The latter means that the condition II_7 is satisfied.

Lemma 7. Let L be 2-normed space. Then the condition II_{10} implies the condition II_8 . **Proof.** Let $x_1, x_2, x_3, z \in L$. Then the condition II_{10} implies

$$||2x_{1} + 2x_{2}, z||^{2} = ||x_{1} + (x_{2} + x_{3}) - (x_{3} - x_{2}) - (-x_{1}), z||^{2}$$

$$= -||x_{1} - (x_{2} + x_{3}), z||^{2} + ||x_{1} - (x_{3} - x_{2}), z||^{2} + ||x_{1} - (-x_{1}), z||^{2}$$

$$+ ||x_{2} + x_{3} - (x_{3} - x_{2}), z||^{2} + ||x_{2} + x_{3} - (-x_{1}), z||^{2} - ||x_{3} - x_{2} - (-x_{1}), z||^{2}$$

$$= -||x_{1} - x_{2} - x_{3}|, z||^{2} + ||x_{1} - x_{3} + x_{2}, z||^{2} + ||2x_{1}, z||^{2}$$

$$+ ||2x_{2}, z||^{2} + ||x_{2} + x_{3} + x_{1}, z||^{2} - ||x_{3} - x_{2} + x_{1}, z||^{2},$$

thus

$$F(x_1, x_2, x_3, z) = ||x_1 + x_2 + x_3, z||^2 + ||x_1 + x_2 - x_3, z||^2$$
$$-||x_1 - x_2 - x_3, z||^2 - ||x_1 - x_2 + x_3, z||^2$$
$$= ||2x_1 + 2x_2, z||^2 - ||2x_1, z||^2 - ||2x_2, z||^2,$$

The later means that the condition II_8 is satisfied. \blacksquare

Lemma 8. Let L be 2-normed space. Then the condition II_{10} implies the condition II_4 . **Proof.** Let ||x+y,z|| = ||x-y,z||, $x,y,z \in L$ and let α be a real number such that $\alpha \neq 0, \pm 1$. Then the condition II_{10} implies

$$||x - y, z||^{2} = ||x + \frac{1}{\alpha}(-\alpha y) + (-1 - \frac{1}{\alpha})0, z||^{2}$$

$$= \frac{\alpha + 1}{\alpha}||x, z||^{2} + \frac{\alpha + 1}{\alpha^{2}}||-\alpha y, z||^{2} - \frac{1}{\alpha}||x - (-\alpha y), z||^{2}$$

$$= \frac{\alpha + 1}{\alpha}||x, z||^{2} + (\alpha + 1)||y, z||^{2} - \frac{1}{\alpha}||x + \alpha y, z||^{2}.$$

and

$$\begin{split} \| \, x + y, z \, \|^2 = & \| - x - \frac{1}{\alpha} (\alpha y) + (1 + \frac{1}{\alpha}) 0, z \, \|^2 \\ = & \frac{\alpha + 1}{\alpha} \| \, x, z \, \|^2 + \frac{\alpha + 1}{\alpha^2} \| \, \alpha y, z \, \|^2 - \frac{1}{\alpha} \| \, x - \alpha y, z \, \|^2 \\ = & \frac{\alpha + 1}{\alpha} \| \, x, z \, \|^2 + (\alpha + 1) \| \, y, z \, \|^2 - \frac{1}{\alpha} \| \, x - \alpha y, z \, \|^2 \, . \end{split}$$

Further, since ||x+y,z|| = ||x-y,z||, the last two equalities imply that

$$||x + \alpha y, z||^2 = ||x - \alpha y, z||^2$$
, i.e. $||x + \alpha y, z|| = ||x - \alpha y, z||$.

The latter means that the condition II_4 is satisfied. \blacksquare

Lemma 9. Let L be 2-normed space. Then the condition II_{10} implies the condition II_2 . **Proof.** Let ||x+y,z|| = ||x-y,z||, $x,y,z \in L$. Then since the proof of Theorem 2 we get

$$||x+y,z||^2 = 2||x,z||^2 + 2||y,z||^2 - ||x-y,z||^2$$

and since ||x+y,z||=||x-y,z||, the last equality is equivalent with

$$||x + y, z||^2 = ||x, z||^2 + ||y, z||^2$$
.

The latter means that the condition II_2 is satisfied.

References

[1] K. Anevska, R. Malčeski, *Characteization of 2-inner product using Euler-Lagrange type of equality*, International Journal of Science and Research (IJSR), ISSN 2319-7064, Vol. 3 Issue 6 (2014), 1220-1222.

- [2] Y. J. Cho, S. S. Kim, *Gâteaux derivatives and 2-Inner Product Spaces*, Glasnik matematički, Vol. 27(47) (1992), 271-282
- [3] C. Diminnie, S. Gähler, A. White, 2-Inner Product Spaces, Demonstratio Mathematica, Vol. VI (1973), 525-536
- [4] C. Diminnie, S. Gähler, A. White, 2-Inner Product Spaces II, Demonstratio Mathematica, Vol. X, No 1 (1977), 169-188
- [5] C. Diminnie, A. White, 2-Inner Product Spaces and Gâteaux partial derivatives, Comment Math. Univ. Carolinae 16(1) (1975), 115-119
- [6] R. Ehret, Linear 2-Normed Spaces, Doctoral Diss., Saint Louis Univ., 1969
- [7] S. Gähler, Lineare 2-normierte Räume, Math. Nachr. 28 (1965), 1-42
- [8] R. Malčeski, K. Anevska, *Characterization of 2-inner product by strictly convex 2-norm of modul c*, International Journal of Mathematical Analysis, Vol. 8, no. 33 (2014), 1647-1652
- [9] S. Malčeski, A. Malčeski, K. Anevska, R. Malčeski, *Another characterizations of 2-pre-Hilbert space*, IJSIMR, e-ISSN 2347-3142, p-ISSN 2346-304X, Vol. 3, Issue 2 (2015), pp. 45-54.

¹⁾ Centre for research and development of education, Skopje, Macedonia

E-mail address: samoil.malcheski@gmail.com

²⁾ Faculty of informatics, FON University, Skopje, Macedonia

E-mail address: risto.malceski@gmail.com

³⁾ Faculty of informatics, FON University, Skopje, Macedonia

E-mail address: anevskak@gmail.com