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PLURI-GREEN POTENTIALS IN THE UNIT BALL OF Cn

KUZMAN ADZIEVSKI

Dedicated to Academician Blagoj Popov on the Occasion of His 85th Birthday

Abstract. In this paper, we present some results related to boundary behav-
ior of pluri-Green potentials in the unit ball B of Cn. Sufficient conditions
for existence of radial and tangential limits of the pluri-Green potentials are
given.

In the paper we also present some results related to exceptional sets of
pluri-Green potentials in the unit ball of Cn in terms of the non-isotropic
Hausdorff capacity.

1. Introduction

In this paper we study the boundary behavior of pluri-Green potentials Vµ on the
unit ball B in Cn. These are functions of the form

Vµ(z) =

∫

B

log
1

|ϕz(w)|dµ(w),

where µ is a nonnegative, regular Borel measure on B satisfying the condition
∫

B

(1− |w|2)dµ(w) < ∞ (1.1)

and for a fixed z ∈ B, ϕz denotes the holomorphic automorphism of B which satisfies
ϕz(0) = z, ϕz(z) = 0 and ϕz ◦ ϕz(w) = w, for every w ∈ B.

Exceptional sets of Blaschke products, holomorphic functions, or Green potentials in
the unit disc U of the complex plane C are described usually in terms of Hausdorff ca-
pacity (see [5], [6] and [13]). In higher dimension, the non-isotropic Hausdorff capacity is
much more appropriate. For the description of exceptional sets of holomorphic functions,
or invariant Green potentials see [2], [3], [4], [9] and [10]).

The paper was motivated by the works of Arsove and Huber [5], Cima and Stanton [8],
Samuelsson [13], and Stoll [14], [15] and [16] in which boundary behavior of subharmonic
functions in the unit disc U of Cn, invariant, invariant Green potentials and M -
subharmonic functions in the unit ball B of Cn are considered.

The paper is organized as follows. In Section 2 we introduce the necessary terminology
and notation. In Section 3 we give some preliminary results that will be used for the
proofs of our main results that are given in Section 4.
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2. Notation and Terminology

Throughout this paper we use the notation and terminology of Rudin’s book [12] and
most of the general results used in our paper can be found in this book. For n ≥ 1,
Cn denotes the n - dimensional complex space, with the usual inner product 〈z, w〉
and norm |z| =

√
〈z, z〉. B will denote the unit ball in Cn with dν the Lebesque

measure on B, normalized so that ν(B) = 1, and S = ∂(B) will be the boundary of B
with dσ the surface area measure on S, again normalized so that σ(S) = 1.

The class of all non-decreasing, continuous functions h on [0,∞) such that h(t) > 0
for t > 0 and h(t)/t is non-increasing on (0,∞) will be denoted by H. The subclass
of H, consisting of the functions h ∈ H satisfying the condition h(0) = 0 is denoted
by H0.

Let h be a non-decreasing function on [0,∞) vanishing at 0 and satisfying the
condition h(2x) ≤ c h(x) for some positive constant c. Such function h will be
referred as allowed.

It is easy to check that each h ∈ H0 is an allowed function.

For δ > 0 and ζ ∈ S let Q(ζ, δ) = {η ∈ S : |1− 〈η, ζ〉| < δ}. The set Q(ζ, δ) is
called a Koranyi’s ball centered at the point ζ and radius δ.

For an allowed function h, the non-isotropic Hausdorff capacity Hh of a compact
subset K of the sphere S is defined by

Hh(K) = inf

{ ∞∑
j=1

h(rj)

}
,

where the infimum is taken over all countable covers

{
Q(ζj , rj) : j ∈ N

}
of K of

Koranyi’s balls Q(ζj , rj) centered at ζj ∈ S and radius rj . For an arbitrary set
A ⊆ S, the non-isotropic Hausdorff capacity is defined by

Hh(A) = sup

{
Hh(K) : K-compact subset of A

}
.

For basic definitions, background and more information on the non-isotropic Hausdorff
capacity we refer to [3], [9], [10] and [11].

For c > 0, τ ≥ 1 and ζ ∈ S, let

Tτ,c(ζ) = {z ∈ B : |1− 〈z, ζ〉|τ < c(1− |z|2)}.
When τ = 1 (and c > 1

2
) we obtain the admissible approach regions which usually are

denoted by Dc.

M will denote the Mobius group of all holomorphic automorphisms of the ball B.
By a Cartan’s theorem it follows that ψ ∈ M if and only if ψ = u ◦ ϕa for a unique
unitary transformation u on Cn, where a = ψ−1(0).

For r > 0 let Br = {z ∈ Cn : |z| < r}, and for a ∈ B, a 6= 0 let E(a) = ϕa(B 1
2
).

Since ϕa is an involution, z ∈ E(a) if and only if |ϕa(z)| < 1
2
.

By λ we denote the measure on B defined by

dλ(z) =
dν(z)

(1− |z|2)n+1
.
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The measure λ is M - invariant, i.e.
∫
B

f(z)dλ(z) =
∫
B
(f ◦ ψ)(z)dλ(z) for all

f ∈ L1(dλ) and ψ ∈M.

A function f ∈ C2(B) is called M - harmonic on B if ∆̃f(z) = 0, for all z ∈ B,

where the Laplace-Beltrami operator ∆̃ on B is given by

∆̃f(z) =
1

n + 1
∆(f ◦ ϕz)(0) =

4(1− |z|2)
n + 1

n∑
i,j=1

(
δi,j − zizj

) ∂2f

∂zj∂zi
,

and ∆ is the usual Laplacian in R2n.

For each fixed w ∈ B, the function z → log (1/|ϕz(w)|) is called the pluri-Green
function of B with pole at w.

An upper semi-continuous function u : B → [−∞,∞), with u 6≡ −∞ is said to
be M - subharmonic or invariant subharmonic if for each a ∈ B and for every r,
0 < r < 1

u(a) ≤
∫

S

u(ϕa(rt))dσ(t).

For a C2 function u this is equivalent to ∆̃u ≥ 0.
A function u is M - superharmonic if −u is M - subharmonic.

If µ is a nonnegative, regular Borel measure on B then the function

Vµ(z) =

∫

B

log
1

|ϕz(w)|dµ(w)

is called the invariant pluri-Green potential of µ on B, if for some z0 ∈ B we have∫

B

log
1

|ϕz0(w)|dµ(w) < ∞.

For ζ ∈ S and t > 0 let

Bt(ζ) =

{
z ∈ B : |1− 〈z, ζ〉| ≤ t

}
,

and for a nonnegative, regular Borel measure µ on B satisfying the growth condition
(1.1) let

r(µ, ζ, t) =

∫

Bt(ζ)

(1− |w|2)dµ(w).

For a regular Borel measure µ on B satisfying the growth condition (1.1), and for
h ∈ H, and 0 < α < 1 we introduce the sets

L(µ, h) =

{
ζ ∈ S : lim inf

r→1−
1− r

h(1− r)
Vµ(rζ) = +∞

}
,

Lα(µ, h) =



ζ ∈ S : lim inf

z→ζ
z∈Dα(ζ)

|1− 〈z, ζ〉|
h(|1− 〈z, ζ〉|)Vµ(z) = +∞



,

R(µ, h) =

{
ζ ∈ S : lim inf

t→0+

r(µ, ζ, t)

h(t)
= +∞

}
,
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R(µ, h) =

{
ζ ∈ S : lim sup

t→0+

r(µ, ζ, t)

h(t)
= +∞

}
,

L0(µ, h) =

{
ζ ∈ S : lim inf

r→1−
1− r

h(1− r)
Vµ(rζ) > 0

}
.

A final remark on notation: throughout this paper we will use the same letter C
or C(a, b) to denote various absolute positive constants or positive constants which
depend only on the indicated variables, but not necessarily the same on any two occur-
rences.

3. Preliminary Results

In this section several preliminary results are given that will be used for the proof of
the main theorems.

(i) The following integral formulas, the proofs of which can be found in [12] will be useful
throughout:

∫

Cn

fdν = 2n

∞∫

0


r2n−1

∫

S

f(rζ)dσ(ζ)


 dr (3.1)

∫

S

fdσ =

∫

S


 1

2π

2π∫

0

f(eiθζ)dθ


 dσ(ζ). (3.2)

(ii) The following identity from [12] will be used also: For all a, z, w ∈ B we have

1− |ϕa(z)|2 =
(1− |a|2)(1− |z|2)

|1− 〈z, a〉|2 . (3.3)

Theorem 3.1. (See [1]) Let µ be a nonnegative, regular Borel measure on B and
let

Vµ(z) =

∫

B

log
1

|ϕw(z)|dµ(w).

Then Vµ is plurisuperharmonic on B if and only if∫

B

(1− |w|2)dµ(w) < ∞.

Furthermore, if this is the case, then lim
r→1−

∫
S

Vµ(rt)dσ(t) = 0.

Lemma 3.2. ([16, Lemma 6.15]) If K ⊆ B is a compact set, then there exists a constant
CK and r0, 0 < r0 < 1, such that for all w ∈ K and all |z| ≥ r0 we have

log
1

|ϕw(z)| ≤ CK(1− |z|2)(1− |w|2).

Lemma 3.3. (See [1])
∫
B

(
log 1

|z|

)q

dλ(z) < ∞ if and only if q > n.

For z ∈ B, c real, and α > n consider the integral:

Jc,α(z) =

∫

B

(1− |w|2)α

|1− 〈z, w〉|α+c
dλ(w).
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The following asymptotic estimate is well known ([12], Proposition 1.4.10) and will
play an important role throughout the paper:
Proposition 3.4. For α > n, z ∈ B

Jc,α(z) ≈




(1− |z|2)−c, c > 0
log 1

1−|z|2 , c = 0

1, c < 0

(3.4)

The notation a(z) ≈ b(z) means that the ratio a(z)/b(z) has a finite limit as |z| → 1.

The next, ”Frostman type” theorem (Theorem 1 in [9], proved for h(t) = tm), is
the key for the proof of our main results. The extension to arbitrary allowed h ([3])
posses no difficulty.

Theorem 3.5. Let h be an allowed function. For a compact set K ⊆ S, Hh(K) > 0
if and only if K contains the support of a positive measure ν 6≡ 0 on S satisfying

ν(Q(ζ, δ)) ≤ C h(δ) (3.5)

for all δ > 0 and ζ ∈ S and an absolute constant C.

The following covering lemma ([16, Lemma 5.2.3]) also will be needed.

Proposition 3.6. Suppose that E is the union of a finite collection

{
Q(ζi, δi)

}
of

Koranyi’s balls. Then there exists a finite disjoint sub-collection

{
Q(ζik , δik )

}m

k=1

such

that

E ⊆
m⋃

k=1

Q(ζik , 9δik )

and

σ(E) ≤ Cn

m∑

k=1

σ(Q(ζik , δik )),

where Cn is a constant depending only on n.

Now, we proceed with several other lemmas, analogous to those in Samuelsson’s paper
[13].

Lemma 3.7. Let t be a fixed number such that 0 < t < 1
3

and let It = [1− 3t, 1− 2t].
For ζ ∈ S and z ∈ B let

Gζ,t(z) =

∫

It

log
1

|ϕz(rζ)|dr.

Then there exists positive constants C1 and C2, independent of ζ, z and t such
that

Gζ,t(z) ≤ C1(1− |z|2), (3.6)

and

Gζ,t(z) ≤ C2 t2
1− |z|

|1− 〈z, ζ〉|2 (3.7)

for all z ∈ B.

Proof. First, suppose that ζ = e1 = (1, · · · , 0). For z ∈ B, by the identity (3.1) we
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have

Ge1,t(z) =
1

2

∫

It

log

{
1 +

(1− r2)(1− |z|2)
|1− 〈z, re1〉|2 − (1− r2)(1− |z|2)

}
dr

≤ 1

2

∫

It

log

{
1 +

(1− r2)(1− |z|2)
| |z| − r|2

}
dr.

Case 10. If min {| |z| − r| : r ∈ It} ≥ t, then by the inequality log x ≤ 1− x we have

1

2

∫

It

log

{
1 +

12t(1− |z|)
t2

}
dr ≤ 6

1− |z|
t

∫

It

dr ≤ 6(1− |z|),

which proves (3.6) for ζ = e1 in this case.

Case 20. If min {| |z| − r| : r ∈ It} ≤ t, then 1− |z| = 1− r − (|z| − r) > 1− r − t ≥ t.
Therefore in this case we have

Ge1,t(z) ≤ 1

2

∫

It

log

{
1 +

6t(1− |z|2)
| |z| − r|2

}
dr ≤ 1

2

∫

It

log

{
1 +

(
4(1− |z|)
| |z| − r|

)2
}

dr

≤
∞∫

|z|

log

{
1 +

(
4(1− |z|)
| |z| − r|

)2
}

dr ≤ 4(1− |z|)
∞∫

0

1

x2
log(1 + x2) dx ≤ C(1− |z|2),

which proves (3.6) for ζ = e1.
To prove (3.7) for ζ = e1, first notice that for z = (z1, · · · , zn) ∈ B we have

|1− 〈z, re1〉|2 − (1− r2)(1− |z|2) ≥ |z1 − r|2. (3.8)

The last inequality is easily verified. Indeed, using the obvious inequality |z| ≥ |z1| we
have

|1− 〈z, re1〉|2 − (1− r2)(1− |z|2) = |1− rz1|2 − (1− r2)(1− |z|2
≥ |1− rz1|2 − (1− r2)(1− |z1|2
= |r − z1|2.

Now, let z = (z1, · · · , zn) ∈ B be such that |1−z1| > 4t. Then for r ∈ It we have

|z1 − r| ≥ |1− z1| − (1− r) ≥ |1− z1| − 3t

> |1− z1| − 3
4
|1− z1| = 1

4
|1− z1|.

Therefore from (3.8) it follows that

Ge1,t(z) =
1

2

∫

It

log

{
1 +

(1− r2)(1− |z|2)
|1− 〈z, re1〉|2 − (1− r2)(1− |z|2)

}
dr

≤ 1

2

∫

It

log

{
1 +

12t(1− |z|)
|z1 − r|2

}
dr ≤ 1

2

∫

It

(12t)(1− |z|)
|z1 − r|2 dr

≤ 1

2

(12t)(16t)(1− |z|)
|1− z1|2 = 96t2

1− |z|
|1− 〈z, e1〉|2 .

If |1− z1| < 4t, then by (3.6) for ζ = e1, we have

Ge1,t(z) ≤ C1(1− |z|2) = C1(1− |z|2) |1− z1|2
|1− z1|2
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≤ 2C116t2
1− |z|

|1− 〈z, e1〉|2 = C2t
2 1− |z|
|1− 〈z, ζ〉|2 .

This completes the proof of (3.7) for ζ = e1. Finally, let ζ ∈ S be arbitrary, and
let ϕ be the unitary transformation on Cn such that ϕ(e1) = ζ. From the identity
(3.1) we have |ϕz(ϕ(w))| = |ϕϕ−1(z)(w)| for every z ∈ B and every w ∈ Cn, and so
the proof of (3.6) and (3.7) for the arbitrary ζ reduces to the one for ζ = e1.

Lemma 3.8. Let t and It be as in Lemma 3.6 and let ζ ∈ S and h ∈ H be such
that

r(µ, ζ, x) ≤ h(x)

for all x > 0 and every nonnegative regular Borel measure µ on B satisfying the
growth condition (1.1). Then there exists an absolute constant C which does not depend
on t such that

inf
r∈It

{
Vµ(rζ)

}
≤ C

h(t)

t
,

Proof. From the definition of Gζ,t and Fubini’s theorem we have the following:

∫

B

Gζ,t(z)dµ(z) =

∫

It




∫

B

log
1

|ϕz(rζ)|dµ(z)


 dr =

∫

It




∫

B

log
1

|ϕrζ(z)|dµ(z)


 dr

=

∫

It

Vµ(rζ)dr ≥
∫

It

(
inf
s∈It

{
Vµ(sζ)

})
dr = t inf

s∈It

Vµ(sζ).

Thus inf

{
Vµ(rζ) : r ∈ It

}
≤ 1

t

∫
B

Gζ,t(z) dµ(z), for every t, 0 < t < 1
3
. Therefore

from the estimates (3.6) and (3.7) in Lemma 3.7 it follows that

inf
r∈It

{
Vµ(rζ)

}
≤ 1

t

∫

B

Gζ,t(z)dµ(z) =
1

t

∫

Bt(ζ)

Gζ,t(z)dµ(z) +
1

t

∫

B\Bt(ζ)

Gζ,t(z)dµ(z)

≤ C1

t

∫

Bt(ζ)

(1− |z|2)dµ(z) + C2t

∫

B\Bt(ζ)

(1− |z|2)
|1− 〈z, ζ〉|2 dµ(z),

i.e.,

inf
r∈It

{
Vµ(rζ)

}
≤ C1

t

∫

Bt(ζ)

(1− |z|2)dµ(z) + C2t

∫

B\Bt(ζ)

1− |z|2
|1− 〈z, ζ〉|2 dµ(z).

If for j = 1, 2, · · · we set Aj,t(ζ) =
{
z ∈ B : 2j−1t < |1− 〈z, ζ〉| ≤ 2jt

}
, then from

the last estimate, and the definition (3.3) of r(µ, ζ, t) we have

inf
r∈It

{
Vµ(rζ)

}
≤ C1

t
r(µ, ζ, t) + C2t

∞∑
j=1

∫

Aj,t(ζ)

1− |z|
|1− 〈z, ζ〉|2 dµ(z)

≤ C1

t
r(µ, ζ, t) + C2t

∞∑
j=1

∫

Aj,t(ζ)

1− |z|
t222j−2

dµ(z)

≤ C1

t
r(µ, ζ, t) +

C2

t

∞∑
j=1

22−2jr(µ, ζ, 2jt) =
C

t
h(t).
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By hypothesis, r(µ, ζ, x) ≤ h(x) for every x > 0, and therefore from above it follows
that

inf
r∈It

{
Vµ(rζ)

}
≤ C1

t
h(t) +

C2

t

∞∑
j=1

2−2j+2h(2jt)

≤ C1

t
h(t) +

C2

t

∞∑
j=1

2−2j+22jh(t)

=
C1 + C

′
2

t
h(t).

Above we used the fact that h(kx) ≤ k h(x), for every k ≥ 1 and every x > 0. This
fact easily follows from the hypothesis that the function h(t)/t is non-increasing on the
interval (0,∞).

Lemma 3.9. Let h ∈ H0. For a nonnegative, regular Borel measure µ on B which
satisfies the growth condition (1.1) let

R0(µ, h) =

{
ζ ∈ S : lim sup

t→0+

r(µ, ζ, t)

h(t)
> 0

}
.

Then Hh(R0(µ, h)) = 0.

Proof. Since Hh is sub-additive it is enough to show that Hh(Ra(µ, h)) = 0 for all
a > 0, where for a > 0

Ra(µ, h) =

{
ζ ∈ S : lim sup

t→0+

r(µ, ζ, t)

h(t)
> a

}
.

Let ε > 0 be given. From the growth condition (1.1) and the regularity of the measure
µ it follows that there exists a compact set K ⊆ B such that

∫

B\K

(1− |w|2)dµ(w) < ε. (3.9)

Let F ⊆ Ra, be a compact set and let

Fa =

{
Q(ζ, 2t) :

r(µ, ζ, t)

h(t)
> a, ζ ∈ F, 0 < t < ρ(K)

}
,

where ρ(K) = inf
{
1− |z| : z ∈ K

}
. Notice that Fa is a covering of F by Koranyi’s

balls. Since F is a compact set, there exist points ζ1, · · · , ζm ∈ S and positive
numbers t1, · · · , tm such that

F ⊆
m⋃

j=1

Q(ζj , 2tj) and r(µ, ζj , tj) > a h(tj), 0 < tj < ρ(K), j = 1, · · · , k.

By the covering Lemma 2.6, there exists a finite disjoint sub-collection of Fa, which for
convenience we denote by

{
Q(ηj , 2tj) : j = 1, · · · , k

}
, such that

F ⊆
k⋃

j=1

Q(ηj , 18tj) and r(µ, ηj , tj) > a h(tj), 0 < tj < ρ(K), j = 1, · · · , k.

Now let ν be any positive measure on S satisfying the condition ν(Q(ζ, δ) ≤ C h(δ)
for all ζ ∈ S and every δ > 0. Then we have the following estimates:
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ν(F ) ≤
k∑

j=1

ν(Q(ηj , 18tj)) ≤ C

k∑
j=1

h(18tj) ≤ C

k∑
j=1

h(tj)

≤ C

a

k∑
j=1

r(µ, ηj , tj) =
C

a

k∑
j=1

∫

Btj
(ηj)

(1− |w|2)dµ(w),

i.e.,

ν(F ) ≤ C

a

k∑
j=1

∫

Btj
(ηj)

(1− |w|2)dµ(w). (3.10)

If z ∈ B is such that |1 − 〈z, ηj〉| ≤ tj , for some j = 1, · · · , k, then for this z we
have 1− |z| ≤ |1− 〈z, ηj〉| ≤ tj < ρ(K). Therefore

k⋃
j=1

{
z ∈ B : |1− 〈z, ηj〉| ≤ tj

}
⊆ B \K,

i.e.,
k⋃

j=1

Btj (ηj) ⊆ B \K. (3.11)

From the trivial inequality |1− 〈z, ζ〉| ≥ 1
2
|1− 〈 z

|z| , ζ〉| for z ∈ B and ζ ∈ S we

have the following set inclusion:

{
z ∈ B : |1− 〈z, ηj〉| ≤ tj

} ⊆
{

z ∈ B : |1− 〈 z

|z| , ηj〉| ≤ 2tj

}
.

Because
{
Q(ηj , 2tj) : j = 1, · · · , k

}
is a pairwise disjoint family of Koranyi’s balls,

from the last inclusion it follows that the family
{
Btj (ηj) : j = 1, · · · , k

}
is also pairwise

disjoint. Therefore, from (3.10) and (3.11) we have

ν(F ) ≤ C

k∑
j=1

∫

Btj
(ηj)

(1− |z|2)dµ(z) = C

∫

k⋃
j=1

Btj
(ηj)

(1− |z|2)dµ(z)

≤ C

∫

B\K

(1− |z|2)dµ(z) < Cε.

Since ε > 0 was arbitrary we have ν(F ) = 0 and hence Theorem 3.5 implies the
result.

Lemma 3.10. Let α > 1
2

be fixed. Then there exist two positive constants C1 and
C2 such that

(a) C1 lim inf
t→0+

r(µ,ζ,t)
h(t)

≤ lim inf
z→ζ

z∈Dα(ζ)

|1− 〈z, ζ〉|
h(|1− 〈z, ζ〉|)Vµ(z),

and

(b) lim inf
r→1−

1−r
h(1−r)

Vµ(rζ) ≤ C2 lim sup
t→0+

r(µ,ζ,t)
h(t)

for all ζ ∈ S, h ∈ H, and all nonnegative, regular Borel measures µ on B sat-
isfying the growth condition (1.1).
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4. Main Results

In this Section we present our main results.

Theorem 4.1. Suppose f(z) ≥ 0, 1 < p < n
n−1

and f ∈ Lp(dλ). Then the pluri-

Green potential Vf is continuous on the closed ball B.

Proof. We will follow the corresponding proof of Theorem 1 in [8] for the case of the
invariant Green potential.

If q is the conjugate exponent of p, then q > n. Since Vf is the convolution of
the functions f ∈ Lp(dλ) and log(1/|z|) ∈ Lq(dλ) (Lemma 2.2), we have that Vf is
continuous on B. Now we show that Vf (z) → 0 uniformly as |z| → 1. For 0 < r < 1,
let fr = χrBf and let

Vr(z) =

∫

B

log
1

|ϕw(z)|fr(z)dλ(z).

Because fr has a compact support we have that Vr(z) → 0 uniformly as |z| → 1.
Applying Hölder’s inequality we have

|Vf (z)− Vr(z)| ≤




∫

B

(
log

1

|ϕw(z)|
)q

dλ(w)





1
q





∫

B

|f(w)− fr(w)|pdλ(w)





1
p

,

and hence by the M - invariance of λ, ‖Vf − Vr‖ ≤ C‖f − fr‖p. Therefore Vr(z) →
Vf (z) uniformly as r → 1, from which the result follows. ¤

Remark: The assumptions for p in Theorem 4.1 are best possible. Indeed, suppose
first that p = 1. If we had Vf (0) = − ∫

B
log(|z|) f(z)dλ(z) < ∞ for every f ∈

L1(dλ), then by the Riesz representation theorem (the dual of L1(dλ) we would have
log(1/|z|) ∈ L∞(dλ) which is impossible by Lemma 3.2. Therefore Vf (0) = ∞ for
some f ∈ L1(dλ) and so Vf is discontinuous on B for that f .

Now let n 6= 1 and p = n/(n−1). If we had Vf (0) < ∞ for every f ∈ L
n

n−1 (dλ),
then again by the Riesz representation theorem we would have log(1/|z|) ∈ Ln(dλ)
which again is impossible by Lemma 3.2.

As immediate consequences of Lemma 3.9 and Lemma 3.10 we have the following
results

Theorem 4.2. If µ is a nonnegative, Borel regular measure on B satisfying the
condition (1.1), then the set L0(µ, 1) is empty. If additionally h ∈ H0, then
Hh(L0(µ, h)) = 0.

Theorem 4.3. Let h ∈ H, 0 < α < 1 and let µ be a nonnegative, Borel regular
measure on B satisfying the growth condition (1.1). Then

R(µ, h) ⊆ Lα(µ, h) ⊆ L(µ, h) ⊆ R(µ, h).

For a nonnegative, regular Borel measure µ on B satisfying the growth condition
(1.1) let Fµ be the function on B defined by

Fµ(z) = (1− |z|2)
∫

B

1− |w|2
|1− 〈z, w〉|2 dµ(w).

The next several propositions will be needed for the proofs of our next results. They
provide sufficient conditions for the existence of the Tτ - limit of Fµ at a point ζ ∈ S.
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We omit their proofs since they are almost identical to those of Proposition 1, Proposition
2 and Proposition 3 given in [16], pp. 148− 151.

Proposition 4.4. Let µ be a nonnegative, regular Borel measure on B satisfying the
growth condition (1.1). If ζ ∈ S is such that

∫

Tτ,c(ζ)

(1− |w|2)α

|1− 〈w, ζ〉|τα
dµ(w) < ∞,

and ∫

B\Tτ,c(ζ)

(1− |w|2)γ

|1− 〈w, ζ〉|τγ
dµ(w) < ∞

for some c, α and γ with c > 0, α > 0, γ < 1, and τ ≥ 1, then Fµ has Tτ -

limit 0 at the point ζ.

Proposition 4.5. Let f be a nonnegative measurable function on B. If ζ ∈ S
c > 0, and τ ≥ 1 are such that

∫

Tτ,c(ζ)

(1− |w|2)α

|1− 〈w, ζ〉|τα
fp(w)dλ(w) < ∞,

and ∫

B\Tτ,c(ζ)

(1− |w|2)γ

|1− 〈w, ζ〉|τγ
fp(w)dλ(w) < ∞

for some p, 1 < p < n
n−1

, and some α, and γ, with 0 < α < n + p − np, and
0 < γ < n + p− np, then Ff has Tτ - limit 0 at the point ζ.

Proposition 4.6. Let µ be a nonnegative, regular Borel measure on B satisfying∫

B

(1− |w|2)βdµ(w) < ∞, (4.1)

for some β, 0 < β < 1, and let 1 ≤ τ ≤ n
β
. Then

(a) for any γ, β < γ ≤ 1,

Hβτ








ζ ∈ S :

∫

B\Tτ,c(ζ)

(1− |w|2)γ

|1− 〈w, ζ〉|τγ
dµ(w) = ∞






 = 0,

and

(b) for any α, 0 < α < β,

Hβτ








ζ ∈ S :

∫

Tτ,c(ζ)

(1− |w|2)α

|1− 〈w, ζ〉|τα
dµ(w) = ∞






 = 0.

From the above propositions we have the following

Corollary 4.7. Let µ and β satisfy the condition 4.1 in Proposition 4.6. Then for
each τ , 1 ≤ τ ≤ n

β
, there exists a set Eτ ⊆ S with Hβτ (Eτ ) = 0 such that Fµ
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has Tτ - limit 0 at all points ζ ∈ S \ Eτ .

Corollary 4.8. Let µ and β be as in Proposition 4.5. Then for each τ , 1 ≤ τ ≤ n
β
,

Hβτ ({ζ ∈ S : µ(Tτ,c(ζ)) = ∞}) = 0.

Proof. Since |1− 〈w, ζ〉|τ < c(1− |w|2) for all w ∈ Tτ,c(ζ),

∫

Tτ,c(ζ)

(1− |w|2)β

|1− 〈w, ζ〉|τβ
dµ(w) ≥ C µ(Tτ,c(ζ)).

The result now is an immediate consequence of part (b) in Proposition 4.5.

Theorem 4.9. Let f be a non-negative measurable function on B which satisfies
∫

B

(1− |z|2)αfp(z)dλ(z) < ∞, (4.2)

for some p, 1 < p < n
n−1

and some α, , 0 < α < n + p − np. Then for each τ ,

1 ≤ τ ≤ n
α

there exists a set Eτ ⊆ S with Hατ (Eτ ) = 0, such that Vf has Tτ - limit
0, at all points ζ ∈ S \ Eτ .

Proof. For a function f which satisfies (4.2) let

V1(z) =

∫

E(z)

log
1

|ϕz(w)|f(w)dλ(w), and V2(z) =

∫

B\E(z)

log
1

|ϕz(w)|f(w)dλ(w).

Recall that, E(z) =
{
w ∈ B : |ϕz(w)| < 1

2

}
. From the inequality log x ≤ 1 − x for

x > 0 and from the identity (2.3) in (ii) it follows that

log
1

|ϕz(w)| ≤ C
(1− |z|2)(1− |w|2)

|1− 〈w, z〉|2

for all w ∈ B \ E(z). Thus,

V2(z) ≤ C(1− |z|2)
∫

B

1− |w|2
|1− 〈w, z〉|2 f(w)dλ(w) = C Ff (z), (4.3)

for all z ∈ B.
Let µ be the measure defined by dµ(w) = fp(w)dλ(w). Then from Propositions 4.4

and 4.5 it follows that there exists a set E2 ⊆ S, such that Hατ (E2) = 0 and Ff

has Tτ - limit 0 at all points ζ ∈ S \E2. Therefore from (4.3) it follows that that V2

has Tτ - limit 0 at all points ζ ∈ S \ E2.
Now consider the function V1. Taking dµ(w) = fp(w)dλ(w) in Corollary 4.7, we

have that there exists a set E1 ⊆ S such that Hατ (E1) = 0 and
∫

Tτ,c′ (ζ)

fp(w)dλ(w) < ∞ (4.4)

for all ζ ∈ S \ E1 and any c′ > 0. Suppose that c > 0 and z ∈ Tτ,c(ζ). By [16,
Lemma 8.17] we have that E(z) ⊆ Tτ,c′(ζ)∩Ar for every c′ > c2τ+1 and r ≥ 2|z|2−1.

If q is the conjugate exponent of p then from the above set inclusion, as well as the
M - invariance of λ and the Holder’s inequality we have



PLURI-GREEN POTENTIALS IN THE UNIT BALL OF Cn 13

V1(z) ≤





∫

E(z)

(
log

1

|ϕz(w)|
)q

dλ(w)





1
q





∫

E(z)

fp(w)dλ(w)





1
p

=





∫

{w: |w|<1/2}

(
log

1

|ϕz(w)|
)q

dλ(w)





1
q





∫

E(z)

fp(w)dλ(w)





1
p

≤ C





∫

Tτ,c′ (ζ)∩Ar

fp(w)dλ(w)





1
p

,

where C is a constant which is independent of z.
Therefore, for all z ∈ B we have

V1(z) ≤ C





∫

Tτ,c′ (ζ)∩Ar

fp(w)dλ(w)





1
p

.

As a consequence of (4.4) the above integral tends to 0 as r → 1. So V1 has Tτ -
limit 0 at all points ζ ∈ S \ E1. Now if we take Eτ = E1 ∪ E2, then Hβτ (Eτ ) = 0
and Vf has Tτ - limit 0 at all points ζ ∈ S \ Eτ .

Theorem 4.10. Let

{
zj : j = 1, 2, · · ·

}
be a sequence in B satisfying

∞∑
j=1

(1− |zj |2)α < ∞

for some α, 0 < α < 1, and let µ be the measure on B given by µ =
∑

δzj ,
where δzj is the unit point-mass measure concentrated at the point zj. Then for each
τ , 1 ≤ τ ≤ n

α
, there exists a set Eτ ⊆ S with Hατ (Eτ ) = 0, and such that Vµ has

Tτ - limit 0 at all points ζ ∈ S \ Eτ .

Proof. As in Theorem 4.8, for the measure µ, let

V1(z) =

∫

E(z)

log
1

|ϕz(w)|f(w)dλ(w), and V2(z) =

∫

B\E(z)

log
1

|ϕz(w)|f(w)dλ(w).

Similarly like in Theorem 4.9, for the functions V2 and Fµ, we have V2(z) ≤ C Fµ(z),
for all z ∈ B, where C is a constant independent on z.

By Corollary 4.7 it follows that there exists a set E1 ⊆ S such that Hβτ (E1) = 0
and Fµ has Tτ - limit 0 at all points ζ ∈ S \ E1. Therefore V2 has Tτ - limit
0 at all points ζ ∈ S \ E1. Further, by Corollary 4.8 we have that there exists a set
E2 ⊆ S such that Hατ (E2) = 0 and µ (Tτ,c(ζ)) < ∞ for all ζ ∈ S \ E2.

Now, it is obvious that µ (Tτ,c(ζ)) < ∞ if and only if Tτ,c(ζ) contains only a finite
number of terms of the sequence {zk}. But for those ζ for which µ (Tτ,c(ζ)) < ∞
we clearly have that V1 has Tτ - limit 0 at all points ζ ∈ S \ E2. Finally taking
Eτ = E1 ∪ E2 the result follows.
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