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WEIGHTED NORLUND-EULER A-STATISTICAL CONVERGENCE
FOR SEQUENCES OF POSITIVE LINEAR OPERATORS

Elida Hoxha', Ekrem Aljimi? and Valdete Loku®

Abstract. We introduce the notion of weighted Norlund —Euler A-Statistical
Convergence of a sequence, where A represents the nonnegative regular matrix. We
also prove the Korovkin approximation theorem by using the notion of weighted
Norlund-Euler A-statistical convergence. Further, we give a rate of weighted Norlund-
Euler A-statistical convergence.

1. BACKGROUND, NOTATIONS AND PRELIMINARIES

Suppose that Ec N ={1,2,..} and E, ={k<n:k eE}. Then
5(E)= lim L|E,| M
N—o0
is called the natural density of E provided that the limit exist, where |.| represents the

number of elements in the enclosed set.

The term “statistical convergence” was first presented by Fast [1] which is
generalization of the concept of ordinary convergence. Actually, a root of the notion of
statistical convergence can be detected by Zygmund [2] (also see [3]), where he used the
term ‘almost convergence’ which turned out to be equivalent to the concept of statistical
convergence. The notion of Fast was further investigated by Schoenberg [4], Salat [5],
Fridy [6], and Conner [7].

The following notion is due to Fast [1]. A sequence x=(x,) is said to be

statistically convergentto L if 6(K,.)=0 forevery >0, where
K,={keN:x —LE¢&} 2
equivalently,
lim 1k <n:|x —L|>&}=0. (3)
n—o0
In symbol, we will write S—limx=L. We remark that every convergent sequence is

statistically convergent but not conversely.
Let X and Y be two sequence spaces and let A=(a, ) be an infinite matrix. If for

each x=(x,) in X the series
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AX =D K Xk = ian,kxk 4

k k=1
converges for each ne N and the sequence Ax= A,x belongs to Y , then we say the
matrix A maps X to Y . By the symbol (X,Y) we denote the set of all matrices which

map X into Y .
A matrix A (or a matrix map A) is called regular if Ae(c,c), where the symbol ¢
denotes the spaces of all convergent sequences and
lim A,x= lim x, (5)
n—oo k—so0
for all xec. The well-known Silverman-Toeplitz theorem (see [8]) assert that
A=(a,) isregular if and only if

i) lima,, =0 foreach k;
n

i) limYa,, =1;
n ok

i) supla, Koo .
n k

Kolk [9] extended the definition of statistical convergence which the help of
nonnegative regular matrix A=(a,,) calling it A-statistical convergence. The

definition of A-statistical convergence is given by Kolk as follows. For any
nonnegative regular matrix A, we say that a sequence is A -statistically convergent to
L provided that for every £>0 we have
lim > ap=L (6)
N—=%0k:|x, —L[>&
In 2009, the concept of weighted statistical convergence was defined and studied by
Karakaya and Chishti [10] and further modified by Mursaleen et al. [11] in 2012. In
2013, Belen and Mohiuddine [12] presented a generalization of this notion through de la
Vallee-Poussin mean in probabilistic normed spaces.

n
Let Y x, be a given infinite series with sequence of its nth partial sum {Sn}. If
k=0

(E,1) transform is defined as
1 1 2 n
En =7 2 (k)Sk @)
2" k=0

and we say that this summability method is convergent if E% —S as n—>oo. In this

n
case we say the series > X, is (E,1) — summable to a definite number S. (Hardy [31]).
k=0

And we will write S, —S(E,1) as n—>o.

Let (p,) and (q,) be the two sequences of non-zero real constants such that
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Ph=po+pP+.-.+Pn, P1=p_1=0
Qn=0Op+0+...+0y, Q1=01=0
For the given sequences (p,) and (g,), convolution p*q is defined by:

n
Ry =p*0= > Ppln - (8)
k=0

n
The series ) X, or the sequence {S,} is summable to S by generalized Norlund
k=0

method and it is denoted by S,, = S(N, p,q) if

n
trﬁ)’q = Ri 2 Pny@ySy ©)
" v=0

tendsto S as n—oo.
Let us use in consideration the following method of summability:

PaE _ 1 < 1_1 3 13k
T =g 2 PnkOkEk =g 2 PnkOk e 2 (W)Sy (10)
"0 " k=0 v=0

n
If t,ﬁ"q’E —S as n—>oo, then we say that the series )’ x, or the sequence {S,} is
k=0

summable to S by Norlund-Euler method and it is denoted by S,, —S(N, p,q)(E,1).

Remark 1. If p, =1,q, =1, then we get Euler summability method.

Now we are able to give the definition of the weighted statistical convergence
related to the (N, p,q)(E,1) — summability method.

We say that E have weighted density, denoted by Syg (E), if
Sne (E) = lim 2= [{k <R, :k e E}|. (11)
N—o0 ' N

A sequence x=(X,) is said to be weighted Norlund-Euler statistical convergent
(or S\ —convergent) if for every €>0:
lim R%Hkﬂn:pn_quz%é(b>|xv—L|Zs}|=o (12)
In these case we write L = Syg (st)—limx.
In the other hand, let us recall that C[a,b] is the space of all functions f continuous
on [a,b]. We know that f eC[a,b] is Banach spaces with norm

I fllo= sup | f(x)], feCla,b] (13)
xe[a,b]
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Suppose that L is a linear operator from C[a,b] into C[a,b]. It is clear that if f >0
implies Lf >0, then the linear operator L is positive on C[a,b]. We denote the value
of Lf atapoint xe[a,b] by L(f;x). The classical Korovkin approximation theorem
states the following [14].

Theorem 2. Let (T,) be a sequence of positive linear operators from Cf[a,b] into
C[a,b]. Then,
lim [T, (f;%) = f(X) .,.=0 (14)
n—o0

for all C[a,b] if only if
lim [T, (f;5%)= () L, =0 (15)
nN—o0

where fi(x):xi and i=0,1,2.

Many mathematicians extended the Korovkin-type approximation theorems by using
various test functions in several setups, including Banach spaces, abstract Banach
lattices, function spaces, and Banach algebras. Firstly, Gadjiev and Orhan [15]
established classical Korovkin theorem through statistical convergence and display an
interesting example in support of our result. Recently, Korovkin-type theorems have
been obtained by Mohiuddine [16] for almost convergence. Korovkin-type theorems
were also obtained in [17] for A -statistical convergence. The authors of [18]
established these types of approximation theorem in weighted Lp spaces, where

1< p<w, through A-summability which is stronger than ordinary convergence. For

these types of approximation theorems and related concepts, one can be referred to [19—
29] and references therein.

2. KOROVKIN-TYPE THEOREMS BY WEIGHTED NORLUND-EULER
A-STATISTICAL CONVERGENCE

Kolk [9] introduced the notion of A -statistical convergence by considering
nonnegative regular matrix A instead of Cesaro matrix in the definition of statistical
convergence due to Fast. Inspired from the work of S. A. Mohiuddine, Abdullah
Alotaibi, and Bipan Hazarika [30] we introduce the notion of weighted Norlund-Euler A
-statistical convergence of a sequence and then we establish some Korovkin-type
theorems by using this notion.

Definition 3. Let A=(a, ) be a nonnegative regular matrix. A sequence x=(xy) of
real or complex numbers is said to be weighted Norlund —Euler A -statistical

convergence, denoted by SNE —convergent, to L if forevery £>0
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lim > a,, =0 (16)
N—>%KkeE(p,s)

where
k
E(p.e)=fk eN: Pyt % S (W)1% -LE e} (17)
v=0

In symbol, we will write SEE —limx=L.

Remark 4. Note that convergence sequence implies weighted Norlund-Euler A-
statistical convergent to the same value but converse is not true in general. For example,
take p, =1,q, =1 for all k and define a sequence x =(x) by

e 2
X, = 1, ifk _r-'n (18)
0, otherwise

where ne N . Then this sequence is statistically convergent to 0 but not convergent; in
this case, weighted Norlund-Euler A-statistical convergence of a sequence coincides
with statistical convergence.

Theorem 5. Let A=(a,x) be a nonnegative regular matrix. Consider a sequence of

positive linear operators (M) from C[a,b] into itself. Then, for all f eC[a,b]
bounded on whole real line,

SAT — lim | My (f;x)— f(x)[,,=0 (19)

k—o0
if only if
NE : .

Sa- — lim My (3,x)-1]l,,=0,
k—o

SAE — lim My [[(v;X) =X |l,,=0, (20)
k—o

SAT = lim [[M (v %)= X [L,=0
k—o

Proof. Equation (20) directly follows from (19) because each of 1,x, X belongs to
Cla,b]. Consider a function f <C[a,b]. Then there is a constant C>0 such that

|f(x)|<C forall x e (—o0o,+0). Therefore,

[T (v)-f(x)|<2C, —o<v,x<+0, (21)
Let £>0 be given. By hypothesis there isa & =5(¢) >0 such that

[f(v)-f(ke V|]v-xkd (22)
Solving (21) and (22) and then substituting Q(v) =(v— x)2 , One obtains

|f(v)—f(x)|<g+§—gg. (23)

Equation (23) can be also written by as
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Operating My (L, x) to (24) since M, (f;x) his linear and monoton, one obtains

Note that X is fixed, so f(x) is constant number. Thus, we obtain from (25) that
—M, (& x)_g_g My (€ X)< M (%)= F ()M (1;X) <ng(1;x)+f5—§Mk(Q;x)

The term '

—g—'g—gQ< f(v)-f (x)<g+§—‘23Q.

My (L X)(—8—25_§Q)< My (1;x)(F(v) = (X)) < M (1; X)(£+§—EQ)

"M (;x)— ()M (I;x)" in (26) can also written as

My (%)= FOOM (LX) = M (F5%) = () = F ()M (1 x) 1]

Now substituting the value of M, (f;x)— f(x)My (L x) in (26), we get that

M (f;x)— f(x)<ng(1;x)+fy—§ My (€ x)+ F (O[M (1;x)—1]

We can rewrite the term "M, (€; x)" in (28) as follows:

M (€4 X) = My (v =X)%5 %) = My (v %) + 2XMy (v; X) + XM (15 X)
= [My (v %) = X1 = 2X [ My (v X) = X]+ X2 [ M (15 x) ~ 1]

Equation (28) with the above value of M, (€2;x) becomes

M (f;x)

Therefore,

where b=

or

—F(X) <eM (L x)+§—%{[Mk(v2;x)—x2]+2x[Mk(v;x)—x]
+ X2 M @G X) — 113+ f()IM (LX) 1]
= My (LX) 1]+ & + Z{IMy (v*1%) X7 ]+ 2X[ M (viX) = X]

+ XMy (8) =103+ F (O[My (LX) —1]

My (f:%)— f(x)|s(g+2§—§2+0)||v|k(1;x)—1|
+ 28 M (v =X |
+ A2 M (vix) — X |
max | x |. Taking supremum over X €[a,b], one obtains
My (F5%) = f(x) |Iw£(6+2§—£’2+C) My (%) — 11,
2 M (v 0 = |

4% | My (vi20 =X e

M (F55) = £ (X) o < TLI My (@ X) 1,
+HIM (V0= %2 |,
M (v )= X [}

(24)

(25)

(26)

(@7)

(28)

(29)

(30)

(1)

(32)

(33)
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where
T =max{g+2((;b +C, 2(27 ,450;’} (34)
Hence
Pk Ok Sk Z(V)IIMk(f X) = £(X) o< T{Pn—k K 2 k Z(V)IIMk(l X) =1l
v=0 v=0

+ Pk 5 > ) IM 02 L ()
v=0

k
+ Pkl o 2 ) I Mk (vix) = x L.}
v=0
For given a >0, choose &> 0 such that ¢ <« , and we will define the following sets:

E={keN:pn ko Z(V)”Mk(fx)_f(x)”m a}

=N otk 2(5)||Mk(1,x)—1llw2%

(36)
By ={k e N i Py Gk 3¢ Z(V)u My (Vi X) = X ||, > &2
={keN:py U3¢ k Z(V)II My (v?5) = X7 o= &2
v=0
It easy to see that
Ec BB UE; @37
Thus, for each ne N, we obtain from (35) that
Ak S XAkt Xankt X Ak (38)
keE kek; kek, kek,
Taking limit n — oo in (38) and also (20) gives that
lim Y a,,=0. (39)
n—)OOkEE ’
These yields that
SAE — lim [[ My (f;x)= f (%) |,,=0 (40)
k—o0

forall f eC[a,b].

We also obtain the following Korovkin-type theorem for weighted Norlund-Euler
statistical convergence instead of nonnegative regular matrix A in Theorem 5.

Theorem 6. Consider a sequence of positive linear operators (M) from C[a,b] into
itself. Then, forall f C[a,b] bounded on whole real line,
Sy — lim [ My (F5x)— (%) =0 (41)
k—o0
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if only if
Sne — lim [ M (I x) -1]|,=0 (42)
k—00
Sne — lim My (vi%) = |,,=0 (43)
k—so0
Sne — lim M (v %) = X2 ||,,=0 (44)
k—>00
Proof. Following the proof of Theorem 5, one obtains
E c EjUE,UE;3 (45)
and so
ONEe (E) = One (Bp) + One (E2) + One (Es) (46)
Equations (42)-(44) give that
SNE—in_r:;o”Mk(f;x)—f(x)||w=0. (47)

Remark 7. By the Theorem 2 of [32], we have that if a sequence x =(x,) is weighted
Norlun-Euler statistically convergent to L, then it is strongly (N, p,q)(E,1)—

k
summable to L, provided that p,_, Ok Zik > (\'j) | X, —L| is bounded; that is, there exist
v=0

a constant C such that
k k
Pn—k Gk 2% 2 (W Ix-LkC
v=0
forall k e N . We write

n k
(N, p.)(ED[={x =%, lim & 3 py ok 5 X ()| ~L|=0forsomel} (48)
n—o0 "M k_0 v=0

the set of all sequences x =(x,) which are strongly (N, p,q)(E,1)—summableto L.

Theorem 8. Let M :C[a,b]—C[a,b] be a sequence of positive linear operators
which satisfies (43)-(44) of Theorem 6 and the following conditions holds:

lim ||Mk(1;x)—1||oo=0. (49)
k—o0
Then,
i 1 L 1 k k
lim = > Pn—kk 5 2 W IM (%)= F(X) [l =0, (50)
n—c M k-0 v=0

forany f eCJ[a,b].
Proof. It follow from (49) that || M (f;X)|l,<C", for some constant C'> 0 and for all
k e N . Hence for f C[a,b], one obtains
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k k
ankaz% > () IMi(F%) = 00 < Pk 2% > T ol My @)l + 1 1)
v=0 v=0

. (51)
< Pokk 5 2 (1)C(C+1).
=0
Right hand side of (51) is constant, so
k
Pk 2 2 () I Mk (F30 = (9L
v=0
is bounded. Since (49) implies (42), by Theorem 6 we get that
Sne — lim M (f;%) = f(X) [l,=0. (52)
k—0

By remark 7, (51) and (52) together give the desired result.
3. RATE OF WEIGHTED NORLUND-EULER A-STATISTICAL CONVERGENCE

First we define the rate of weighted Norlund-Euler A-statistical convergent sequence
as follows.

Definition 9. Let A=(a, ) be a nonnegative regular matrix and let (ay) be a positive
non increasing sequence. Then, a sequence X =(x,) is weighted Norlund-Euler A-

statistical convergent to L with the rate of o(ay) if for each £>0

limL ¥ a,,=0 (53)

N0 % | E (,¢)

where
k
E(p.e)=tkeN: Pyt & X ()% ~Lp e} (54)
v=0

In symbol, we will write
X —L=SKE —o(ay) as k —> oo (55)
We will prove the following auxiliary result by using the above definition.

Lemma 10. Let A=(a,y) be a nonnegative regular matrix. Suppose that (ay) and
(b)) are two positive nonincreasing sequences. Let x=(x,) and y=(yy) be two
sequences such that
_goNE _eNE

X —Lg =Sa~ —0(ax) and yx —Lp =Sp~ —o(by) .
Then,
() (L) = (% —Lp) = SA™ —o(c),
(i) (% L) (¥ —Lp) = SA™ —o(axh).
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(iii) a(x, —Ly) = SNE —o(ay),for any scalar
where ¢, = max{ay by }.
Proof. Suppose that

X — Ly = SAE —0(a), Vi —Lo = SAT —o(by) (56)
Given ¢ >0, define

E'={keN:pp 05 Z(V)I(Xk—L1)+(YK—L2)|>8}
E"={keN:pn i3 Z(v X —L =5} (67

"=tke N pn kG ok Z(V)ka—l-z > 5}

It easy to see that

E'cE"_E" (58)
These yields that
Zank<_zak+_zank (59)
" keE' " keE" " keE™
holds for all ne N . Since ¢, = max{ay b}, (59) gives that
_Zank< Zank"‘ 2 Ank (60)
" keE' " keE" keE
Taking limit n — oo in (60) together with (56), we obtain
limLl Ya,, = (61)
Nn—o0 Cn keE'
Thus,
(% — L) £ (¥ — Lp) = SA™ —o(cy) (62)

Similarly, we can prove (ii) and (iii).

Now, we recall the notion of modulus of continuity of f in C[a,b] is defined by

a(f,8)=sup{| f(x) - F(Y)|: x,y e[a,b], | x-y|< 5} (63)
It is well known that

10— F(y) < a(f,a)E0+1). (64)

Theorem 11. Let A=(a,x) be a nonnegative regular matrix. If the sequence of

positive linear operators M : C[a,b] — Cl[a,b] satisfies the conditions
() IMc@X)~1le=SAT —o(ay),
(i) @(f,24)=SA" —o(b), with 24 =My (%) and ¢y () = (y - %)%,
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where (a,) and (b,) are two positive nonincreasing sequences, then
My (F;%) = F(x) [l.= SAT —0(c) (65)
forall f eCfa,b], where ¢, =max{ay b}
Proof. Equation (27) can be reformed into the following form:
IM (£5x) = £ () I My (| £) = £(y) )+ F () [ [My (1 x) -1

<My @+ 22500(F,8)+1 (1M @x) -1

<My @+ D20 00( 1,8+ £ (9] My (@) 1] (66)

< (M @) +5 M (el f,8)+ ] 001 My @30 -1

IM LX) =1l @(,8)+] T 001 M (LX) ~11+0( F,8) + L My (g ), 6)
Choosing & = 4 =W one obtains

M (F5) = ) o< T [ My (%) =1l +2X( £, 4 )+ My (LX) =1l (T, &) (67)
where T =| f ||, . For given £ >0, we will define the following sets:

Ey={k e N:pp g & X ZO(V)IIMk(f i) = 109 o> €}

Ep ={k e Nt G 2% Z(\If) M (1, %) =1]> 5}

(68)
Eg={k e N py 0 & k Z(v)w(f A) =&}
v=l 0
Eg={keN:py 0+ k Z(v)w(f A M (5 x) =1, > £
v=0
It follow from (67) that
_Zank<_zank+_zank+_zank (69)
keEl keEZ keE3 keE4
holds for ne N . Since ¢, =max{ay b}, we obtain from (69) that
_zank<_zank+b Zank"‘ zank (70)

kek; keE, keE, keE4

Taking limit n— oo in (70) together with Lemma 10 and our hypotheses (i) and (ii),
one obtains

lim L1 ¥ Ak = (71)
n—e0 n keE
These yields
My (F5%) = F(X) L= SAE —0(cy) (72)
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