
2010 Mathematics Subject Classification. Primary: 68R10

Key words and phrases. Information visualization, hierarchical graphs

25

Математички Билтен ISSN 0351-336X

Vol. 39(LXV) No. 1

2015 (25-32)

Скопје, Македонија

INFORMATION VISUALIZATION ON THE BASE OF

HIERARCHICAL GRAPHS

Victor N. Kasyanov
1)

, Elena V. Kasyanova
2)

Abstract. Graphs are the most common abstract structure encountered in computer

science and are widely used for abstract information representation. In the paper, we

consider a practical and general graph formalism called hierarchical graphs. It is suited

for visual processing and can be used in many areas where the strong structuring of

information is needed. We present also the Higres and Visual Graph systems that are

aimed at supporting of information visualization on the base hierarchical graph modes.

1. INTRODUCTION

Visualization is a process of transformation of large and complex abstract forms of

information into visual form, strengthening user’s cognitive abilities and allowing

them to take the most optimal decisions. Graphs are the most common abstract

structure encountered in computer science and are widely used for structural

information representation [3], [8], [13], [14], [19]. Many graph visualization systems,

graph editors and libraries of graph algorithms have been developed in recent years.

Examples of these tools include VCG [18], daVinci [5], Graphlet [9], GLT&GET [17].

In some application areas the organization of information is too complex to be

modeled by a classical graph. To represent a hierarchical kind of diagramming objects,

some more powerful graph formalisms have been introduced, e.g. higraphs [6] and

compound digraphs [20]. The higraphs are an extension of hypergraphs and can

represent complex relations, using multilevel "blobs" that can enclose or intersect each

other. The compound digraphs are an extension of directed graphs and allow both

inclusion relations and adjacency relations between vertices, but they are less general

then the higraph formalism. One of the recent non-classical graph formalisms is the

clustered graphs [4]. A clustered graph consists of an undirected graph and its recursive

partitioning into subgraphs. It is a relatively general graph formalism that can handle

many applications with hierarchical information, and is amenable to graph drawing.

Hence, there is a need for tools capable of visualization of such structures. Although

some general-purpose graph visualization systems provide recursive folding of

subgraphs, this feature is used only to hide a part of information and cannot help us to

visualize hierarchically structural information. Another weak point is that usual graph

26 V. N. Kasyanov, E. V. Kasyanova

editors do not have a support for attributed graphs. Though the GML file format, used

by Graphlet, can store an arbitrary number of labels associated with graph elements, it is

impossible to edit and visualize these labels in the Graphlet graph editor. The standard

situation for graph editors is to have one text label for each vertex and, optionally, for

each edge.

The size of the graph model to view is a key issue in graph visualization [8]. Large

graphs pose several difficult problems. If the number of graph elements is large it can

compromise performance or even reach the limits of the viewing platform. Even if it is

possible to layout and display all the graph elements, the issue of viewability or

usability arises, because it will become impossible to discern between nodes and edges

of graph model. It is well known that comprehension and detailed analysis of data in

graph structures is easiest when the size of the displayed graph is small. Since none of

the static layouts can overcome the problems caused by large graphs, hierarchical

presentation, interaction and navigation are essential complements in information

visualization.

In the paper, we consider a practical and general graph formalism called hierarchical

graphs [10]. It is suited for visual processing and can be used in many areas where the

strong structuring of information is needed [11], [15], [16]. We present also the Higres

and Visual Graph systems that are aimed at supporting of information visualization on

the base hierarchical graph modes. The Higres system (http://pco.iis.nsk.su/higres) is a

visualization tool and an editor for attributed hierarchical graphs and a platform for

execution and animation of graph algorithms. The Visual Graph system

(http://www.visualgraph.sourceforge.net) was developed to visualize and explore large

hierarchical graphs that present the internal structured information typically found in

compilers.

2. HIERARCHICAL GRAPHS AND GRAPH MODELS

Let G be a graph of some type, e.g. G can be an undirected graph, a digraph or a

hypergraph (see, e.g. [2]). A graph C is called a fragment of G, denoted by C G, if C

includes only elements (vertices and edges) of G. A set of fragments F is called a

hierarchy of nested fragments of the graph G, if GF and C1C2, C2C1 or C1  C2=

for any C1, C2  F.

A hierarchical graph H = (G,T) consists of a graph G and a rooted tree T that

represents an immediate inclusion relation between fragments of a hierarchy F of nested

fragments of G. G is called the underlying graph of H. T is called the inclusion tree of

H.

A hierarchical graph H is called a connected one, if each fragment from F is a

connected graph, and a simple one, if all fragments from F are induced subgraphs of G.

It should be noted that any clustered graph H can be considered as a simple

hierarchical graph H=(G, T), such that G is an undirected graph and the leaves of T are

exactly the trivial subgraphs of G.

Information visualization on the base of hierarchical graphs 27

A drawing (or layout) D of a hierarchical graph H = (G,T) is a representation of H in

the plane such that the following properties hold. Each vertex of G is represented either

by a point or by a simple closed region. The region is defined by its boundary — a

simple closed curve in the plane. Each edge of G is represented by a simple curve

between the drawings of its endpoints. Each fragment of H is drawn as a simple closed

region which includes all vertices, edges and subfragments of the fragment.

D is a structural drawing of H if for any fragment C all vertices and fragments that

are not included in C are located outside the region R of C and for any edge u={p, q} of

G intersection of representation of u with the boundary of R is nonempty only if uC

and consists of no many than |{p, q} C| points.

A hierarchical graph is called a planar one if it has such a structural drawing that

there are no crossing between distinct edges and the boundaries of distinct fragments.

The following properties hold.

Theorem 1. There are nonplanar hierarchical graphs H=(G,T) with planar

underlying graphs G.

Theorem 2. There are nonplanar hierarchical graphs H=(G,T) having nonstructural

planar drawing.

Theorem 3. A simple connected hierarchical graph H=(G,T) is a planar graph if

and only if there is such a planar drawing D of G that for any vertex p of T all vertices

and edges of G-G(p) are in the outer face of the drawing of G(p).

Let V be a set of objects called simple labels (e.g. V can include some numbers,

strings, terms and graphs). Let W be a set of label types of graph elements and let a label

set V(w)= V1 V2 …  Vs, where s1 and for any i, 1 i s, Vi V, be associated with

each w W. A labelled hierarchical graph is a triple (H,M,L), where H is a hierarchical

graph, M is a type function which assigns to each element (vertex, edge and fragment) h

of H its type M(h) W, and L is a label function, which assigns to each element h of H

its label L(h)V(M(h)).

The semantics of a hierarchical graph model is provided by an equivalence relation

which can be specified in different ways, e.g. it can be defined via invariants (i.e.

properties being inherent in equivalent labelled graphs) or by means of so-called

equivalent transformations that preserve the invariants.

Many problems in program optimization have been solved by applying a technique

called interval analysis to the control flow graph of the program [7], [12]. A control

flow graph which is susceptible to this type of analysis is called reducible.

Let F be a minimal set which includes G and is closed under the following property:

if CF and p is such an entry vertex of C that subgraph {p} does not belong to F then F

contains all maximum strongly connected subgraphs of graph which is obtained from C

by removing of all edges which are ingoing in p. Let HF=(G,T) be such a simple

28 V. N. Kasyanov, E. V. Kasyanova

hierarchical graph that T represents an immediate inclusion relation between fragments

of the hierarchy F.

The following properties hold.

Theorem 4. A control flow graph G is reducible if and only if for the simple

hierarchical graph HF=(G,T) the set of all fragments corresponding vertices pT is a

hierarchy of nested single-entry strongly connected regions.

Theorem 5. A control flow graph G is reducible if and only if that for any pT of the

simple hierarchical graph HF=(G,T) the fragment which is obtained from fragment

corresponding to p by reducing all its inner fragments from F into their entry vertices is

an interval.

3. THE HIGRES SYSTEM

A hierarchical graph supported by the Higres consists of vertices, fragments and

edges which we call objects. Vertices and edges form an underlying graph. This graph

can be directed or undirected. Multiple edges and loops are also allowed.

The semantics of a hierarchical graph is represented in Higres by means of object

types and external modules. Each object in the graph belongs to an object type with a

defined set of labels. Each label has its data type, name and several other parameters. A

set of values is associated with each object according to the set of labels defined for the

object type to which this object belongs. These values, along with partitioning of objects

to types, represent the semantics of the graph. New object types and labels can be

created by the user.

In the Higres system each fragment is represented by a rectangle. All vertices of this

fragment and all subfragments are located inside this rectangle. Fragments, as well as

vertices, never overlap each other. Each fragment can be closed or open. When a

fragment is open, its content is visible; when it is closed, it is drawn as an empty

rectangle with only label text inside it. A separate window can be opened to observe

each fragment. Only content of this fragment is shown in this window, though it is

possible to see this content inside windows of parent fragments if the fragment is open.

Most part of visual attributes of an object is defined by its type. This means that

semantically relative objects have similar visual representation. The Higres system uses

a flexible technique to visualize object labels. The user specifies a text template for each

object type. This template is used to create the label text of objects of the given type by

inserting labels' values of an object.

Other visualization features include the following: various shapes and styles for

vertices; polyline and smooth curved edges; various styles for edge lines and arrows; the

possibility to scale graph image to an arbitrary size; edge text movable along the edge

line; colour selection for all graph components; external vertex text movable around the

Information visualization on the base of hierarchical graphs 29

vertex; font selection for labels text; two graphical output formats; a number of options

to control the graph visualization.

The comfortable and intuitive user interface was one of our main objectives in

developing Higres. The system's main window contains a toolbar that provides a quick

access to frequently used menu commands and object type selection for creation of new

objects. The status bar displays menu and toolbar hints and other useful information on

current edit operation.

The system uses two basic modes: view and edit. In the view mode it is possible only

to open/close fragments and fragment windows, but the scrolling operations are

extended with mouse scrolling. In the edit mode the left mouse button is used to select

objects and the right mouse button displays the popup menu, in which the user can

choose the operation he/she wants to perform. It is also possible to create new objects

by selecting commands in this menu. The left mouse button can be also used to move

vertices, fragments, labels texts and edge bends, and resize vertices and fragments. All

edit operations are gathered in a single edit mode. To our opinion, it is more useful

approach (especially for inexperienced users) than division into several modes.

However, for adherents of the last case we provide two additional modes. Their usage is

optional but in some cases they may be useful: the "creation" mode for object creation

and "labels" mode for labels editing.

Other interface features include the following: almost unlimited number of undo

levels; optimized screen update; automatic elimination of objects overlapping;

automatic vertex size adjusting; grid with several parameters; a number of options that

configure the user interface; online help available for each menu, dialog box and editor

mode.

To run an algorithm in the Higres system, the user should select an external module

in the dialog box. The system starts this module and opens the process window that is

used to control the algorithm execution.

Higres provides the run-time animation of algorithms. It also caches samples for the

repeated and backward animation. A set of parameters is defined inside a module. These

parameters can be changed by the user at any execution step. The module can ask user

to input strings and numbers. It can also send any textual information to the protocol

that is shown in the process window.

A wide range of semantic and graph drawing algorithms can be implemented as

external modules. As examples now we have modules that simulate finite automata,

Petry nets and imperative program schemes. The animation feature can be used for

algorithm debugging, educational purposes and exploration of iteration processes such

as force methods in graph drawing.

A special C++ API that can be used to create external modules is provided. This API

includes functions for graph modification and functions that provide interaction with the

Higres system. It is unnecessary for programmer, who uses this API, to know the details

of the internal representation of graphs and system/module communication interface.

Hence, the creation of new modules in the Higres system is a rather simple work.

30 V. N. Kasyanov, E. V. Kasyanova

4. THE VISUAL GRAPH SYSTEM

Visual Graph is a tool that automatically calculates a customizable multi-aspect

layout of hierarchical graph models specified in GraphML laguage [1]. This layout is

then displayed, and can be interactively explored, extended and analyzed.

Visual Graph was developed to visualize and explore large graphs that present the

internal structured information typically found in compilers. Visual Graph reads a

textual and human-readable GraphML-specification and visualizes the hierarchical

graph models specified. Its design has been optimized to handle large graphs

automatically generated by compilers and other applications.

Visual Graph provides tools for analyzing graph structures. Structural analysis

means solving advanced questions that relate to a graph structure, for instance,

determining a shortest path between two nodes.

Simple possibilities to extend the functionality of Visual Graph (for example, to add

a new layout, search, analysis or navigating algorithm, a new tool for processing

information associated with elements of graph models and so on) are provided.

GraphML (Graph Markup Language) is a comprehensive and easy-to-use file format

for graphs [1]. It consists of a language core (known as the Structual Layer) to describe

structural properties of one or more graphs and a flexible extension mechanism, e.g. to

add application-specific data. Its main features include support of directed, undirected,

mixed multigraphs, hypergraphs, hierarchical graphs, multiple graphs in a single file,

application-specific data, and references to external data.

Two extensions, adding support of meta-information for light-weight parsers (Parse

Extension) and typed attribute data (Attributes Extension) are currently part of the

GraphML specification.

Unlike many other file formats for graphs, GraphML does not use a custom syntax.

Instead, it is defined as an XML (Extensible Markup Language) sublanguage and hence

ideally suited as an exchange format for all kinds of services generating or processing

graphs.

Visual Graph was designed to explore large graphs that consist of many hundreds of

thousands of elements. However, the layout of large graphs may require considerable

time. Thus, there are two main ways to speed up the layout algorithm: multi-aspect

layout of graph and control of layout algorithms.

The first way in visualizing a large graph is aimed at avoiding computing the layout

of parts of the graph that are currently not of interest. Interactive exploring of graph is

based on step by step construction of so-called multi-aspect layout of graph being a set

of drawings of some subgraphs of the graph.

For presentation of multi-aspects layout a set of windows which includes a separate

window for visualization of each considered subgraph is used. At each step of the

construction a layout algorithm is applied to a subgraph being interested to user at this

step. To indicate the interested subgraph the user can select its elements in the active

window or in the navigator.

Information visualization on the base of hierarchical graphs 31

The user can also define some condition in the filter or in the search panel. Then the

condition will be used for searching of graph elements which will form the interested

subgraph. The search can be performed both locally (in some part of graph, e.g. through

a subgraph presented in the active window) or globally (around the entire graph). Multi-

aspect drawing of graph models makes every visible part of the graph smaller, thus

enabling the layout to be calculated faster and the quality of the layout to be improved.

In order to further reduce layout time, it is possible to control the layout algorithms,

e.g. some layout phases can be omitted or the maximum number of iterations of some

layout phases can be limited. However, this usually decreases the quality of the layout.

The user can improve the layout by hand, e.g. by moving of nodes or changing of their

sizes or forms.

Visual Graph offers several tools for navigating through a graph model: minimap,

navigator, attribute panel, filter, search panel, notebook.

The authors are thankful to all colleagues taking part in the projects described. The

work was partially supported by the Russian Foundation for Basic Research (grants

N 12-07-00091, N 15-07-02029).

References

[1] U. Brandes, M.S. Marshall, and S.C. North, Graph data format workshop report,

Lecture Notes in Computer Science, 1984, (2001), 410–418.

[2] V. A. Evstigneev, V. N. Kasyanov, Explanatory Dictionary of Graph Theory in

Computer Science and Programming, Nauka Publ., Novosibirsk, 1999. (In Russian).

[3] G. Di Battista, P. Eades, R. Tamassia, I.G. Tollis, Graph Drawing: Algorithms for

Vizualization of Graphs, Prentice Hall,1999.

[4] Q. W. Feng, R.F. Cohen, P. Eades, Planarity for clustered graphs, Lecture Notes in

Computer Science, 979, (1995), 213-226.

[5] M. Fröhlich, M. Werner, Demonstration of the interactive graph visualization system

daVinci, Lecture Notes in Computer Science, 959, (1995), 266-269.

[6] D. Harel, On visual formalism, Comm. ACM, 31, (5), (1988), 514-530.

[7] M. S. Hecht, Flow Analysis of Computer Programs, Elsevier, New York, 1977.

[8] I. Herman, G. Melançon, M.S. Marshall, Graph visualization and navigation in

information visualization: a survey, IEEE Trans. on Visualization and Computer

Graphics, 6, (2000), 24-43.

[9] M. Himsolt, The Graphlet system (system demonstration), Lecture Notes in Computer

Science, 1190, (1997), 233-240.

[10] V. N. Kasyanov, Hierarchical graphs and graph models: problems of visual

processing, in: V.N. Kasyanov (ed.), Problems of Informatics Systems and

Programming, IIS, Novosibirsk, (1999), 7-32. (In Russian)

32 V. N. Kasyanov, E. V. Kasyanova

[11] V. N. Kasyanov, Hierarchical graph models and information visualization, in:

Proceedings of the 2012 Third World Congress on Software Engineering (WCSE

2012), IEEE Computer Society, 2012, 79-82.

[12] V. N. Kasyanov, V.A. Evstigneev, Graph Theory for Programmers. Algorithms for

Processing Trees, Kluwer Academic Publ., 2000.

[13] V. N. Kasyanov, V.A. Evstigneev, Graphs in Programming: Processing, Visualization

and Application, BHV-Petersburg, St. Petersburg, 2003. (In Russian).

[14] V. N. Kasyanov, E.V. Kasyanova, Visualization of Graphs and Graph Models,

Siberian Scientific Publ., Novosibirsk, 2010. (In Russian).

[15] V. N. Kasyanov, E.V. Kasyanova, Information visualization based on graph models.

Enterprise Information Systems, 7, (2), (2013), 187-197.

[16] V. N. Kasyanov, I.A. Lisitsyn, Hierarchical graph models and visual processing, in:

Proceedings of Conference on Software: Theory and Practice. 16th IFIP World

Computer Congress 2000, PHEI, Beijing, 2000, 179-182.

[17] B. Madden, P. Madden, S. Powers, M. Himsolt, Portable graph layout and editing,

Lecture Notes in Computer Science, 1027, (1996), 385-395.

[18] G. Sander, Graph layout through the VCG tool, Lecture Notes in Computer Science,

959, (1995),194-205.

[19] K. Sugiyama, Graph drawing and applications. For software and knowledge

engineers. World Scientific, 2002.

[20] K. Sugiyama, K. Misue, Visualization of structured digraphs, IEEE Transactions on

Systems, Man and Cybernetics, 21, (4), (1999), 876-892.

1) Institute of Informatics Systems, Novosibirsk State University, Novosibirsk, Russia

E-mail address: kvn@iis.nsk.su
2) Institute of Informatics Systems, Novosibirsk State University, Novosibirsk, Russia

E-mail address: kev@iis.nsk.su

mailto:kvn@iis.nsk.su
mailto:kev@iis.nsk.su

