J. Mumescka, M. Kyjyupuesa-Huxonocka / [00. 36. Huciti. Maii. 40 (2004) 39-44 39

REDUCTION OF NONHOMOGENEOQOUS ORDINARY LINEAR
DIFFERENTIAL EQUATION OF THIRD ORDER BASED ON A
QUASIPERIODICITY OF THE SOLUTIONS

Jordanka Mitevska
Marija Kujumdzieva-Nikoloska

Abstract. Using the condition (1) of quasi-periodicity of the functions we reduce the li-
near differential equation of third order to a linear differential equation of second order.
Then, using the results at [1] and [2] we give some conditions of existence quasiperiodic
solution with a constant quasiperiod for some linear differential equations of third order
4).
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1. INTRODUCTION
Definition 1.1. We say that y=y(z),z€/CD,CR is a quasi-

periodic function (QPF) if there are a function w(z) and coefficient \ such that
the relation

o(z+w(z))=2e(z), z,z+w(z)el. 1)
is satisfied. The function w(z) is called a quasi-period (QP) and A is said to be a
quasi-periodic coefficient (QPC) of the function ¢(z).

Remark 1.1. It holds generally X\ =X\(z,w(z)) and in this case the
existence of  the relation (1) is very complicated problem. If
w(z)=wx=konst.. and X=1 for €1, then (1) is a definition of a periodic
function in a classical sense. If w=w(z)=konst. and \=1 for z,z+wel,
then (1) is a generalization of the definition to a periodic function and in this
case w=uw(z) is a function of “repeating values” of y=p(z).

Suppose that the function y(z) is given implicitly with the linear

differential equation \
F(:B,y,y”, . .,y(n),a(z) ,b(iE) yoo .,C(,’E)) =0 (2)
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where a(:v),b(a:),...,c(z)eC’§"_1) at ICD,ND,N...0nD.ND,.

Let y(z) be quasi-periodic solution (QPS) to (2), with a QP w = w(z)
and QPC X, i.e.
y(z+w)=Xy(z)
where w(z)eC}, N>0, X=1and z, z+w(z)el.

- Using the following system (a reducible system)
F(zy.y.y"-,y™,a(2),b(z),...,c(z)) = 0
Flz+wy(@+w),y (@ +w),....,yM(z+w),a(z+w),....clz+w) =0
y(o+u(z)) = M(z) @
L@ +u(@) =2y"(@), m=12..,n

we reduce the equation (2) to the linear differential equation of (n-1) order of y.
In the papers [1] and [2] , using the above procedure, we have given some
conditions of existence QPS with a constant QP for the differential equations of
first and second order and have found the form of the solutions. Here in a similar
way we reduce a linear nonhomogeneous differential equation of third order to a

differential equation of second order and give some conditions of existence QPS
for this equation.

2. PRELIMINARY
Let

" +a(zly’ +b(z)y +c(z)y = d(z), @
be a given differential equation, where a(z), b(z), c(z), d(z) are continuous and
three times differentiable functions at I C D,ND,N...ND.ND, and y=y(z)
is QPS for (4), i.e.

y(z +w(z)) = Ny(z) ©)
if wiz)eO3, \>0, x=1and z, z+w(z)er.
In this case the reducible system (3) is:
y"(z)+a(@)y"(z) +b(z)y () + c(@)y(z) = d(x)
y"(z+w)+a(z +w)y'(z+w)+ bz +w)y'(z +w) + oz +wy(z +w) = d(z +w)
y(z+w) =Ny(z)
¥(@+w) (1 +w) =\y'(2) ©)
Yz +w)(1+w)? +1/(z +wp” =\y"(z)
y///(m +w)(1+wl)3 +3yll(m+w)(1+wl)wll+y/(m +w)w/// —_ >\ylll($)
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If 1+w' =0, ie. w=z—z+kkeR, we can eliminate y(z+w) and its

n

derivatives y"'(z),y'(z +w),y"(z +w),y"(z +w) and so we reduce the equation

(4) to the equation
Xy”[a(:z: +w)(l+ w’)2 —a(z)(l+w)— 3<.u”](1 +u)+

-|-)\y’[b(z +w)(l+ w’)4 —b@(1+ w')2 —a@+w(l+ w')2 W’ — 3w —(1+ w’)w’"] + (D
+)\y[c(z +wl+w) - c(z)](l +u) — [d @+w(l+ W) - Xd(w)](l +u)=0
After the above arguments we have a proof of the following theorem.
Theorem 2.1. Let the nonhomogeneous linear differential equation of
third order (4) have QPS defined by the relation (5). Using the system (6), the
equation (4) is reduced to a nonhomogeneous linear differential equation of
second order given by (7).

3. EXISTENCE OF QPS WITH A CONSTANT QP TO THE
EQUATION (4).

Lemma 3.1. Let y(z) be QPS to (4) with a constant QP
w@ =const.=w anda QPC X\ (A>0, X=1). Then it holds

Ny [ale + ) - a@]+ Xy oz + @) ~ Hz)]+ My [e(@ + @) - o)) - (8)
—ld@+ @) —\d(z)]|=0

Proof. Substituting w=w,® =w" =w"” =0 in(7) we obtain (8). *

Theorem 3.1. Let the coefficients a(z), b(z), c(z), d(x) be QPF with a
constant QP w and QPC p,v,mc respectively, such that p=v,
VEMRENLZESVZS, B, V,n,s=X. The equation (4) has QPS y(z) with a
QP w and a QPC X (XA >0,X==1),if the relations

4 !
301 (§) +5=1(¢) 5=0,and

n —v 4
312 (4) -E=1(9) -a=0

are satisfied. Then the QPS of (4) has a form y = %é—g
Proof. Using the conditions
a(z +w)=pa(z), b(z+w)=vbz),
c(x+w)=nc(z), dz+w)=-<d(x), )

RZEVVENLZEUZEQUZG I, VTES= N
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and Lemma 3.1. we reduce the equation (4) to the equation
Ap—Da(@)y" + 3@ =Dba)y +X(-De(@)y—c-Nd@z)=0  (10)
Depending on p, v,m,5 the following cases are possible ([1],[2]):

a)If p=v=1n=1, ie. a(z) and b(z) are periodic functions with a

period w, then (10) is equivalent with the equation
AM=Dc(z)y—(c~N)d(z)=0,
whose solution is

— 5= _d) c(z) =
y_)\zrl"'l) c(m)’ () 0 (11)

The solution (11) is a QPF with a QP w and a QPC x=% and
S

=X __STm _
A(n-1) %(n—l)

b) If pp—1=0, then we can write the equation (10) in the form

y'+f(@)y +g(z)y—h(z) =0 (12)
where f(z)= ——% _L% 9(z)= —Tl ngg, h(z)= >\( >\1) dé ;, According

to the conditions of the theorem, all of the functions f{(z), ¢g(z), h(xz) are QPF

witha QP w aand QPC vy =,m; = -;l ¢; ==, such that

ul
Uy # M, =S,V 26,6 = A and vy =1, In this case (12) also has a QPS
-\ h(z) d(z) ,
= 11
V=S o)~ o) an

with a QP wand a QPC \ = 71—1 = ﬁ and the relation

(' +22HE 4= (a=ot0 b=t c=ot), a=at) 13
is satisfied .

Since the solution y, determined by (11), i.e. (11°), is also a solution of
(4), the relation

" " [

4 old] 4o = w
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has to be satisfied. From (13) and (14), after short transformation we obtain the
relations 3.1.1. and 3.1.2.

Remark 3.1. It should be noted that, under the conditions of the
theorem, the quasi-periodicity of the solution (11) does not depend on the

coefficients a(z) and b(z) for (4). Namely, the solution (11) for (4) is a QPF in
the both cases, if a(z) and b(z) are periodic or QPF . =
Example 3.1. The equation
y" +a(z)y” +b(z)y +ety=eTsinz

where a(z) and b(z) are

o )_ZSinm—}—llcosx b(m)__2(28in:l:+llcosx)
~ 3sinz+4cosz’ o 2sinx+cosz  ’
satisfies the conditions of the Theorem 3.1. and has a QPS
y=e2*sinz

with a QP w =2 and QPC A =¢™.
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PEIIy HIABMIHOCT HA HEXOMOTI'EHA IMHEAPHA
JUPEPEHIINJAITHA PABEHKA O Il PE[X HA BA3A HA
KBASUIIEPHOIANYHOCT HA PEINEHUJATA

Jopnanka Muregcka
Mapunja Kyjymynesa Hukonocka

Ancrpakr. [ucdepeHuujansara pasenka of Il peg (4), mTo rma xBasu-
NEPHOJMYHK PElIeHHja, CO MOMOII Ha PefyKUHOHHOT cucteM (6) ja pemyuupame
Bo paseHka ofi II pex xoja, Bo cydaj kora KoedunueHTHTE BO (4) Ce KBa3UIEPHO-
AUYHM (PYHKIMM CO KOHCTAHTEH KBasHIIEPHOM,, Ce CBedyBa Ha paBeHKa Of BHJ
(10). I'naBHMOT pe3ynTaT BO TPYAOT € fafeH Bo Teopema 3.1.




