s

MaTemMaTHukH BuiaTex
14 (X )
1990 (55-62)
Cxonje, Jyrocnasuja

ON THE DUAL PAIR OF LP-PROBLEMS IN CANONICAL FORM WITH
NONNEGATIVE INVERSE MATRIX

D. L. Kar&icka

Abstract. The dual pair of LP~-problems
min{z = c'x |ax 2b, x 20}, max{w = bTy IATy Sc, y 20}

wherg A is an nxn matrix with inverse A™' 20, is solvable iff
cTa~™" 20. Otherwise, the primal objective function z is unboun-
ded on the feasible region. Some special cases of the matrix A
are discussed.

1. General conclusions

We consider the dual pair of LP-problems
min{z=cTx |Ax 2b, x 20} (P)
max{w=bly | ATy <c, y 20} (D)

where A is a given real nxn matrix with inverse A~ ' 20, b=[b,]
and c=[c.] are given n-vectors, x and y are the vectors of va-
riables in Euclidean space RD,

Let N denote the set of integers {1,2,...,n}, and

(A—1)j denote the j-th column of A~ ",

Define

: @™,

jeN

]
1]

-1 T
Y, = (A e

b, =2 'p
The assumption A’ 20, which means (A" '), 2o, j€N and implies
X, 20, plays an essential role. Almost immediately can be stated

that:
(i) The feasible region T of (P) is unbounded;

(11) (P) and (D) are solvable iff ¥y, 20. 55
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Indeed, we can choose k in N satisfying the condition

b, = max{b,}. (1)
ko jen
In the case when bk <0, at least the points of the ray

{x = ax, |2 2 0}

satisfy the constraints of (P), and clearly, T is undbounded.

In the opposite case, b, >0, the points of the half-line

k
{x = (b +M)x, | A =2 0}

belong to T, and therefore T must be undbounded.

The proof of (ii) also is evident. If y 2o, then y  is a
feasible solution to (D) and, by duality theorem, there exists
a pair x,y of optimal solutions to (P) and (D), respectively. If
Y, Zo, and for example its #-th component is negative, (yo)2 < 0,
then for the points of the half-line

_ -1
{x = b x,+x(A77), |2 20}gT
we have

T T
zZ = ¢'x =bkc x°+>‘(y°)2 +-» for ) -+ +w.

So, in this case (P) has no finite optimal solution and (D) is
infeasible.

Now, it is easy to make the following conclusion:

(iii) For (P) and (D) if ¥y, 20 and b, 20, then the vectors
b,, vy, are optimal solusions.

Indeed, b, is feasible solution to (P), y, is feasible so-

lution to (D) and moreover z°=ch°=cTA_1b=((A-1)TC)Tb =Y3b =

T
= by, = w,.

In the case when Yo 20, but b° #0, a pair of optimal solu-
tions X,y to (P) and (D) can be found applying simplex algorithm
for the equivalent standard form of (D):

max{w=bTy IA?y +v=1¢, yz2o0, vzo0l. (D)
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Since A_1 20 is known, it is convenient to start with the
basis B=AT and the corresponding reduced form of (Ds):

max{w-bTy° = -bgv |y+(AT)_1v = Yor Y 292, v-20}.

2. Some special cases

a) The trivial case A=I. For the identity matrix I the con-

dition Y, 20 means ¢ 20, and under this assumption the vectors

if b, >0
J

]
|

X = [ﬁj]nx1’ where ij ={-b§

0 otherwise

. . R cy if bj >0
y = ly. , where y. =
[ J]nx1 J 0 otherwise
are optimal solutions; z = w = I c.b. is the optimal value
j:b.>o0 J

of z and w. 3j

A=-LE-1

b) n-1 * The nxn matrix with elements all equal to 1

is denoted by E. For the inverse of A we have A™"' =E-I 20 and

therefore, the necessary and sufficient conditions for solvabi-
lity of (P) and (D) can be stated as

cle 2 cy (2)

where e denotes the vector, whose components are all equal to 1,
and k is defined by ¢, = max{c.}.

jeN
In the case (2), if e’b 2 max{bi} = b,, then
ieN
X = Bo,e-b, where B°=eTb, is an optimal solution to (P),
y = Yoe-¢, where Y°=eTc, is an optimal solution to (D),

and z = Boyo-ch = w is the common optimal value of z and w. If
Bo < bz' then it is useful to continue solving the reduced form
of (D):

max{w-w = -(Boe-b)Tv | yH(E-I)v = ¥, y 20, v 20}.
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Analogous conclusions can be made for the more general case

E%HE), A" = a1+E, 0<Jal <1.

=1 -
A= a(I
Namely,
min{c.} 2 - ly if 0 <a g1
3 a'o
or,

1 .
- = -1 <
max{cj} < Yo if -1 €a <0

is a necessary and cufficient condition for solvatibily of (P)
and (D) is this case. Moreover, if

. 1
mln{bj} z - ESO for 0 <a <1,

or,

max{b.} < - lB for -1 <a <0
] a°

then %X = B,e+ab, § = v,e+ac is a pair of optimal solutions.

-(1I+
(1 E)J1J1 EJ1J2
E (I-E)
J2J1 J2J2,

c) A =

This block form of A is corresponding to the subsets of N
defined by:

J, = {23-1,3=1,...,m}
J, = {23,5=1,...,m}
where
n = 2m.

For the inverse of A we have

(E-D5.3, E1,0,

E . (E+I)
J,3, J,J,

and so, the condition cTa™" 20 for solvability of (P) and (D)

reduces to

Yo 2 max{cj;—cjz}, » (3)

where



Yo = c3 e +c§ ey s ©, =max {c.}, c¢. = min {c }
1 Y 2 Y2 By jeg, J 2 jer,
In the case (3), if

By 2 max{bj -b, },

1! Jz
where
T T _ -
B°=bJ e +bJ ey b. =max {b.}, b, =min {b.},
1 Y% 2 Y2 1 jéJ, J 2 jGJ2 J
then the vectors '
X3, Bolg P37, Yz,| |7e%5, g,
~ = ’ ~ =
xJz B8 eJ +b I, sz yoeJ2+cJz

are optimal solutions, and

s & _.T T
z =w = B,v, cJ1bJ1+cJ2bJz

is the optimal value of z and w.

If 8, < max{bj -bj }, then it can be considered and solved

1’ 2

the reduces form of (Ds):

+(E-T) v. +E v, =y Y. 20, V.20
v .7 7 s, 3,3,73,77a,3,73, T Y3, Yo V)
max{w-w=-xJ vy =X3 Vg R );
= > >
1 Y 2 Y2 +(EJ 7, vy +(E+I)J2J2VJz sz,yj;JL VJ;O

"
>
-y

- . n-z | (@ t-s)/al™?, 1=y
i d) A = g[t .]+ where s= z al, tis T1 pei-ded

" for a given real a#0,-l. The inverse of A is

-1

A n=1, .

’

E - diag(a®,a',...,a

diag(a®,a',...,a" ") denotes the diagonal matrix with diagonal

elements ai_1, i=1,...,n. In the case when

0 < |lal <1,

we have A”' >0. Let again B —b e, Yo—cTe. If v, 2max{c, al” '},
jeN
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then, (P) and (D) are solvable. Moreover, if B 2 max{b.al™"}
jeN

then x = [ﬁj]nx1’ where X, = B°+bja3-1, is an optimal solution
to (P), ¥ = [§j]nx1' where §j = Y°+cja]-1, is an optimal solu-
tion to (D), and B,ve+ I bjcjaj-1 is the optimal value of the

objective functions. jen

3. Description od the convex polyhedral cones C,,C,,C,

As we know, the cone C={u |u'A~"' 20} for (P) and (D) rep-
resents the set of vectors ¢ for which (P) and (D) are solvable.
In the case of symmetric matrix A the cone C also contains the
vectors b for which A™'b is an optimal solution to (P). There-
fore, it is of interest to have an explicit form of C as a sum
of its edges,

C=f{u= I yu.q., u, 20, jeJ}
je3 373 J
for some subset J of integers.

In the case C, = {u | (E+aI)u 20} 0 < |a| £ 1,

we get J=N, and qj, jeN, defined as follows:
1

“atnerr I
(ay)y = + JjeN
1, i=j
us, (E-Ds.3, B33, s, 5 °a,
In the case C, =
Y5, EJ2J1 (E+I)Jsz qu on

where J,={2j-1,j=1,...,m}, J,={2j,3=1,...,m}, n=2m, for the
vectors qj,jeN=J1uJ2 we have

-1, ieJ,-{2j-1} 1, ieg,

(qu—1)i =4 -2, i=2j~-1 ' (qzj)i =q-1, ieJ, -{2j}
1, ieJ, 0, i®2j
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If n=2m+1, J,={2j-1,3=1,...,m+1}, J,={23,j=1,...,m}, then there
are 2m+l edges of C, corresponding to the vectors

EN
1 Iy
945 = , iegJ,, jeg,
9
2
where
~1, s=i 1, s=j
(q ) = ’ (q ) =
L R T2 % |0, s#3
For

c, = {u | (E-diag(a®,a',...,a"" ")) uzo}

we can get the explicit form without additional assumptions in
the case of a such that 0 < a < 1. Then we have

-1, i=j

an-i

(q-)i = H:;—;———~r i#j, jew.

I a
k=0 ,k#n-j
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3A [OVAJTHUOT AP JNIN-IPOBJIEMH BO KAHOHUYHA ¢OPMA CO
HEHETATUBHA WHBEP3HA MATPHUIA

O.J1. Kapuuixa

Pe3umMme

_Oyvanuauor nap JII-npo6ieMu
min{z=cTx | Ax 2b, x 20}, max{w=bTy 1ATy <c, y zo}

-1
Kajge mTo A € NnxXn maTpuia CO HHBep3Ha A 20, e pewnuB axKo U camo
axo cTa™" 20. Bo CNpPOTHBHO, OGYHKUHjaTa Ha LenTa z Ha IpHMapHaTa

3anaya e HeorpaHWueHa Ha JonycTnwsaTa o6nacT. PasrisepnaHM ce He-
KONKY nocebHM clyuau Ha MaTpuia A.





