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OBTAINING THE DISTRIBUTION ASSOCIATED TO
NONLINEAR CONTROL SYSTEM

JOVAN STEFANOVSKI AND KOSTADIN TRENCEVSKI

Abstract. Consider the nonlinear control system
é=fe,u), €M, ueQCR™

where M is an n-dimensional manifold, n > m, and [ is a vector field on M,
for each u € Q. The problem solved in this paper is obtaining the represen-

tation "
flz,u) = Z hi(z)-vi(xz,u) almost everywhere on M x Q
i=n—r+1
where hp—r41(2),. .. ,hn(z) are vector fieldson M and yp—py1 (@, 1), ...,y (z,u)

are real functions, such that r is minimal.

1. INTRODUCTION.

Let be given a nonlinear control system
= f(z,u), €M, ue (1.1)

where M is an n-dimensional manifold, Q is an open subset of R™, m < n and f
is a continuous vector field having continuous partial derivatives by u of arbitrary
order in a neighborhood of z° € M, for every u € Q.

In this paper we define the rank of a matrix function on M X €2 as its maximal
rank over M x . The singular cases are accounted for. We also pose and solve
the problem of obtaining the representation

n
flz,u) = Z hi(z)-y;(z,u) almost everywhere on M x Q (1.2)
i=n—r+1

where hp—ry1(2), ..., hn(x) are vector fields on M and vy—pq1 (2, ), . . ., Yu (2, )
are real functions, such that r is minimal. This problem is connected with obtain-
ing the distribution on M

D(z) = span{f(z,u), u € Q} =span{h;(z), i=n—r+1,...,n}, TzeM

where 7 is the dimension of the distribution D and hi(z), i =n—-7r+1,...,n
are its generating vector fields. The motivation for the paper comes from the
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linear-in-control system

m

& =a(z)+ ) _bj(z)y; (1.3)

J=1

where a(z),b1(z),...,bm(z) are vector fields. Systems (1.3) are the most fre-
quently treated nonlinear systems in control theory and practice [1], and the best
results of the nonlinear control theory are obtained for the linear-in-control sys-
tems. The system (1.3) has the form (1.2), where m = r + 1.

2. MAIN RESULT

To obtain vector fields hp—ry1, ... , by satistying

span{ f(z,u), u € Q} = span{h;(z), i =n—7r+1,...,n}almost everywhere on M

we can use direct approach, i.e., application of Taylor expansion of f(z,u) by u in
a neighborhood of 0 € R™

o o 0 w1 wa Woen
u U Uu,
f(x’u) — E E E —11' « 2 S L . F<wlvw2u-~~;wm>(w)

] 1

w1 =0 ws=0 wm,=0 wa: Wm:
where u = [u1,ug, ..., Up]T and F<WLW2Wm> 0y gy o wm = 1,2,... are
some vector fields on M, and then, among these vector fields to choose the vector
fields hy—yry1,- .., hn. But such procedure is not easy to formalize in algorithmic

terms.
Thus we use an indirect approach. Firstly we solve the equation

wl(z)- f(z,u) =0, ueQ (2.1)

for the unknown vector-function w(z). Moreover, we need all linearly-independent
solutions wy (z), . .. ,wnp—r(x). Then the vector-functions hp_,y1(x), ..., hn(z) can
be found from the linear-homogeneous system

w;F'hj=0, 1 =120 ;0= J=R=TF LN (2:2)
Let introduce the following notation, instead of (2.1)
Ry(z,u) w(z)=0, (2.3)

where Ro(z,u) = fT(x,u). The algorithm for solving the system (2.3), as well
as a method for obtaining the vector fields h,_g41,...,h, without solving the
linear-homogeneous system (2.2), is presented in Appendix A (see [2],[3], also).
It remains to find the functions v,—rq1(x,u),...,Y(z,u). For the specific
choice of vectors hp_gt1,...,h, found in Appendix A, the functions
Tn—r+1(Z, ), ..., Tn(z,u) are simple. That claim is content of the following
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Proposition 2.1. LetwiTsz:O, t=12,....,n—7, j=n—r+1,...,n

for some wvector fields hp—py1,...,hn on M and let us introduce the following
notations
.y
QT " n=r+1l €f
A= I:Q%} s A= [wl, o ,wn_.,-] , Q= = [I,,O] i (24)
2 o
WN

If the matriz A with the choice (2.4) is nonsingular, then A=! = [Hy, Ha|, where
H, = [IO ] and Hy = [hp—ri1, ..., hn|. Moreover, in this case,
n=r

Yn—r+1 = fl yeoyIn = fr )
where f1,..., f, are the first r elements of the vector f.
Remark. By pre-numeration of the indices of w”” and indices of f, we can achieve

non-singularity of A. The proof of Proposition 2.1 is given in Appendix B.
We have obtained a representation for f

n
flz,u) = Z hi(z) - fi(z,u) almost everywhere on M x Q (2.5)
i=n—r+1
in which appear, virtually, only 7 components of f. We can use this representation
to simplify the function f. After we find the integer r, we choose r functions among

fiy-- ., fn, with lowest degrees of u, ideally, linear in u. Then we can permute the
indices of f and apply (2.5).
In the case there are r linear-in-control functions among fi,..., fn, then the

system (1.1) is of the class (1.3).
Remark. The integer r satisfies ¢ < r, where n — ¢ is the number of linearly

independent solutions for the unknown n-dimensional vector-column function w(z)
and real function v(z) of the following system

wl(z) f(z,u) = ¥(z), ueQ
(which could be solved by the algorithm in Appendix A, also). More specific, r is
equal to g or g + 1.
Remark. It can be proved that the integers r and ¢ are invariants of the nonlinear

control system (1.1) under coordinate transformation and full feedback control
u = p(z,v).

Appendix A We formulate an algorithm for solving the matrix system

Ro(z, ) w(z) = 0 (A.1)

(see [2],[3] also). If the rows of the matrix Ry are linearly dependent, let separate
the linear independent rows in the matrix Rg. Then, instead of (A.1), take the
reduced equation

Ro(z,u)-w(z) =0. (A.2)
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By differentiation of the equation (A.2) with respect to u;, ¢ = 1,...,m, one
obtains

=

&

w | - w® R -w=0. (A.3)

.9

dRy
LOum J
Let denote by R; the matrix consisting of all linearly independent rows of the
matrix R;. The order of rejecting of the linearly dependent rows of R; is from the
top of Ry to the bottom. It means that the first rows of the matrix Ry are the

rows of Rg. Then, instead of (A.3), take the reduced equation

Rl-w:O. (A4)

Applying the differential operators a%i on this system, one obtains, analogously

Ry -w=0and Ry -w = 0. The procedure continues.

Let denote r; = row dim R;. It is clear that r; , ¢ =1,2,... is non-decreasing
series which is limited from above by n (the number of columns of Rp). Hence,
there exists least integer k such that rp = 741, and in this case holds Ry =

Riy1 = Ripy2 = ---. Thus, if a solution of the system (A.1) exists, it has to
satisfy B
Rr-w=0 (A.5)
OR n
aule(i~Rk, i=1,...,m (A.6)
for some matrix functions K;(z,u), i = 1,..., m. Further on, we show that if

rr < n then there exist n —r, r ] rr vector functions-solutions of the system
(A1), wy,wa, ... ,wn_r, defined and linearly independent almost everywhere on
M, which can be obtained by linear algebraic operations only.

Since the rows of the matrix Ry, are linearly independent, it can be partitioned
on sub-matrices

Ry = ;m %)

so that the matrix R} is square and nonsingular. (If R} is singular, then by
permutation of the columns of Ry and pre-numeration of the indices of z, we can
achieve non-singularity of R}.) Partitioning the conditions (A.6), we obtain

oR, - ORY =
au’f:Ki~R§c, ﬁ:Ki-ch’, i=1,...,m. (A7)
Proposition A.1. The matriz function P = R;.'- R} does not depend on u, i.e.
oP
2
Proof. Applying the conditions (A.7), one obtains
oP . 8 p!—1  pry _ p/—1 GR;C p/—1 pn p/—1 8R;c’
du; A (B ) = - ou, T Rkt R 5 0=
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:—-R;c_l-Ki'R;c-R;c_l'RZ-FR;C_I-Ki'Ruz . B
The system (A.5), in partitioned form, is
Ri-w' + Rl w'=0 (A.9)

where the vector w is partitioned on

From the equation (A.9) it follows
W' =-P-u". (A.10)

Therefore, the requiring solutions of (A.5) are the columns of the matrix

—-P
[I - } = [wi(z),wa(z), ... ,wn-r(z)] . (A.11)
A consequence of the algorithm is the matrix equality
Ro(z,u) = K(z,u) - Re(z,u)

for some matrix function K(z,u). Thus the solutions wy,ws, .. .,w,—, of (A.5) are
also solutions of (A.1).

Let us discuss singular cases.

(i) Consider the set of points (z,u) € M x Q where the matrix functions
Ki(z,u), i = 1,2,...,m and K(z,u) arc not defined. By (A.6) and (A.11) that
point set is given by

G={(z,u) € M x Q: det (Ri(z,u) Rf(z,u)) =0} . (A.12)

All steps of the algorithm are valid for all (z,u) ¢ G (which means that feedback
control u = o(z) satisfying (A.12) is not allowed to be applied). If there exists a
point z° € M such that det (Rk (z°,u)- RT (2°, u)) =0, Yu € Q, then we name the
point xz° as singular point for our problem.

(ii) The points of M on which the function P(z) is not defined are also singular
points for our algorithm.

In this paper we suppose that z° is not a singular point.

Remark. It can be proved that, under the conditions (A.6), that there ex-
ists a square nonsingular matrix function Q(x,u) such that the matrix function
Q(z,u) Ri(x,u) does not depend on u. Then the system (A.5) is

Q(z) w(z) =0,

where Q(z) = Q(z,u)- Ri(z,u). Then the points of M on which the function P(z)
is not defined are given by

det (Q(z)-Q"(z)) =0.

But obtaining the function Q(z,u) (and Q(z)) is via solving a system of PDE,
which is more complicated than the proposed matrix-function inversion contained
in Proposition A.1.
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Remark. The matrices K;, i = 1,...,m satisfy
OK; 0K, o

K Ki+ —=K; K, L 4i=1,...,m.

it Bu; Rt b m
Since by (A.11)
wi

I T Iy T T
; | pT = ["’P 7171,—1']' pT =-P*+P =0,

Wy

for the unknown vector fields hy,—p41, - .. , hy (which satisfy (2.2)), we take

I
[hn—r-i—h LA ah‘n] = {PT} s

Appendix B
Proof of Proposition 2.1. By the algorithm in Appendix A, we have
T
@
o=\ ¢ | =[P\ 1]
Wnr

Then from Hy = { ;’T] it follows that

_for _[of-m of-H)| [Li, 0] _
A Bl 5 [Qg} +[Hh, Ho = [Q%-Hl of-m =0 1]~
because Qf H> = 0 by assumption, and
’ 0
Q?'le [_Plen—r]' [I ] =Inr,
n—r
5 0
Q5 -Hy =[I,,,0]- I =0,
n—r
Q3 Hy = [I,.,0]- In) g
2 ) P_F r -
Now, consider the presentation
< 0
faw= Y hew=Hey =) (B.)
i=n—q+1 v
where the vector function v = [yp—r41,...,7n]" is introduced. Multiplying the

identity (B.1) by the nonsingular matrix [H;, Hs|, we obtain
{0} _ [fh o 0
vl Q2] T (R f]

'7n—r+1:f1 »---,'Yn:fr- |

Consequently,
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Conclusion. The vector variable z may be considered as ”parameter”, except
in the case when by the function f is given a nonlinear dynamical system (1.1).
In particular, the results of the paper are valid for representation of the vector
n
function f(u) as a linear combination of r vectors, i.e. f(u) = > h;yi(uw),
i=n—r+1
where ;(u) are some real functions. Thus the result of the paper can be of interest
for the pure mathematics, also.
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