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QUAZIPERIODICITY OF THE SOLUTIONS TO LINEAR
NONHOMOGENEOUS DIFFERENTIAL EQUATIONS OF
SECOND ORDER

JORDANKA MITEVSKA, MARIJA KUJUMDZIEVA, AND DRAGAN DIMITROVSKI

Abstract. In this paper we give some conditions for existence of quasiperi-
odic solutions to the linear nonhomogenious ordinary differential equation
of second order (2).The main results refers to quasiperiodic solutions with
constant quasiperiod. We note that the considered problem in this paper is
examined with a method different than the methods in [1],[3].

1. INTRODUCTION

Definition 1.1. We say that y = o(z), € I = (a,b) C D, is a quasi-periodic
function (QPF) if there are: a function w(z) and a coefficient A = A w(z)) such
that the relation

ez +w(@) = rp(z), z,z4+w(x)el (1)

is satisfied. The function w(x) is called a quasi-period (QP) and X is said to be a
quasi-periodic coefficient (QPC) of the function ¢(z).

Example 1.1. The function ¢(z) = €?® cos z is a quasi-periodic, with QP w = 27
and QPC ) = '™, since:

Vz € R, ¢(x+ 27) = (2™ cos(z + 27) = €™ cosx = e p(z).

Example 1.2. The function ¥(z) = e’ cosz? is a quasi-periodic, with QP
w=—x+Vz2+ 271 and QPC )\ = €7, since:

Vz € R, 211(56 + W) L e(z+w)2 COS(.’L’-{-(U)2 — e21rez2 cos 2 = e2‘rr,¢(m)_

Remarks :

1. In the general case, when A = \(z,w(x)), the existence of the relation (1) is
very complicated problem. )

2. If w(z) = w* = konst. and A = 1 for z € I, then (1) is a definition for a
periodic function in a classical sense.

3. If w = w(x) # konst and A = 1 for = € I, then (1) is a generalization of
the definition for a periodic function and in this case w = w(z) is a function of
"repeating values” of y = ¢(z).
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2. PROBLEM FORMULATION

In the paper [2], some conditions for existence of quasiperiodic solutions (QPS)
to the linear nonhomogenous ordinary differential equation of the first order, are
given.

Here in a similar way we find some conditions for existence of QPS to the linear
nonhomogenious ordinary differential equation of the second order

Y + f(@)y +g(z)y = h(z), (2)

where f(z),g(z), h(z) are continuous and two times differentiable functions on
I € DyNnDyNDyND,. We try to find a solution of (2) which satisfies the relation

y(z + w(z)) = My(z) (3)

where w =w(z) €C3H, A >0, A #1, 2, s+ w(z) € I.
We describe the problem by the system

y'(z) + f(@)y' (z) + g(2)y(z) = h(z)

y'(z +w) + flz+w)y (z+w) + g(z + w)y(z + w) = h(z + w)

y(z +w) = Ay(z) (4)
Y(z+w)(1+u) = (z)

YV'(z+w)(l+w)?+y(z+w =X (z)

If 1 +w' # 0 we can eliminate y(z + w) and its derivatives ¢/ (z + w), v (z + w)
and y”(z) and so we reduce the above system to the equation

)‘yl 1
Ah(z) = f(x)y' — g(z)y) — T Y Ao/
(L +uw) —<fatel

Y Ag(ow) y+h(o-w)

If we rearrange the last equation to y and 3 it will take the form
2y [f(x +w)(l+w)? = fz)1 +o') - w”} +
+ Ay [g(:v +w)(1+w)? —g(z)1 + w')} - (5)
— [A@+w)(1 +)° = M(@)(1 +w)] =0

The above argument is a proof of the following theorem.

Theorem 2.1. Let the nonhomogeneous linear differential equation of second or-
der (2) has QPS defined by the relation (3). Using the system (4), the equation

(2) is reduced to a nonhomogeneous linear differential equation of first order given
by (5).

Example 2.1. If the equation

T

y// . 2y/ + €Iy I
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has QPS with QP w then, according to the Theorem 2.1., it is reduced to the
equation

1
[w"+2w'2+2w’] Y — [e“’(1+w')2—1] (14+w')e*y+ [Xe_“’(1+w')2—1] (14w')e™™ = 0.

In this paper we give some existence conditions for QPS with a given constant
period and at the same time we find the form of the solution.

3. SOME EXISTENCE CONDITIONS FOR QPS WITH A CONSTANT

QP '
Lemma 3.1. Let y(z) be QPS to (2) with QP w(xz) = konst. = w and QPC
A (A>0,X#1). Then:

N [f (@ + @) = f(2)] + Mlg(z + @) - g(z)] — [h(z + @) — Ar(z)] = 0. (6)
Proof. If w(z) = konst = w then @’ = @w” = 0. Substituting w, @', @” in (5) we
obtain (6). O

Using Lemma 3.1 we obtain the following theorem.
Theorem 3.1. Let the coefficients f(z), g(z), h(z) in (2) be QPF with a constant
QP w and QPC u,v,n respectively, such that p #v, v #n, u #n, and p,v,n # A,

v # 1. Then the equation (2) has QPS y(z) with the same QP w and QPC X
(A >0,X#1), if the relation
h h

(E)" + (5)} =0, (f=f(z), g=g(x), h=h(z)) (7)

1s satisfied. Then the QPS is given in the form y = ﬁ
g

Proof. Using the conditions
fz =w) = pf(z), 9(z + w) = vg(z), h(z + w) = nh(x), (8)
pFEY, vEN, pFEN py,nFEN vEL
and Lemma 3.1. we reduce the equation (2) to the equation
Ap =D f()y" + Ay = 1)g(z)y — (n — A)h(z) = 0. (9)

Depending on p the following two cases are possible:
a)If p=1,1e. f(z)isa periodic function, then (9) is equivalent to the equation

Av = 1D)g(2)y — (n — Mh(z) =0 (10)
whose solution is

1= b
Av—1) g(z)’

The solution (11) is a QPF with QP w and QPC \ = Q, and:
v

v#1, g(z)#0. (11)
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b) If i # 1, then we can write the equation (9) in the form

v +G(x)y+ H(z) =0 (12)
_ Y=L ) s A0 Al
Where 60 =1 1@ T T X Fey )
The coefficients G(z) and H(z) in (12) are QPF with QP w and QPC re —Z,
respectively. Thus, (12) is reduced to the equation ([2]):
1
y[G(z + @) — G(z)] - [XH(x @) — H(m)] -0
which has a solution
- ()‘ ‘W)(ﬂ R /\/,L) , V7é 1’ g(a:) 7& 0 (13)

that is QPF with QP w and QPC A =

and:

Psililtmge) B
Ny-1)v-pn) g
n

(A =m)(n =)

v —-1)(v - p)

Using the fact that the solution y determined by (11) or (13) is also a solution
of (2), we obtain the relation (7) . O

=—l.

Remark. It should be noteed that under the conditions of the theorem, the nature
of the solution (11) or (13) of (2) does not depend on the coefficient f(z) and it is
QPF in the both cases, if f(z) is a periodic or quasiperiodic function.

Example 3.1. The coefficients f(z) = -2, g(x) = e *sinz, h(z) = e*sinzx in
the equation
y' -2y +e Fsinz-y=e"sinx
are all QPF with the same QP w = 27 and they satisfy the relation (7). So the
equation has a solution
h(l‘) 2z

= — =
g(x)
that is QPF with QP w = 27 and QPC \ = ¢%7.

Theorem 3.2. Let the coefficients f = f(z), g = g(z), h = h(z) in (2) be QPF
with constant QP w and QPC p, v, respectively, such that p =v =n= X\, A # 1.
The equation (2) has QPS with QP w and QPC ) if:

1
3.2.1. ®(z+w) — P(z)=1In v where ®(z) = /%dw; and
z
3.2.2. f,g,h satisfy the relation '

hf2 II—
<92—g’f+gf’> = h. (14)

Then the QPS of (2) has the form



QUAZIPERIODICITY OF THE SOLUTIONS TO LINEAR NONHOMOGENEOUS ... 87

Proof. Using the conditions

f(@+0) = M(z), g(+w)=Agla), h(z+@)=Ih(a)  (16)
and the relation (6) from Lemma 3.1 we obtain the equation
AA=1)[f(z)y + g(z)y] =0 (17)
Since A(A — 1) # 0 the last equation is equivalent to the equation
f@)y +9(z)y=0 (18)

that for f(z) # 0 has a solution in the form (15).
The solution (15) is QPF with QP w and QPC X if the condition 3.2.1. holds.

Indeed, from (15), under the condition 3.2.1., it follows that:

- r}w 24 dt =T %dt—z}w #at
0 =Ce 0 #

y(z+w) = Ce = y(z)-e~(2E+=)=2@) = \y(z).

Since the solution (15) is also a solution of (2), it has to satisfy the equations
(17) and (2). Thus we have subsequently

y=-29),
f(=z)
and
y" =h(z)
and after a short transformation we obtain that f, g, h have to satisfy the rela-
tion (14) i.e. the condition 3.2.2. O

Theorem 3.3. Let f = f(z), g = g(z), h = h(z) in (2) be QPF with constant
QP w and QPC u,v,n respectively, such that p = v = X # 1. The equation (2)
has QPS with QP w and QPC \ if:

3.3.1. h(z) =0;

3.3.2. (z+w)— P(z) =1In %, where ®(z) = /%x_;, and
kY o z
3.8.3. f,g,h satisfy the relation

(5)-(5) -

y=CeJ o (20)

Then QPS of (2) has a form

Proof. Using the relations
flz + @) = Af(z), gz +w)=Ag(z) h(z+w) = h(z) (21)

and the relation (6) in Lemma 2.1. we reduce the equation (2) to the equation

J@) +g@)y + hiz) =0, (22)
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whose QPS with QP w and QPC X is a solution to the equation ([2]):

y[G*(m—i—w) —G*(m)] - %H*(x—}—w) —H*(z)| =0 (23)
where G* = %, H* = %% Using again the relations (21) we obtain
hz)=0 (24)
Thus (22) gets a form
f@)y +glz)y=0 (25)

and we have the solution (20), that under the conditions 3.3.2. is QPS.
Using (25), (24), (21) and (2), after some transformation, we obtain that f and
¢ have to satisfy the relation (19). O
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