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WEAK-ODD EDGE-COLORING OF DIGRAPHS

MIRKO PETRUŠEVSKI AND RISTE ŠKREKOVSKI

Abstract. A weak-odd edge-coloring of a digraph D is a (not nec-
essarily proper) edge-coloring such that for each vertex v ∈ V (D) at
least one color c satisfies the following requirement: if d+(v) > 0 then
c appears an odd number of times on the outgoing edges at v; and
if d−(v) > 0 then c appears an odd number of times on the ingoing
edges at v. The minimum number of colors sufficient for a weak-odd
edge-coloring of D is the weak-odd chromatic index, denoted χ′

wo(D).
In this article we prove that χ′

wo(D) ≤ 3 for every digraph D, and
show that this bound is sharp. We study when does a graph admit an
orientation so that the obtained digraph is weak-odd 1-edge-colorable.
We also prove that every graph admits an orientation for which the
obtained digraph is weak-odd 2-edge-colorable.

1. Introduction

1.1. Terminology and notation. Throughout the article we mainly fol-
low terminology and notation used in [1, 7]. All considered digraphs and
graphs are finite (i.e. have finite sets of vertices and edges). A directed
graph (or digraph) D is a triple consisting of a vertex set V (D), an edge set
E(D), and a map which assigns to each edge an ordered pair of vertices:
the first vertex of the ordered pair is the tail of the edge, and the second
is the head ; together they are the endpoints. Thus each edge is said to be
directed from its tail to its head. An edge with tail u and head v is referred
to as a directed uv-edge (the adjective ‘directed’ is often omitted). Given a
vertex v ∈ V (D), an outgoing (resp. ingoing) edge at v is any edge having
tail (resp. head) v. Denote by E+

D(v) (resp. E−
D(v)) the set of outgoing

(resp. ingoing) edges at v. A loop is an edge of a digraph whose endpoints
are equal. Each loop at a vertex v belongs to both E+

D(v) and E−
D(v). Par-

allel edges are edges having the same ordered pair of endpoints. The size of
the set E+

D(v) (resp. E−
D(v)) is called the outdegree d+

D(v) (resp. indegree
d−D(v)) of the vertex v. If d+

D(v) = 0 (resp. d−D(v) = 0), then v is called a
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sink (resp. source) of D. Any sink or source is a peripheral vertex of D. On
the other hand, any vertex that is neither a source nor a sink is an interme-
diate vertex of D. For v ∈ V (D), the union ED(v) = E+

D(v)∪E−
D(v) is the

set of edges incident to v, and the sum dD(v) = d+
D(v)+d−D(v) is the degree

of v. Whenever dD(v) = 1 we say that v is a pendant vertex, and then its
only incident edge is a pendant edge of D. For X ⊆ V (D) ∪ E(D), denote
by D − X the subdigraph of D obtained by removing X . The underlying
graph of a digraph D is the graph G acquired by ‘forgeting’ the direction of
each edge, i.e. by treating the edges as unordered pairs: the vertex set and
the edge set remain the same, the endpoints of every edge are the same in
G as in D, but in G they become an unordered pair. We say that a digraph
D is connected if its underlying graph is connected.

Similar to digraphs, for a given graph G and a vertex v ∈ V (G), the
subset of E(G) consisting of the edges incident to v is denoted by EG(v).
For every v ∈ V (G), the size of the set EG(v) is the degree dG(v) of v (recall
that every loop at v is counted twice for |EG(v)|). We refer to each vertex
v ∈ V (G) of even (resp. odd) degree dG(v) as an even (resp. odd) vertex
of G. A graph is called even (resp. odd) whenever all its vertices are even
(resp. odd).

1.2. Definition of weak-odd edge-coloring. Motivated by [3, 4, 6], the
following notion of weak-odd edge-coloring of graphs and the related weak-
odd chromatic index were considered in [5]. A(not necessarily proper) edge-
coloring of a graph G is a weak-odd edge-coloring of G if each non-isolated
vertex is an odd vertex in at least one of the subgraphs induced by the
different color classes. In other words, for each non-isolated vertex v ∈
V (G), at least one color c appears an odd number of times on EG(v). An
obvious necessary and sufficient condition for weak-odd edge-colorability of
G is the absence of vertices incident only to loops. For any such graph G, a
weak-odd edge-coloring using at most k colors is referred to as a weak-odd
k-edge-coloring of G, and we then say that G is weak-odd k-edge-colorable.
The weak-odd chromatic index χ′

wo(G) is defined as the least integer k for
which G is weak-odd k-edge-colorable. The following characterization of G
in terms of the value of χ′

wo(G) was given in [5].

Theorem 1. For any connected graph G whose edge set does not consist
only of loops, it holds that

χ′
wo(G) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if G is trivial ,
1 if G is odd ,

3 if G is non-trivial even of odd order ,

2 otherwise .
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The purpose of this article is to introduce and study an analogous notion
for digraphs.

Definition 1. A (not necessarily proper) edge-coloring of a digraph D is
said to be a weak-odd edge-coloring if for each non-isolated vertex v ∈ V (D)
at least one color c is odd at v, i.e. satisfies the following condition:

(C) if d+
D(v) > 0 then c appears an odd number of times on the outgoing

edges at v; and if d−D(v) > 0 then c appears an odd number of times on the
ingoing edges at v.

Thus, in the particular case when v is a peripheral vertex, the condition
(C) amounts to the appearance of c an odd number of times on ED(v).

The minimum number of colors sufficient for a weak-odd edge-coloring
of D is the weak-odd chromatic index, denoted χ′

wo(D). A weak-odd edge-
coloring of D using at most k colors is referred to as a weak-odd k-edge-
coloring, and then D is said to be weak-odd k-edge-colorable. Hence, χ′

wo(D)
is the minimum integer k for which D is weak-odd k-edge-colorable.

Remark 1. We could have defined the notion weak-odd edge-coloring of a
digraph D alternatively – by slightly relaxing the condition for each non-
isolated vertex v ∈ V (D):

(C∗) if d+
D(v) > 0 then at least one color c′ appears an odd number of

times on E+
D(v); and if d−D(v) > 0 then at least one color c′′ (not necessarily

the same as c′) appears an odd number of times on E−
D(v).

But then, this ‘alternative’ weak-odd edge-coloring of digraphs would be just
a ‘disguise’ of the notion weak-odd edge-coloring of bipartite graphs with
equally sized partite sets. Namely, recall that a split (or bipartization) of a
digraph D is a bipartite graph G whose partite sets V +, V − are copies of
V (D). For each v ∈ V (D), there is one vertex v+ ∈ V + and one v− ∈ V −.
For each directed uv-edge in D, there is an edge with endpoints u+ and v−
in G. Hence, the degrees of the vertices v+, v− in the split of D are pre-
cisely the outdegree and indegree of v in D, respectively. Furthermore, any
bipartite graph G with equally sized partite sets is a split of some digraph
D, i.e. can be ‘transformed’ into D by reversing the described procedure.
Therefore, an ‘alternative’ weak-odd k-edge-coloring of a digraph D is ex-
actly the same thing as a weak-odd k-edge-coloring of its split G. This is
the reason why we proceed to study the originally defined notion of weak-odd
edge-coloring of digraphs.

In the next section, we prove that every digraph D is weak-odd 3-edge-
colorable. Moreover, we provide an example demonstrating that the upper
bound χ′

wo(D) ≤ 3 is sharp. The following section studies a related problem
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about orienting graphs. We show that every graph G admits an orientation
for which the obtained digraph D is weak-odd 2-edge-colorable. We also
solve the decision problem whether a given graph G admits an orientation
for which the obtained digraph D is weak-odd 1-edge-colorable.

2. Existence and a tight upper bound for χ′
wo(D)

It is easy to characterize the weak-odd 1-edge-colorable digraphs D.
Namely, χ′

wo(D) ≤ 1 holds if and only if for every v ∈ V (D) both d+
D(v), d−D(v)

are odd or zero. In particular, χ′
wo(D) = 0 holds precisely when D is empty

(i.e. E(D) = ∅). Next, we give a sufficient condition for weak-odd 2-edge-
colorability of digraphs.

Lemma 1. Let D be a digraph whose underlying graph is a forest. Then,
D is weak-odd 2-edge-colorable.

Proof. We may assume that the underlying graph of D is a nonempty tree.
For an arbitrary v ∈ V (D), consider the set ED(v). Even if one edge
e ∈ ED(v) is already colored, say by a color c ∈ {1, 2}, this partial coloring
of ED(v) can be turned into a (complete) coloring of ED(v) using the color
set {1, 2} such that the color c is odd at v. We describe how this can be done
if e ∈ E+

D(v), and an analogous coloring procedure works for e ∈ E−
D(v).

Since e is already colored by c, color the rest of E+
D(v) by the other color

from {1, 2}. In case v is a source, we are done; otherwise, select an edge
f ∈ E−

D(v), color it by c, and then color the rest of E−
D(v) by the other

color.
With this coloring procedure in mind, select an arbitrary vertex vo ∈

V (D) and color ED(vo) using colors from the set {1, 2} so that 1 is odd at
vo. Since the underlying graph of D is connected and acyclic, as long as
E(D) is not fully colored, there exists a non-pendant vertex v ∈ V (D) with
just one incident edge colored so far, say by a color c. Apply the coloring
procedure to ED(v) so that c ends up being odd at v. By repeating this,
we eventually construct a weak-odd 2-edge-coloring of D. �

Clearly, the stated sufficient condition is not necessary for weak-odd 2-
edge-colorability (for example, any directed cycle C has χ′

wo(C) = 1). On
the other hand, not every digraph is weak-odd 2-edge-colorable (see Fig. 1).
We proceed by proving that 3 colors suffice for a weak-odd edge-coloring
of every digraph D. Actually, we’ll show a slightly stronger result which is
more amenable to induction. Recall that every vertex v of a digraph D has
precisely one of the following two types : either v is an intermediate vertex
(i.e. both d+

D(v), d−D(v) > 0), or v is a peripheral vertex (a source or sink).
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Figure 1. A digraph requiring 3 colors for a weak-odd
edge-coloring.

Theorem 2. Every digraph admits a weak-odd edge-coloring using the color
set {1, 2, 3} such that at every peripheral vertex at least one of the colors 1
and 2 is odd.

Proof. For simplicity of presentation, just during this proof, we’ll refer to
any edge-coloring complying the statement of 2 as a good edge-coloring
of the respective digraph. Suppose the theorem is false, and let D be a
counter-example which minimizes |E(D)|. Clearly, the digraph D is con-
nected, and we proceed to demonstrate several constraints which apply to
it.

Claim 1. D is without directed cycles, i.e. D is a directed acyclic graph.

For the sake of contradiction, suppose there exists a directed cycle C in D.
Color the edges of C by 3. Consider its edge-complement Ĉ = D − E(C).
We modify the digraph Ĉ by splitting into dĈ(v) pendant vertices every
v ∈ V (C) of degree dĈ(v) ≥ 2. After this is done, let D′ be the digraph
obtained from Ĉ. Since D′ is of smaller size than D, there exists a good
edge-coloring ϕ′ of D′. But, it is easily observed that we can combine ϕ′
with the already given edge-coloring of C to obtain a good edge-coloring ϕ
of D. The existence of ϕ contradicts the choice of D, hence establishes the
claim.

In particular, we conclude the absence of loops in the digraph D.

Claim 2. For every edge e ∈ E(D) there is an endpoint having the different
type in D − e and D.

For the sake of contradiction, suppose there exists such a vw-edge e. We
may take a good edge-coloring ϕ′ of D − e. We intend to extend ϕ′ to a
good edge-coloring ϕ of D. Let us observe straightaway that if at least one
of the vertices v, w is isolated in D − e, then there exists a color c ∈ {1, 2}
such that ϕ(e) = c fulfils the intention. Hence, we may assume that both
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v and w are non-isolated in D − e. Delete two colors from the set {1, 2, 3}
so that for each of the vertices v and w, at least one of the deleted colors
is odd at the that vertex. Say c is the remaining color, and obtain ϕ by
setting ϕ(e) = c. Since each of the endpoints of e has the same type in D
as in D− e, it must be that ϕ is a good edge-coloring of D, a contradiction
which proves the claim.

In particular, there are no (directed) parallel edges in D. Next we show
that D is without vertices of outdegree and indegree less than 2.

Claim 3. There is no vertex v ∈ V (D) such that both d+
D(v), d−D(v) ≤ 1.

Suppose the opposite, i.e. let a vertex v have d+
D(v), d−D(v) ≤ 1. Assume

first that v is an intermediate vertex, and say e1 = v1v and e2 = vv2 are the
only two directed edges incident to v. Suppress v, i.e. remove it and add
one directed v1v2-edge e. The obtained digraph D′ is of smaller size than
D, hence it admits a good edge-coloring ϕ′. Construct an edge-coloring
ϕ of D by making it agree with ϕ′ on E(D)\{e1, e2} and setting ϕ(e1) =
ϕ(e2) = ϕ′(e). Clearly, ϕ is a good edge-coloring of D, a contradiction.

Assume now that v is a pendant vertex, and let e be its incident pendant
edge. Denote by w the other endpoint of e and consider a good edge-coloring
ϕ′ of the smaller digraph D − v. Claim 2 implies that w is a peripheral
vertex of D− e, but an intermediate vertex of D. Hence, at least one color
c ∈ {1, 2} is odd at w under ϕ′, and we extend ϕ′ to a good edge-coloring
ϕ of D by setting ϕ(e) = c. This contradiction proves the claim.

Claim 4. Any v ∈ V (D) is a peripheral vertex of D.

Suppose the opposite, say v is an intermediate vertex of D, i.e. both
d+

D(v), d−D(v) are greater than 0. From Claim 3, at least one of d+
D(v), d−D(v)

is greater than 1, say d+
D(v) ≥ 2. Select an e ∈ E+

D(v) and let v1 be the
head of e. Since v is an intermediate vertex of D − e, Claim 2 implies that
d−D(v1) = 1. Hence, Claim 3 yields d+

D(v1) ≥ 2 and we may repeat the
argument. Thus, by Claim 1, for any non-negative integer n there exists a
directed path Pn : vv1 . . . vn in D. But this contradicts the finiteness of D,
and establishes the claim.

We are now able to complete the proof. Let T be a spanning tree for
the underlying graph of D. By Lemma 1, there exists a weak-odd 2-edge-
coloring ϕ′ of the spanning subdigraph D′ = D[E(T )] using the color set
{1, 2}. Since Claim 4 assures that every vertex of D is peripheral, we can
extend ϕ′ to a good edge-coloring ϕ of D simply by using the color 3 for
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every edge in E(D)\E(D′). But this ϕ contradicts the choice of D, and
thus proves the theorem. �
Corollary 1. Every digraph D is weak-odd 3-edge-colorable.

Therefore, every digraph D with at least one vertex v of outdegree d+
D(v)

or indegree d−D(v) even and greater than zero, satisfies 2 ≤ χ′
wo(D) ≤ 3.

We believe that a descriptive characterization of digraphs D in terms of
the value of χ′

wo(D) (similar to the one given for graphs in Theorem 1) is
impossible. Moreover, we believe that deciding the exact value of χ′

wo(D)
is NP-hard. Henceforth, we turn to another type of problem.

3. A related problem about orienting graphs

In this section we consider the following question:

Question 1. Given a graph G and a non-negative integer k, does there
exist an orientation of G so that the obtained digraph is weak-odd k-edge-
colorable?

In the light of Corollary 1, the only two nontrivial cases arise when: k = 1
or k = 2.

3.1. Weak-odd 2-edge-colorability. In this subsection, we provide an
affirmative answer to Question 1 in the case k = 2. For that purpose, we
will need the following sufficient condition for orientability in case k = 1.

Lemma 2. Every forest F can be oriented so that the obtained digraph D
is weak-odd 1-edge-colorable.

Proof. We intend to orient the edges from E(F ) so that for every vertex
v of the obtained digraph D, both d+

D(v) and d−D(v) are odd or zero. We
may assume F is a non-trivial rooted tree, say r is the root. Orient first
the edges from EF (r) as follows: if dF (r) is odd, then make r a source; on
the other hand, if dF (r) is even, then make the indegree of r equal to 1.
Look for a non-pendant vertex v �= r for which just one edge e ∈ EF (v)
is oriented so far. Since F is connected and acyclic, as long as E(F ) is
not fully oriented, there exists such a vertex v. The partial orientation of
EF (v) can always be completed so that both the outdegree and indegree
of v are odd or zero. Namely, if dF (v) is odd then orient the rest of EF (v)
consistently with the orientation of e (thus v becomes a peripheral vertex);
on the other hand, if dF (v) is even, then orient the rest of EF (v) uniformly
but inconsistently with e. Hence, repetition of the described procedure
gives a required orientation of F . �

The stated condition is far from being necessary, but we can use it to
settle the case k = 2 of Question 1.
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Theorem 3. Every graph G can be oriented to obtain a digraph D admit-
ting a weak-odd edge-coloring using the color set {1, 2} with every pendant
edge colored by 1.

Proof. Suppose the opposite, and let G be a counter-example which min-
imizes |E(G)|. By Lemma 2, there must be a cycle C in G. Orient the
edges of C consistently (i.e. turn C into a directed cycle). Consider its
edge-complement Ĉ = G − E(C). Modify the graph Ĉ by splitting into
dĈ(v) pendant vertices every v ∈ V (C) of degree dĈ(v) ≥ 2. After this is
done, let G′ be the graph obtained from Ĉ. Since G′ is of smaller size than
G, it can be oriented so that the obtained digraph D′ admits a weak-odd
edge-coloring ϕ′ using the color set {1, 2} with every pendant edge colored
by 1. Combined with the already given orientation of C, this gives us an
orientation of G, and simultaneously defines an edge-coloring ϕ of the ob-
tained digraph D as described in the statement (the color 2 is odd at every
v ∈ V (C)). This contradicts the choice of G and completes the proof. �

3.2. Weak-odd 1-edge-colorability. In this subsection, we study the
case k = 1 of Question 1. For simplicity of presentation, we often refer
to any orientation of G for which the respective digraph D is weak-odd
1-edge-colorable as a good orientation of G. Moreover, the notation for
the outdegree (resp. indegree) of a vertex v ∈ V (D) is simplified to d+(v)
(resp. d−(v)). The condition for the respective digraph is that every vertex
v has both d+(v), d−(v) odd or zero. Note that, unlike the case k = 2 of
Problem 1, there exist graphs which do not admit good orientations (see
Fig. 2).

Figure 2. Example of a graph not admitting a good orientation.

For an arbitrary graph G, and let us denote by OG (resp. EG) the set of
its odd (resp. even) vertices. For the particular case when OG = ∅, i.e. of
an even graph G, a complete characterization in terms of the existence of
a good orientation is possible.
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Theorem 4. For any even connected non-empty graph G, the following
four statements are equivalent:

(i) For some orientation of G, the obtained digraph is weak-odd 1-edge-
colorable.

(ii) For some orientation of G, the set S = {v ∈ V (G) : d+(v), d−(v)
are even} is even-sized.

(iii) For any orientation of G, the set S = {v ∈ V (G) : d+(v), d−(v) are
even} is even-sized.

(iv) The set T = {v ∈ V (G) : d(v) is divisible by 4} is even-sized.

Proof. The implication (i) ⇒ (ii) is obvious, since a particular orientation
of G is good if and only if in the corresponding digraph D the set S is empty.
For the opposite implication, consider an orientation of G for which the set
S (in the obtained digraph D) is even-sized. We may assume that S is
non-empty, say S = {u1, u2, . . . , u2k}. For i = 1, . . . , k, select an arbitrary
undirected u2i−1u2i-path Pi in D, and reverse the orientation of every edge
of Pi. By doing this, we obtain a digraph for which the corresponding S is
empty. This proves the implication (ii) ⇒ (i).

Next, we demonstrate that given an arbitrary orientation of G, the parity
of |S| is an invariant of G, i.e. it is independent from the given orientation.
Namely, select an arbitrary edge e ∈ E(G) and reverse its orientation.
Then, the size of the set S either increases by 2, stays the same, or de-
creases by 2. Hence, the parity of |S| remains unaltered, which proves the
equivalence (ii) ⇔ (iii).

Consider now an ‘Eulerian orientation’ of G, i.e. take an Eulerian tour
of G and orient every traversed edge accordingly. We thus obtain a regular
digraph D, i.e. for every vertex v ∈ V (D) holds d+(v) = d−(v). Hence, the
set T (defined in (iv)) satisfies T = {v ∈ V (G) : d+(v), d−(v) are even}.
Since (ii) ⇔ (iii), this yields (ii) ⇔ (iii) ⇔ (iv).

�

We turn next to the more general case when OG �= ∅. We show that it is
always possible to decide in polynomial time whether the graph G admits
a good orientation. First we give a necessary condition for the existence of
a good orientation. Namely, it is straightforward that whenever G admits
one, we can orient the edges from the set

E(OG) =
⋃

u∈OG

E(u) ,

so that every odd vertex u becomes peripheral (a source or sink). We refer
to any such orientation of E(OG) as a proper partial orientation of G. It is
a simple matter to characterize the existence of a proper partial orientation.
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Proposition 1. The following two statements are equivalent:
(i) G admits a proper partial orientation.

(ii) The induced subgraph G[OG] is bipartite.

Proof. Suppose that (i) holds. Then, there cannot be any odd cycle C (a
cycle of odd length) in G such that V (C) ⊆ OG. Namely, if such a C exists,
then on an arbitrary traversing of C, the passed vertices are alternately
sources and sinks. But this contradicts its odd length.

On the other hand, if (ii) holds then we may consider a pair X , Y of
partite sets for G[OG]. Clearly, there exists a proper partial orientation of
G for which every u ∈ X (resp. u ∈ Y ) becomes a source (resp. sink). �

Hence, a necessary condition for the existence of a good orientation of
G is that the subgraph G[OG] is bipartite. In the particular case of an odd
graph G, this necessary condition also suffices, i.e. we deduce the following.

Corollary 2. For any odd graph G, the next two statements are equivalent:
(i) For some orientation of G, the obtained digraph is weak-odd 1-edge-

colorable.
(ii) G is bipartite.

In the remainder of this section, we restrict to connected graphs G that
are neither even nor odd (i.e. ∅ ⊂ OG, EG ⊂ V (G)), and for which G[OG] is
bipartite. For such a G, we shall describe a simple procedure for deciding
whether it admits a good orientation.

We ‘decompose’ G into patches of two particular kinds and introduce
special names for them. This is achieved by ‘breaking in halves’ each
e ∈ [OG, EG], i.e. every edge e having endpoints of different parities (one
even and one odd). By doing this, we introduce a half-edge at each of
its endpoints. Observe that, after all these ‘breakages in halves’ are com-
pleted, we are left with partitions of the sets OG and EG into ‘connected’
subsets O1, . . . ,Ot and E1, . . . , Es, respectively. For j = 1, . . . , t, the sub-
graph G[Oj] along with the set of half-edges incident to Oj is called the j-th
odd patch of G, denoted by Xj. Similarly, for i = 1, . . . , s, the subgraph
G[Ei] along with the set of half-edges incident to Ei is the i-th even patch
of G, denoted by Yi. Let aij be the number of half-edges in Yi whose other
halves belong to Xj.

Now, take an arbitrary proper partial orientation of G. This induces a
(complete) orientation of every odd patch, whereas only the half-edges of
every even patch are oriented. Complete the orientation of G by choosing
an arbitrary direction for every edge belonging to an even patch, and call
it a trial orientation of G. In the obtained digraph, consider the sets
Si = {v ∈ Ei : d+(v), d−(v) are even}, for i = 1, . . . , s, and let bi = |Si|.
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Observe that, by reversing the direction of any edge in Yi the parity of
bi stays unaltered. On the other hand, by reversing the direction of any
half-edge in Yi the parity of bi changes.

Theorem 5. The next two statements are equivalent:
(i) The trial orientation of G can be modified so that the obtained di-

graph is weak-odd 1-edge-colorable.
(ii) The following system of linear equations is solvable over the prime

field Z2. ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a11x1 + a12x2 + . . . + a1txt = b1

a21x1 + a22x2 + . . . + a2txt = b2

. . . . . . . . .
as1x1 + as2x2 + . . . + astxt = bs

Proof. Suppose (i) holds, i.e. at least one good orientation of G exists.
Compare one such with the trial orientation. On any odd patch Xj, either
the two orientations completely match or are completely opposite. Define
xj to be equal to 0 (resp. 1) whenever the two orientation are the same
(resp. opposite) on the edges of Xj. Then clearly x1, x2, . . . , xt is a solution
of the above system of linear equations over the prime field Z2.

For the other direction of the stated equivalence, suppose (ii) holds,
and let x1, x2, . . . , xt be a solution of the above system of linear equations
over the prime field Z2. Modify the trial orientation in accordance with
the following: for every j with xj = 1, reverse the directions of all the
edges of G incident to Oj . We thus obtain an orientation of G such that
the current set Si = {v ∈ Ei : d+(v), d−(v) are even} is even-sized, for
i = 1, . . . , s. On every even patch Yi we employ the path-reversal trick
from the proof of Theorem 4. We may assume that Si is non-empty, say
Si = {u(i)

1 , u
(i)
2 , . . . , u

(i)
2k}. For r = 1, . . . , k, select an arbitrary undirected

u
(i)
2r−1u

(i)
2r -path Pr in G[Ei], and reverse the orientation of every edge of Pr.

After having done this ‘inside’ every Yi, we end up with a good orientation
of G. �

Consequently, we are able to decide (in polynomial time) whether G
admits a good orientation, and if this is the case we have a way of modifying
the trial orientation into a good one.

Example. It was already shown in Lemma 2 that every forest admits a
good orientation. Let us give an alternative argument for this fact in the
spirit of the described procedure. It is enough to consider a non-trivial tree
T which is not an odd graph. Since T is acyclic, the induced subgraph
T [OT ] is clearly bipartite. Take an arbitrary proper partial orientation of
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T and extend it to a trial orientation. Denote by A and B the respective
matrix and augmented matrix of the corresponding system of linear equa-
tions over the prime field Z2. By Kronecker-Capelli theorem (see [2]), a
system of linear equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩

a11x1 + a12x2 + . . . + a1txt = b1

a21x1 + a22x2 + . . . + a2txt = b2

. . . . . . . . .
as1x1 + as2x2 + . . . + astxt = bs

is compatible (i.e. solvable) over a given field if and only if the rank of the
coefficient matrix A = ‖aij‖ is equal to the rank of the augmented matrix
B obtained from A by adding the column of free coefficients bi. Therefore,
we are left to explain why does rank(A) equal rank(B) under the given
circumstances.

Since T is acyclic, every aij ∈ {0, 1}. We claim that: (1) t > s; and
(2) the rows of A are linearly independent over Z2. Note that (1) and (2)
together imply rank(A) = s = rank(B). In order to prove these two claims,
for j = 1, . . . , t and i = 1, . . . , s, contract Oj into a vertex O′

j and Ei into a
vertex E ′

i . The obtained graph T ′ is again a tree of order s + t. Moreover,
both {O′

1, . . . ,O′
t} and {E ′

1, . . . , E ′
s} are independent sets of vertices in T ′.

Observe that every leaf of T ′ is an O′
j, and every E ′

i is an even vertex of
T ′. The first part of this observation is obvious, and the second follows
from the ‘handshake lemma’. These two facts about the tree T ′ easily yield
claim (1): it is enough to consider T ′ as a rooted tree with E ′

1 as a root,
and then count the vertices on odd (resp.) even distance from the root. To
demonstrate claim (2), let O′

j be a leaf of T ′ and E ′
i be its only neighbor.

Then, only the i-th entry is non-zero in the j-th column of A, which clearly
implies (2).
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SLABO-NEPARNO REBRENO-BOEǋE NA DIGRAFOVI

Mirko Petruxevski, Riste Xkrekovski

R e z i m e

Slabo-neparno rebreno-boeǌe na digraf D pretstavuva (ne zadol�i-
telno pravilno) rebreno-boeǌe pri koe kaj sekoe teme v barem edna boja
c go zadovoluva sledniov uslov: ako d+(v) > 0 togax c se pojavuva
neparen broj pati na izleznite rebra kaj v; ako d−(v) > 0 togax c se
pojavuva neparen broj pati na vleznite rebra kaj v. Minimalniot broj
boi dovolni za slabo-neparno rebreno-boeǌe na D e negov slabo-neparen
hromatski indeks, so oznaka χ′

wo(D). Vo ovaa statija doka�uvame deka
za sekoj digraf D va�i χ′

wo(D) ≤ 3, pri xto ravenstvo e dosti�no.
Prouquvame koga daden graf dozvoluva orientacija pri koja dobieniot
digraf e slabo-neparno 1-rebreno-obojliv. Poka�uvame i deka sekoj
graf dozvoluva orientacija pri koja dobieniot digraf e slabo-neparno
2-rebreno-obojliv.
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