Math. Maced. Vol. 8 (2010) 115-127

FREE (m+k,m)-**BANDS**

VALENTINA MIOVSKA AND DONČO DIMOVSKI

Dedicated to Academician Gorgi Čupona

Abstract. A characterization of (m + k, m)-bands using the rectangular bands is given in [3]. This result is used to obtain a free (m + k, m)-band.

1. INTRODUCTION

First, we will introduce some notations which will be used further on:

1) The elements of Q^s , where Q^s denotes the *s*-th Cartesian power of Q, will be denoted by x_1^s .

2) The symbol x_i^j will denote the sequence $x_i, x_{i+1}, \ldots, x_j$ for $i \leq j$, and the empty sequence for i > j.

3) If $x_1 = x_2 = \cdots = x_s = x$, then x_1^s is denoted by the symbol \ddot{x} .

4) The set $\{1, 2, \ldots, s\}$ will be denoted by \mathbb{N}_s .

Let $Q \neq \emptyset$ and n, m are positive integers. If [] is a mapping from Q^n into Q^m , then [] is called an (n, m)-operation. A pair (Q; []) where [] is an (n, m)-operation is said to be an (n, m) groupoid. Every (n, m)-operation on Q induces a sequence []₁, []₂, ..., []_m of n-ary operations on the set Q, such that

$$((\forall i \in \mathbb{N}_m) \ [x_1^n]_i = y_i) \Leftrightarrow [x_1^n] = y_1^m.$$

Let $m \ge 2, k \ge 1$. An (m + k, m)-groupoid (Q; []) is called an (m + k, m)-semigroup if for each $i \in \{0, 1, 2, \dots, k\}$

$$\left[x_{1}^{i}\left[x_{i+1}^{i+m+k}\right]x_{i+m+k+1}^{m+2k}\right] = \left[\left[x_{1}^{m+k}\right]x_{m+k+1}^{m+2k}\right]$$

An (m + k, m)-groupoid (Q; []) is said to be a projection (m + k, m)-groupoid if there are $1 \leq \alpha_1 < \alpha_2 < \ldots < \alpha_m \leq m + k$, such that

$$[x_1^{m+k}] = x_{\alpha_1} x_{\alpha_2} \dots x_{\alpha_m},$$

for any $x_1^{m+k} \in Q^{m+k}$.

Let $0 \leq p \leq m$. An (m+k,m)-groupoid (Q; []) is said to be a p-zero (m+k,m)-groupoid if $[x_1^{m+k}] = x_1^p x_{p+k+1}^{m+k}$, for any $x_1^{m+k} \in Q^{m+k}$.

Key words and phrases. (m+k,m)-band, free (m+k,m)-band.

 $^{1991\} Mathematics\ Subject\ Classification.\ 20 M10.$

Proposition 1.1. ([3, Proposition 1.3]) Any p-zero (m+k,m)-groupoid $(Q; []^p)$ is an (m+k,m)-semigroup.

Proposition 1.2. ([3, Proposition 1.5]) If (Q; []) is a projection (m+k, m)-groupoid which is also an (m+k, m)-semigroup, then (Q; []) is a p-zero (m+k, m)-semigroup, for some $0 \le p \le m$.

Propositions 1.1 and 1.2 imply that there are exactly m+1 projection (m+k, m)-semigroups.

Let $(A_i; []^i)$, i = 1, 2, ..., t be (m + k, m)-semigroups. Their direct product is an (m + k, m)-semigroup, where the (m + k, m)-operation [] is defined by

$$[x_1^{m+k}] = y_1^m \Leftrightarrow x_i = (x_{i,1}, x_{i,2}, ..., x_{i,t}), \ y_j = (y_{j,1}, y_{j,2}, ..., y_{j,t}), y_{j,r} = [x_{1,j}x_{2,j}...x_{m+k,j}]^r, \ i \in \mathbb{N}_{m+k}, j \in \mathbb{N}_m, r \in \mathbb{N}_t.$$

Let $\mathbf{A}_p = (A_p; []^p)$ be p-zero (m+k,m)-semigroups, $0 \le p \le m$. The direct product of $A_m, A_{m-1}, \ldots, A_0$ is called (m+k,m)-band.

If $(A_m \times A_{m-1} \times ... \times A_0; [])$ is an (m+k, m)-band then its (m+k, m)-operation [] is of the form

$$[x_1^{m+k}] = y_1^m \iff x_i = (x_{i,1}, x_{i,2}, \dots, x_{i,m+1}),$$

$$y_j = (x_{j,1}, x_{j,2}, \dots, x_{j,m+1-j}, x_{j+k,m+2-j}, \dots, x_{j+k,m+1}), i \in \mathbb{N}_{m+k}, j \in \mathbb{N}_m.$$

The next proposition gives a characterization of (m+k, m)-bands as (m+k, m)-semigroups in which five identities are satisfied.

Proposition 1.3. ([3, Proposition 2.2]) An (m+k,m)-semigroup $\mathbf{Q} = (Q, [])$ is an (m+k,m)-band if and only if the following conditions are satisfied in \mathbf{Q} : (B I) $\begin{bmatrix} x^{m+k} \end{bmatrix} = \begin{bmatrix} y^{i-1}x, y^{i+k-1}x, \dots, y^{m+k} \end{bmatrix}$

$$\begin{array}{l} \text{(B I)} \ \begin{bmatrix} x_1 & \cdot & \end{bmatrix}_i = \begin{bmatrix} y_1 & x_i y_{i+1} & x_{i+k} y_{i+k+1} \end{bmatrix}_i, \\ \text{(B II)} \ \begin{bmatrix} j^{-1}_{a} \begin{bmatrix} i^{-1}_{a} x^{k-1} y^{m-i} \\ a^{k-1} y^{m-j} \end{bmatrix}_i^{k-1} z^{m-j} \end{bmatrix}_j = \begin{bmatrix} i^{-1}_{a} x^{k-1} \begin{bmatrix} j^{-1}_{a} y^{k-1} z^{m-j} \\ a^{k-1} z^{m-j} \end{bmatrix}_j^{m-i} \end{bmatrix}_i, \\ \text{(B III)} \ \begin{bmatrix} i^{-1}_{a} \begin{bmatrix} j^{-1}_{a} x^{k-1} y^{m-j} \\ a^{k-1} y^{m-j} \end{bmatrix}_j^{k-1} z^{m-i} \end{bmatrix}_i = \begin{bmatrix} i^{-1}_{a} x^{k-1} z^{m-i} \\ a^{k-1} z^{m-j} \end{bmatrix}_i, \\ \text{(B IV)} \ \begin{bmatrix} j^{-1}_{a} x^{k-1} \begin{bmatrix} i^{-1}_{a} y^{k-1} z^{m-j} \\ a^{k-1} z^{m-j} \end{bmatrix}_i^{m-j} \end{bmatrix}_j = \begin{bmatrix} j^{-1}_{a} x^{k-1} z^{m-j} \\ a^{k-1} z^{m-j} \end{bmatrix}_j, \\ \text{(B IV)} \ \begin{bmatrix} m+k \\ x \end{bmatrix} = m, \end{array}$$

for a fixed element $a \in Q$, $i, j \in \mathbb{N}_m$ and $j \leq i$.

The second characterization of (m + k, m)-bands, using the usual rectangular bands, where a rectangular band is a semigroup (Q; *) that satisfies the identities x * y * z = x * z and x * x = x, for each $x, y, z \in Q$ is given in [3], also.

Proposition 1.4. ([3, Proposition 3.1]) $\mathbf{Q} = (Q; [])$ is an (m + k, m)-band if and only if there are rectangular bands $(Q; *_i), i \in \mathbb{N}_m$, such that

 $\begin{array}{l} (i) \ (x \ast_i y) \ast_j z = x \ast_i \ (y \ast_j z), \\ (ii) \ (x \ast_j y) \ast_i z = x \ast_i z, \end{array}$

(*iii*) $x *_{j} (y *_{i} z) = x *_{j} z$, for $i, j \in \mathbb{N}_{m}, j \leq i$ and $[x_{1}^{m+k}]_{i} = x_{i} *_{i} x_{i+k}, x_{1}^{m+k} \in Q^{m+k}, i \in \mathbb{N}_{m}.$

This result of Proposition 1.4. is used to obtain a free (m + k, m)-band.

2. Free
$$(m+k,m)$$
-bands

Let B be a nonempty set. We define a sequence of sets $B_0, B_1, \ldots, B_p, \ldots$ by induction. Let $B_r = B_r B_r$ alredy defined and let $C_r = \{ xu \mid x \mid u \in B_r \}$. Then, let

Let
$$B_0 = B$$
, B_p alredy defined and let $C_p = \{xy | x, y \in B_p\}$. Then, le
 $B_{p+1} = B_p \cup (\mathbb{N}_m \times C_p)$ and $\overline{B} = \bigcup_{p \ge 0} B_p$.

Define a *length* for elements of \overline{B} , i.e. a mapping $||:\overline{B} \to \mathbb{N}$ as follows: If $a \in B$ then |a| = 1. Suppose that for each $u \in B_p$, |u| is defined, then for $(i, xy) \in B_{p+1}$ we take |(i, xy)| = 1 + |x| + |x| |y|.

By induction on the length we are going to define a mapping $\varphi: \overline{B} \to \overline{B}$. For $a \in B$ let

(0)
$$\varphi(a) = a$$
.

Let $u=(i,xy)\in\overline{B}$ and suppose that for each $v\in\overline{B}$ with $|v|<|u|,\,\varphi(v)$ be defined and

(i) if $\varphi(v) \neq v$ then $|\varphi(v)| < |v|$;

 $(ii) \ \varphi(\varphi(v)) = \varphi(v).$

Because |x| < |u| and |y| < |u|, it follows that $\varphi(x)$ and $\varphi(y)$ are defined.

If $\varphi(x) \neq x$ or $\varphi(y) \neq y$ then let

(1)
$$\varphi(i, xy) = \varphi(i, \varphi(x)\varphi(y)).$$

If $\varphi(x) = x$ and $\varphi(y) = y$, we consider several cases: For u = (i, xx), let

(2)
$$\varphi(u) = \varphi(x);$$

For
$$u = (i, (j, zw)y), j \le i$$
, let

(3)
$$\varphi(u) = \varphi(i, zy);$$

For $u = (i, x(j, zw)), i \leq j$, let

(4)
$$\varphi(u) = \varphi(i, xw);$$

For u = (i, (j, zw)y), i < j, let

(5)
$$\varphi(u) = \varphi(j, z(i, wy));$$

For u = (i, x(j, xz)), j < i, let

(6)
$$\varphi(u) = \varphi(j, xz).$$

If $\varphi(u)$ can not be defined by (1), (2), (3), (4), (5) or (6) let

(7)
$$\varphi(u) = u$$
.

We will give some properties of φ .

Lemma 2.1. φ is a well defined mapping.

Proof. The proof of this property is by induction on the length of the elements u = (i, xy) of \overline{B} .

Let $\varphi(x) \neq x$ or $\varphi(y) \neq y$. Then |x| < |u|, |y| < |u| and from (i) we have $|\varphi(x)| < |x|$ or $|\varphi(y)| < |y|$. Hence, $|(i, \varphi(x)\varphi(y)| = 1 + |\varphi(x)| + |\varphi(x)| |\varphi(y)| < 1 + |x| + |x| |y| = |(i, xy)| = |u|$. Let $\varphi(x) = x$ and $\varphi(y) = y$.

If u = (i, xx) then |x| < |u|.

If $u = (i, (j, zw)y), j \le i$ then |(i, zy)| = 1 + |z| + |z| |y| < 1 + 1 + |z| + |z| |w| + |y| + |z| |w| + |z| |w| |y| = |(i, (j, zw)y)| = |u|.

If $u = (i, x(j, zw)), i \le j$ then |(i, xw)| = 1 + |x| + |x| |w| < 1 + |x| + |x| + |x| |z| + |z| +

If u = (i, (j, zw)y), i < j then |(j, z(i, wy))| = 1 + |z| + |z| + |z| |w| + |z| |w| |y| < 1 + 1 + |z| + |z| |w| + |y| + |z| |y| + |z| |w| |y| = |(i, (j, zw)y)| = |u|.If u = (i, x(i, xz)), i < i then |(i, xz)| < |u|

If u = (i, x(j, xz)), j < i then |(j, xz)| < |u|.

Concidering the fact that on the right hand side of (1), (2), (3), (4), (5) and (6) of the definition of φ , φ is applied on elements with length less than the length of u, we conclude that φ is a well defined mapping.

Lemma 2.2. Let $u \in \overline{B}$.

a) $|\varphi(u)| \leq |u|$. b) If $\varphi(u) \neq u$ then $|\varphi(u)| < |u|$. c) $\varphi(\varphi(u)) = \varphi(u)$.

Proof. By induction on the length.

a) If $\varphi(u)$ is defined by (0) or (7), then $\varphi(u) = u$. So, $|\varphi(u)| = |u|$.

If $\varphi(u)$ is defined by (1), (2), (3), (4), (5) or (6), then on the right hand side of (1), (2), (3), (4), (5) and (6) of the definition of φ , φ is applied on element v with length less then the length of u and by the inductive hipothesis $|\varphi(v)| \leq |v|$. Hence, $|\varphi(u)| = |\varphi(v)| \leq |v| < |u|$.

b) It follows from a).

c) If $\varphi(u)$ is defined by (0) or (7), then $\varphi(u) = u$. So, $\varphi(\varphi(u)) = \varphi(u)$.

If $\varphi(u)$ is defined by (1), (2), (3), (4), (5) or (6), then on the right hand side of (1), (2), (3), (4), (5) and (6) of the definition of φ , φ is applied on element v, such that |v| < |u|. By the inductive hipothesis $\varphi(\varphi(v)) = \varphi(v)$, hence $\varphi(\varphi(u)) = \varphi(\varphi(v)) = \varphi(v) = \varphi(v)$.

Lemma 2.3. Let $u = (i, xy) \in \overline{B}$. Then:

a) $\varphi(u) = \varphi(i, \varphi(x)\varphi(y)).$

b) $\varphi(u) = \varphi(i, \varphi(x)y) = \varphi(i, x\varphi(y)).$

Proof. a) If $\varphi(x) \neq x$ or $\varphi(y) \neq y$ then a) follows from (1) of the definition of φ . If $\varphi(x) = x$ and $\varphi(y) = y$, then a) is obvious.

b) By induction on the length of u = (i, xy).

If $\varphi(x) \neq x$ or $\varphi(y) \neq y$ then $\varphi(u) = \varphi(i, \varphi(x)\varphi(y))$. Because $|(i, \varphi(x)\varphi(y)| < |u|$, by induction and using a) we have $\varphi(i, \varphi(x)\varphi(y)) = \varphi(i, \varphi(\varphi(x))\varphi(y)) = \varphi(i, \varphi(x)y)$. Similary, $\varphi(u) = \varphi(i, x\varphi(y))$.

If $\varphi(x) = x$ and $\varphi(y) = y$, then the property is obvious.

Lemma 2.4. If $u = (i, xx) \in \overline{B}$ then $\varphi(u) = \varphi(x)$.

Proof. By induction on the length of u = (i, xy).

If $\varphi(x) \neq x$ then by (1) we have $\varphi(i, xx) = \varphi(i, \varphi(x)\varphi(x))$. Then, by induction, since $|(i, \varphi(x)\varphi(x))| = 1 + |\varphi(x)| + |\varphi(x)| + |\varphi(x)| + |x| + |x| + |x| = |u|$, and using Lemma 2.3 a) we have $\varphi(i, \varphi(x)\varphi(x)) = \varphi(\varphi(x)) = \varphi(\varphi(x))$.

If $\varphi(x) = x$, then the property follows from (2) of the definition of φ .

Lemma 2.5. (I) If u = (i, (j, zw)y), $j \le i$ then $\varphi(u) = \varphi(i, zy)$. (II) If u = (i, x(j, zw)), $i \le j$ then $\varphi(u) = \varphi(i, xw)$. (III) If u = (i, (j, zw)y), i < j then $\varphi(u) = \varphi(j, z(i, wy))$. (IV) If u = (i, x(j, xz)), j < i then $\varphi(u) = \varphi(j, xz)$.

Proof. By induction on the length of u = (i, xy).

(I) A) Let $\varphi(j, zw) \neq (j, zw)$ or $\varphi(y) \neq y$.

A1) If $\varphi(y) \neq y$ then, by induction and using Lemma 2.3. b) we have: $\varphi(i, (j, zw)y) = \varphi(i, (j, zw)\varphi(y)) = \varphi(i, z\varphi(y)) = \varphi(i, zy).$

We have applied (I) on $(i, (j, zw)\varphi(y))$ because $|(i, (j, zw)\varphi(y))| < |(i, (j, zw)y)|$. A2) Let $\varphi(j, zw) \neq (j, zw)$.

A2.1) If $\varphi(z) \neq z$ or $\varphi(w) \neq w$ then, using Lemma 2.3. b) and (1) of the definition of φ , we have:

$$\begin{split} \varphi(i,(j,zw)y) &= \varphi(i,\varphi(j,zw)y) = \varphi(i,\varphi(j,\varphi(z)\varphi(w))y) = \varphi(i,(j,\varphi(z)\varphi(w))y) \\ &= \varphi(i,\varphi(z)y) = \varphi(i,zy). \end{split}$$

In the above, we have applied (I) on $(i, (j, \varphi(z)\varphi(w))y)$ because $|(i, (j, \varphi(z)\varphi(w))y)| < |u|$.

A2.2) Let $\varphi(z) = z$ and $\varphi(w) = w$.

A2.2.1) Let z = w. Then, using Lemma 2.3. b) and (2) of the definition of φ , we have:

 $\varphi(i,(j,zz)y) = \varphi(i,\varphi(j,zz)y) = \varphi(i,\varphi(z)y) = \varphi(i,zy).$

A2.2.2) Let $z = (l, z_1 z_2), l \leq j$. Then, by induction, using Lemma 2.3. b) and (3) of the definition of φ , we have:

 $\begin{aligned} \varphi(i, (j, (l, z_1 z_2) w) y) &= \varphi(i, \varphi(j, (l, z_1 z_2) w) y) = \varphi(i, \varphi(j, z_1 w) y) = \varphi(i, (j, z_1 w) y) \\ &= \varphi(i, z_1 y) = \varphi(i, (l, z_1 z_2) y) = \varphi(i, zy). \end{aligned}$

We have applied (I) on $(i, (j, z_1w)y)$ and $(i, (l, z_1z_2)y)$, since their lengths are less then the length of u.

A2.2.3) Let $w = (l, w_1 w_2), j \leq l$. Then, by induction, using Lemma 2.3. b) and (4) of the definition of φ , we have:

 $\begin{aligned} \varphi(i,(j,z(l,w_1w_2))y) &= \varphi(i,\varphi(j,z(l,w_1w_2))y) = \varphi(i,\varphi(j,zw_2)y) = \varphi(i,(j,zw_2)y) \\ &= \varphi(i,zy). \end{aligned}$

We have applied (I) on $(i, (j, zw_2)y)$, because $|(i, (j, zw_2)y)| < |u|$.

A2.2.4) Let $u = (i, (j, (l, z_1 z_2) w)y), j < l$. Then, by induction, using Lemma 2.3. b) and (5) of the definition of φ , we have:

 $\begin{array}{l} \varphi(i,(j,(l,z_{1}z_{2})w)y) = \varphi(i,\varphi(j,(l,z_{1}z_{2})w)y) = \varphi(i,\varphi(l,z_{1}(j,z_{2}w))y) \\ = \varphi(i,(l,z_{1}(j,z_{2}w))y). \\ \text{If } j < l \leq i, \text{ then by induction, since } |(i,(l,z_{1}(j,z_{2}w))y)| < |u| \text{ and } |(i,(l,z_{1}z_{2})y)| < |u|, \text{ we have:} \end{array}$

 $\varphi(i, (l, z_1(j, z_2w))y) = \varphi(i, z_1y) = \varphi(i, (l, z_1z_2)y) = \varphi(i, zy).$

If $j \leq i < l$, then by induction and using Lemma 2.3. b) we have:

 $\varphi(i,(l,z_1(j,z_2w))y) = \varphi(l,z_1(i,(j,z_2w)y)) = \varphi(l,z_1\varphi(i,(j,z_2w)y))$

 $=\varphi(l,z_1\varphi(i,z_2y))=\varphi(l,z_1(i,z_2y))=\varphi(i,(l,z_1z_2)y)=\varphi(i,zy).$

We have applied (III) on $u' = (i, (l, z_1(j, z_2w))y)$ and $u'' = (i, (l, z_1z_2)y)$ and (I) on $u''' = (i, (j, z_2w)y)$, since |u'| < |u|, |u''| < |u| and |u'''| < |u|.

A2.2.5) Let $u = (i, (j, z(l, zw_2))y), l < j$. Then, by induction, using Lemma 2.3. b) and (6) of the definition of φ , we have:

 $\varphi(i, (j, z(l, zw_2))y) = \varphi(i, \varphi(j, z(l, zw_2))y) = \varphi(i, \varphi(l, zw_2)y) = \varphi(i, (l, zw_2)y)$ = $\varphi(i, zy)$.

We have applied (I) on $(i, (l, zw_2)y)$, since $|(i, (l, zw_2)y)| < |u|$.

B) Let $\varphi(j, zw) = (j, zw)$ and $\varphi(y) = y$.

B1) Let y = (j, zw). Then, by (2) we have:

 $\varphi(i,(j,zw)(j,zw)) = \varphi(j,zw).$

B1.1) If j < i then, by induction we have:

 $\varphi(j,zw)=\varphi(i,z(j,zw))=\varphi(i,zy).$

We have applied (IV) on (i, z(j, zw)). It is possible, since |(i, z(j, zw))| < |u|. B1.2) If j = i, then, by induction we have:

 $\varphi(i, zw) = \varphi(i, z(i, zw)) = \varphi(i, zy)$

In the above, we have applied (II) on (i, z(i, zw)), because its length is less then the length of u.

B2) If $y \neq (j, zw)$ then the property follows from (3) of the definition of φ . The above discussion completes the inductive step for (I).

(II) A) Let $\varphi(x) \neq x$ or $\varphi(j, zw) \neq (j, zw)$.

A1) If $\varphi(x) \neq x$ then, by induction and using Lemma 2.3. b) we have: $\varphi(i, x(j, zw)) = \varphi(i, \varphi(x)(j, zw)) = \varphi(i, \varphi(x)w) = \varphi(i, xw).$

We have applied (II) on $(i, \varphi(x)(j, zw))$ because $|(i, \varphi(x)(j, zw))| < |u|$. A2) Let $\varphi(j, zw) \neq (j, zw)$.

A2.1) If $\varphi(z) \neq z$ or $\varphi(w) \neq w$ then, by induction, using Lemma 2.3. b) and (1) of the definition of φ , we have:

$$\begin{split} \varphi(i, x(j, zw)) &= \varphi(i, x\varphi(j, zw)) = \varphi(i, x\varphi(j, \varphi(z)\varphi(w))) = \varphi(i, x(j, \varphi(z)\varphi(w))) \\ &= \varphi(i, x\varphi(w)) = \varphi(i, xw). \end{split}$$

We have applied (II) on $(i, x(j, \varphi(z)\varphi(w)))$ because $|(i, x(j, \varphi(z)\varphi(w)))| < |u|$. A2.2) Let $\varphi(z) = z$ and $\varphi(w) = w$.

A2.2.1) Let z = w. Then, using Lemma 2.3. b) and (2), we have:

 $\varphi(i, x(j, ww)) = \varphi(i, x\varphi(j, ww)) = \varphi(i, x\varphi(w)) = \varphi(i, xw) = \varphi(i, xw).$

A2.2.2) Let $z = (l, z_1 z_2), l \leq j$. Then, by induction, using Lemma 2.3. b) and (3) of the definition of φ , we have:

 $\begin{array}{l} \varphi(i,x(j,(l,z_1z_2)w))=\varphi(i,x\varphi(j,(l,z_1z_2)w))=\varphi(i,x\varphi(j,z_1w))=\varphi(i,x(j,z_1w))\\ =\varphi(i,xw). \end{array}$

We have applied (II) on $(i, x(j, z_1w))$ since $|(i, x(j, z_1w))| < |u|$.

A2.2.3) Let $w = (l, w_1 w_2), j \leq l$. Then, by induction, using Lemma 2.3. b) and (4) of the definition of φ , we have:

 $\begin{aligned} \varphi(i, x(j, z(l, w_1w_2))) &= \varphi(i, x\varphi(j, z(l, w_1w_2))) = \varphi(i, x\varphi(j, zw_2)) = \varphi(i, x(j, zw_2)) \\ &= \varphi(i, xw_2) = \varphi(i, x(l, w_1w_2)) = \varphi(i, xw). \end{aligned}$

In the above, we have applied (II) on $(i, x(j, zw_2))$ and $(i, x(l, w_1w_2))$, since their lengths are less than the length of u.

A2.2.4) Let $z = (l, z_1 z_2), j < l$. Then, by induction, using Lemma 2.3. b) and (5) of the definition of φ , we have:

 $\begin{aligned} \varphi(i, x(j, (l, z_1 z_2) w)) &= \varphi(i, x \varphi(j, (l, z_1 z_2) w)) = \varphi(i, x \varphi(l, z_1(j, z_2 w))) \\ &= \varphi(i, x(l, z_1(j, z_2 w))) = \varphi(i, x(j, z_2 w)) = \varphi(i, x w). \end{aligned}$

We have applied (II) on $u' = (i, x(l, z_1(j, z_2w)))$ and $u'' = (i, x(j, z_2w))$, since |u'| < |u| and |u''| < |u|.

A2.2.5) Let $w = (l, zw_2), l < j$, then, using Lemma 2.3. b) and (6) of the definition of φ , we have:

 $\varphi(i, x(j, z(l, zw_2))) = \varphi(i, x\varphi(j, z(l, zw_2))) = \varphi(i, x\varphi(l, zw_2)) = \varphi(i, x(l, zw_2)) = \varphi(i, xw).$

B) Let $\varphi(x) = x$ and $\varphi(j, zw) = (j, zw)$.

B1) If x = (j, zw), then by (2) of the definition of φ , we have: $\varphi(i, (j, zw)(j, zw)) = \varphi(j, zw).$

B1.1) Let i < j, then, by induction and using Lemma 2.4. we have: $\varphi(i, zw) = \varphi(i, z\varphi(w)) = \varphi(j, z\varphi(i, ww)) = \varphi(j, z(i, ww)) = \varphi(i, (j, zw)w)$

$$\varphi(j, zw) = \varphi(j, z\varphi(w)) = \varphi(j, z\varphi(w))$$
$$= \varphi(i, xw).$$

We have applied (III) on (i, (j, zw)w), because |(i, (j, zw)w)| < |u|.

B1.2) If i = j, then we apply (I) on (i, (i, zw)w), because |(i, (i, zw)w)| < |u|. Thus:

 $\varphi(i, zw) = \varphi(i, (i, zw)w) = \varphi(i, xw).$

B2) Let $x = (l, x_1 x_2), l \leq i$. Then, by induction and using (3) of the definition of φ , we have:

$$\begin{split} \varphi(i,(l,x_1x_2)(j,zw)) &= \varphi(i,x_1(j,zw)) = \varphi(i,x_1w) = \varphi(i,(l,x_1x_2)w) = \varphi(i,xw). \\ \text{We have applied (II) on } u' &= (i,x_1(j,zw)) \text{ and (I) on } u'' = (i,(l,x_1x_2)w), \text{ since } |u'| < |u| \text{ and } |u''| < |u|. \end{split}$$

B3) If $\varphi(u)$ is not defined by (2) and (3) of the definition of φ , then the property follows from (4) of the definition.

The above discusion completes the inductive step for (II).

(III) A) Let $\varphi(y) \neq y$ or $\varphi(j, zw) \neq (j, zw)$.

A1) If $\varphi(y) \neq y$ then, by induction and using Lemma 2.3. b) we have: $\varphi(i, (j, zw)y) = \varphi(i, (j, zw)\varphi(y)) = \varphi(j, z(i, w\varphi(y))) = \varphi(j, z\varphi(i, w\varphi(y)))$ $= \varphi(j, z\varphi(i, wy)) = \varphi(j, z(i, wy)).$

We have applied (III) on $(i, (j, zw)\varphi(y))$ because $|(i, (j, zw)\varphi(y))| < |u|$. A2) Let $\varphi(j, zw) \neq (j, zw)$.

A2.1) If $\varphi(z) \neq z$ or $\varphi(w) \neq w$ then, by induction, using Lemma 2.3. b) and (1) of the definition of φ , we have:

 $\varphi(i,(j,zw)y) = \varphi(i,\varphi(j,zw)y) = \varphi(i,\varphi(j,\varphi(z)\varphi(w))y) = \varphi(i,(j,\varphi(z)\varphi(w))y)$

 $= \varphi(j,\varphi(z)(i,\varphi(w)y)) = \varphi(j,z(i,\varphi(w)y)) = \varphi(j,z\varphi(i,\varphi(w)y)) = \varphi(j,z\varphi(i,wy))$ = $\varphi(j,z(i,wy)).$

In the above, we have applied (III) on $u' = (i, (j, \varphi(z)\varphi(w))y)$ because |u'| < |u|. A2.2) Let $\varphi(z) = z$ and $\varphi(w) = w$.

A2.2.1) Let z = w. Then, by induction, using Lemma 2.3. b) and (2) of the definition of φ we have:

 $\varphi(i, (j, zz)y) = \varphi(i, \varphi(j, zz)y) = \varphi(i, \varphi(z)y) = \varphi(i, zy) = \varphi(j, z(i, zy)).$ We have applied (IV) on u' = (j, z(i, zy)), since |u'| < |u|.

A2.2.2) Let $z = (l, z_1 z_2), l \leq j$. Then, by induction, using Lemma 2.3. b) and (3) of the definition of φ , we have:

 $\begin{aligned} \varphi(i, (j, (l, z_1 z_2) w)y) &= \varphi(i, \varphi(j, (l, z_1 z_2) w)y) = \varphi(i, \varphi(j, z_1 w)y) \\ &= \varphi(j, z_1(i, wy)) = \varphi(j, (l, z_1 z_2)(i, wy)) \\ &= \varphi(j, z_1(i, wy)) = \varphi(j, (l, z_1 z_2)(i, wy)) \\ &= \varphi(j, z_1(i, y)) \\ &= \varphi($

We have applied (III) on $u' = (i, (j, z_1w)y)$ and (I) on $u'' = (j, (l, z_1z_2)(i, wy))$, since |u'| < |u| and |u''| < |u|.

A2.2.3) Let $w = (l, w_1 w_2), j \leq l$. Then, by induction, using Lemma 2.3. b) and (4) of the definition of φ , we have:

$$\begin{split} &\varphi(i,(j,z(l,w_1w_2))y) = \varphi(i,\varphi(j,z(l,w_1w_2))y) = \varphi(i,\varphi(j,zw_2)y) = \varphi(i,(j,zw_2)y) \\ &= \varphi(j,z(i,w_2y)) = \varphi(j,z(l,w_1(i,w_2y))) = \varphi(j,z\varphi(l,w_1(i,w_2y))) \\ &= \varphi(j,z\varphi(i,(l,w_1w_2)y)) = \varphi(j,z(i,(l,w_1w_2)y)) = \varphi(j,z(i,wy)). \\ &\text{In the above, we have applied (III) on } u' = (i,(j,zw_2)y) \text{ and } u'' = (i,(l,w_1w_2)y) \\ &\text{and (II) on } u''' = (j,z(l,w_1(i,w_2y))), \text{ since } |u'| < |u|, |u''| < |u| \text{ and } |u'''| < |u|. \\ &\text{A2.2.4) Let } z = (l,z_1z_2), \ j < l. \text{ Then, by induction, using Lemma 2.3. } b) \text{ and } (5) \\ &\text{of the definition of } \varphi, \text{ we have:} \end{split}$$

 $\begin{array}{l} \varphi(i,(j,(l,z_1z_2)w)y) = \varphi(i,\varphi(j,(l,z_1z_2)w)y) = \varphi(i,\varphi(l,z_1(j,z_2w))y) \\ = \varphi(i,(l,z_1(j,z_2w))y) = \varphi(l,z_1(i,(j,z_2w)y)) = \varphi(l,z_1\varphi(i,(j,z_2w)y)) \\ = \varphi(l,z_1\varphi(j,z_2(i,wy))) = \varphi(l,z_1(j,z_2(i,wy))) = \varphi(j,(l,z_1z_2)(i,wy)) = \varphi(j,z(i,wy)). \\ \text{We have applied (III) on } u' = (i,(l,z_1(j,z_2w))y), \ u'' = (i,(j,z_2w)y)) \ \text{and } u''' = (j,(l,z_1z_2)(i,wy)), \text{ since } |u'| < |u|, \ |u''| < |u| \ \text{and } |u'''| < |u|. \\ \text{A2.2.5) Let } w = (l,zw_2), \ l < j, \ \text{then using Lemma 2.3. } b) \ \text{and } (6) \ \text{of the definition of } \varphi, \ \text{we have:} \end{array}$

 $\varphi(i, (j, z(l, zw_2))y) = \varphi(i, \varphi(j, z(l, zw_2))y) = \varphi(i, \varphi(l, zw_2)y) = \varphi(i, (l, zw_2)y).$ If $l \leq i < j$, then by induction and using Lemma 2.3. b) we have:

 $\varphi(i, (l, zw_2)y) = \varphi(i, zy) = \varphi(j, z(i, zy)) = \varphi(j, z\varphi(i, zy))$

 $=\varphi(j, z\varphi(i, (l, zw_2)y)) = \varphi(j, z(i, (l, zw_2)y)) = \varphi(j, z(i, wy)).$

We have applied (I) on $u' = (i, (l, zw_2)y)$ and (III) on u'' = (j, z(i, zw)), since |u'| < |u| and |u''| < |u|.

If i < l < j then by induction and using Lemma 2.3. b) we have:

 $\begin{aligned} \varphi(i, (l, zw_2)y) &= \varphi(l, z(i, w_2y)) = \varphi(j, z(l, z(i, w_2y))) = \varphi(j, z\varphi(l, z(i, w_2y))) \\ &= \varphi(j, z\varphi(i, (l, zw_2)y)) = \varphi(j, z(i, (l, zw_2)y)) = \varphi(j, z(i, wy)). \end{aligned}$

We have applied (III) on $u' = (i, (l, zw_2)y)$ and $u'' = (i, (l, zw_2)y)$ and (IV) on $u''' = (j, z(l, z(i, w_2y)))$, because |u'| < |u|, |u''| < |u| and |u'''| < |u|.

B) Let $\varphi(y) = y$ and $\varphi(j, zw) = (j, zw)$.

B1) Let y = (j, zw), then by induction, using Lemmas 2.3. b) and 2.4. and (2) of the definition of φ , we have:

 $\varphi(i,(j,zw)(j,zw)) = \varphi(j,zw) = \varphi(j,z\varphi(w)) = \varphi(j,z\varphi(i,ww))$

 $=\varphi(j,z\varphi(i,w(j,zw)))=\varphi(j,z(i,w(j,zw)))=\varphi(j,z(i,wy)).$

In the above, we have applied (II) on u' = (i, w(j, zw)), because |u'| < |u|.

B2) It is not possible $\varphi(u)$ to be defined by (3) of the definition of φ .

B3) Let $y = (l, y_1 y_2), i \leq l$. Then, by induction, using Lemma 2.3. b) and (4) of the definition of φ , we have:

 $\begin{aligned} \varphi(i, (j, zw)(l, y_1y_2)) &= \varphi(i, (j, zw)y_2) = \varphi(j, z(i, wy_2)) = \varphi(j, z\varphi(i, wy_2)) \\ &= \varphi(j, z\varphi(i, w(l, y_1y_2)) = \varphi(j, z(i, w(l, y_1y_2))) = \varphi(j, z(i, wy)). \end{aligned}$ We have applied (III) on $u' = (i, (j, zw)y_2)$ and (II) on $u'' = (i, w(l, y_1y_2))$, since |u'| < |u| and |u''| < |u|.

B4) If $\varphi(u)$ is not defined by (2), (3) and (4) of the definition of φ , then the property follows from (5) of the definition.

The above discusion completes the inductive step for (III).

(IV) A) Let $\varphi(x) \neq x$ or $\varphi(j, xz) \neq (j, xz)$.

A1) If $\varphi(x) \neq x$ then, by induction, using Lemma 2.3. b) and (1) of the definition of φ , we have:

$$\begin{split} \varphi(i, x(j, xz)) &= \varphi(i, \varphi(x)\varphi(j, xz)) = \varphi(i, \varphi(x)\varphi(j, \varphi(x)z)) = \varphi(i, \varphi(x)(j, \varphi(x)z)) \\ &= \varphi(j, \varphi(x)z) = \varphi(j, xz). \end{split}$$

We have applied (IV) on $(i, \varphi(x)(j, \varphi(x)z))$ since $|(i, \varphi(x)(j, \varphi(x)z))| < |u|$. A2) Let $\varphi(j, xz) \neq (j, xz)$.

A2.1) In A1) we have considered the case $\varphi(x) \neq x$. Next, we consider $\varphi(x) = x$. Let $\varphi(z) \neq z$. Then, by induction and using Lemma 2.3. b) we have:

$$\begin{split} \varphi(i,x(j,xz)) &= \varphi(i,x\varphi(j,xz)) = \varphi(i,x\varphi(j,x\varphi(z))) = \varphi(i,x(j,x\varphi(z))) \\ &= \varphi(j,x\varphi(z)) = \varphi(j,xz). \end{split}$$

We have applied (IV) on $(i, x(j, x\varphi(z)))$ since $|(i, x(j, x\varphi(z)))| < |u|$. A2.2) Let $\varphi(z) = z$.

A2.2.1) If x = z then, using Lemma 2.3. b) and (2), we have:

 $\varphi(i, x(j, xx)) = \varphi(i, x\varphi(j, xx)) = \varphi(i, x\varphi(x)) = \varphi(i, xx) = \varphi(x) = \varphi(j, xx).$ A2.2.2) Let $x = (l, x_1x_2), l \leq j$. Then, by induction and using Lemma 2.3. b) and (3) of the definition of φ , we have:

 $\begin{array}{l} \varphi(i,(l,x_{1}x_{2})(j,(l,x_{1}x_{2})z)) = \varphi(i,(l,x_{1}x_{2})\varphi(j,(l,x_{1}x_{2})z)) = \varphi(i,(l,x_{1}x_{2})\varphi(j,x_{1}z)) \\ = \varphi(i,(l,x_{1}x_{2})(j,x_{1}z)) = \varphi(i,x_{1}(j,x_{1}z)) = \varphi(j,x_{1}z) = \varphi(j,(l,x_{1}x_{2})z) = \varphi(j,xz). \\ \text{We have applied (I) on } u' = (i,(l,x_{1}x_{2})(j,x_{1}z)) \text{ and } u'' = (j,(l,x_{1}x_{2})z) \text{ and (IV)} \\ \text{on } u''' = (i,x_{1}(j,x_{1}z)), \text{ because } |u'| < |u|, |u''| < |u| \text{ and } |u'''| < |u|. \\ \text{A2.2.3) Let } z = (l,z_{1}z_{2}), j \leq l. \text{ Then, by induction, using Lemma 2.3. } b) \text{ and (4)} \\ \text{of the definition of } \varphi, \text{ we have:} \end{array}$

 $\begin{aligned} \varphi(i, x(j, x(l, z_1 z_2))) &= \varphi(i, x\varphi(j, x(l, z_1 z_2))) = \varphi(i, x\varphi(j, x z_2)) \\ &= \varphi(i, x(j, x z_2)) = \varphi(j, x z_2) = \varphi(j, x(l, z_1 z_2)) = \varphi(j, x z). \end{aligned}$

In the above, we have applied (IV) on $u' = (i, x(j, xz_2))$ and (II) on $u'' = (j, x(l, z_1z_2))$ since |u'| < |u| and |u''| < |u|.

A2.2.4) Let $x = (l, x_1 x_2), j < l$. Then, using Lemma 2.3. b) and (5) of the definition of φ , we have:

$$\begin{split} &\varphi(i,(l,x_1x_2)(j,(l,x_1x_2)z)) = \varphi(i,(l,x_1x_2)\varphi(j,(l,x_1x_2)z)) \\ &= \varphi(i,(l,x_1x_2)\varphi(l,x_1(j,x_2z))) = \varphi(i,(l,x_1x_2)(l,x_1(j,x_2z))). \\ & \text{We will consider three cases.} \end{split}$$

A2.2.4.1) If j < i < l then, by induction and using Lemma 2.3. b) we have: $\varphi(i, (l, x_1 x_2)(l, x_1(j, x_2 z))) = \varphi(i, (l, x_1 x_2)((j, x_2 z))) = \varphi(l, x_1(i, x_2(j, x_2 z)))$ $=\varphi(l, x_1\varphi(i, x_2(j, x_2z))) = \varphi(l, x_1\varphi(j, x_2z)) = \varphi(l, x_1(j, x_2z)) = \varphi(j, (l, x_1x_2)z)$ $=\varphi(j,xz).$ We have applied (II) on $u_1 = (i, (l, x_1x_2)(l, x_1(j, x_2z)))$, (III) on $u_2 = (i, (l, x_1x_2)((j, x_2z)))$ and $u_3 = (j, (l, x_1 x_2) z)$ and (IV) on $u_4 = (i, x_2(j, x_2 z))$, because $|u_{\lambda}| < |u|$ for $\lambda = 1, 2, 3, 4.$ A2.2.4.2) If j < l < i then, by induction we have: $\varphi(i, (l, x_1 x_2)(l, x_1(j, x_2 z))) = \varphi(i, x_1(l, x_1(j, x_2 z))) = \varphi(l, x_1(j, x_2 z))$ $=\varphi(j,(l,x_1x_2)z)=\varphi(j,xz)$ We have applied (I) on $u' = (i, (l, x_1x_2)(l, x_1(j, x_2z))),$ (IV) on $u'' = (i, x_1(l, x_1(j, x_2z)))$ and (III) on $u''' = (j, (l, x_1 x_2)z)$, because |u'| < |u|, |u''| < |u| and |u'''| < |u|. A2.2.4.3) If j < i = l then, by induction, we have: $\varphi(i, (i, x_1 x_2)(i, x_1(j, x_2 z))) = \varphi(i, x_1(i, x_1(j, x_2 z))) = \varphi(i, x_1(j, x_2 z)) = \varphi(j, (i, x_1 x_2) z)$ $= \varphi(j, xz).$ We have applied (I) on $u' = (i, (i, x_1x_2)(i, x_1(j, x_2z)))$, (II) on $u'' = (i, x_1(i, x_1(j, x_2z)))$ and (III) on $u''' = (j, (i, x_1 x_2)z)$, since |u'| < |u|, |u''| < |u| and |u'''| < |u|. A2.2.5) Let $z = (l, xz_2), l < j$, then, by induction, using Lemma 2.3. b) and (6) of the definition of φ , we have: $\varphi(i, x(j, x(l, xz_2))) = \varphi(i, x\varphi(j, x(l, xz_2))) = \varphi(i, x\varphi(l, xz_2)) = \varphi(i, x(l, xz_2))$ $=\varphi(l, xz_2) = \varphi(j, x(l, xz_2)) = \varphi(j, xz).$ We have applied (IV) on $u' = (i, x(l, xz_2))$ and $u'' = (j, x(l, xz_2))$, since |u'| < |u|and |u''| < |u|. B) Let $\varphi(x) = x$ and $\varphi(j, xz) = (j, xz)$. B1) It is not possible $\varphi(u)$ to be defined by (2). B2) Let $x = (l, x_1 x_2), l \leq i$. Then, by induction, using Lemma 2.3. b) and (3) of the definition of φ , we have: $\varphi(i, (l, x_1 x_2)(j, (l, x_1 x_2)z)) = \varphi(i, x_1(j, (l, x_1 x_2)z)) = \varphi(j, (i, x_1(l, x_1 x_2))z)$ $=\varphi(j,\varphi(i,x_1(l,x_1x_2))z).$ We have applied (III) on $(j, (i, x_1(l, x_1x_2))z)$ since $|(j, (i, x_1(l, x_1x_2))z)| < |u|$. B2.1) Let i = l. Then, by induction and using Lemma 2.3., we have: $\varphi(j,\varphi(i,x_1(i,x_1x_2))z) = \varphi(j,\varphi(i,x_1x_2)z) = \varphi(j,(i,x_1x_2)z) = \varphi(j,xz).$ We have applied (II) on $u' = (i, x_1(i, x_1x_2))$, since |u'| < |u|. B2.2) Let l < i. Then, by induction and using Lemma 2.3. b), we have: $\varphi(j,\varphi(i,x_1(l,x_1x_2))z) = \varphi(j,\varphi(l,x_1x_2)z) = \varphi(j,(l,x_1x_2)z)\varphi(j,xz).$ We have applied (IV) on $(i, x_1(l, x_1x_2))$ because $|(i, x_1(l, x_1x_2))| < |u|$. B3) It is not possible $\varphi(u)$ to be defined by (4). B4) Let t $x = (l, x_1 x_2), i < l$. Then, by induction, using Lemmas 2.3. b) and 2.4. and (5) of the definition of φ , we have: $\varphi(i, (l, x_1 x_2)(j, (l, x_1 x_2)z)) = \varphi(l, x_1(i, x_2(j, (l, x_1 x_2)z)))$ $=\varphi(l, x_1\varphi(i, x_2(j, (l, x_1x_2)z))) = \varphi(l, x_1\varphi(j, (i, x_2(l, x_1x_2))z))$ $=\varphi(l, x_1\varphi(i, x_2(l, x_1x_2))z)) = \varphi(l, x_1\varphi(j, \varphi(i, x_1x_2)z)) = \varphi(l, x_1\varphi(j, \varphi(x_2)z))$ $=\varphi(l, x_1\varphi(j, x_2z)) = \varphi(l, x_1(j, x_2z)) = \varphi(j, (l, x_1x_2)z) = \varphi(j, xz).$ In the above, we have applied (III) on $u' = (j, (i, x_2(l, x_1x_2))z)$ and $u'' = (j, (l, x_1x_2)z)$ and (II) on $u''' = (i, x_2(l, x_1x_2))$, since |u'| < |u|, |u''| < |u| and |u'''| < |u|.

B5) If $\varphi(u)$ is not defined by (2), (3), (4) and (5) of the definition of φ , then the property follows from (6) of the definition.

The above discusion completes the inductive step for (IV).

Let $Q = \varphi(\overline{B})$. If $u \in Q$ then there is $v \in \overline{B}$ such that $\varphi(v) = u$ and, by Proposition 2.2 c), we have:

 $\varphi(u) = \varphi(\varphi(v)) = \varphi(v) = u.$

It is clear that if $\varphi(u) = u$ then $u \in \varphi(\overline{B}) = Q$. Hence, $Q = \{ u | u \in \overline{B}, \varphi(u) = u \}$. We define mappings $*_i : Q \times Q \to Q, i \in \mathbb{N}_m$ by $x *_i y = \varphi(i, xy)$.

Lemma 2.6. For each $i \in \mathbb{N}_m$, $(Q; *_i)$ are rectangular bands that satisfy (i), (ii) and (iii) from Proposition 1.4..

Proof. If $x, y \in Q$ then $(i, xy) \in \overline{B}$ and consequently $\varphi(i, xy) \in Q$. Hence, $*_i$ are well defined mappings i.e. $(Q; *_i)$ are groupoids for each $i \in \mathbb{N}_m$.

Let $x, y, z \in Q$, $i \in \mathbb{N}_m$. Then, using Lemmas 2.3. b) and 2.5. (I) and (II), we have:

$$(x\ast_i y)\ast_i z=\varphi(i,\varphi(i,xy)z)=\varphi(i,(i,xy)z)=\varphi(i,xz)=x\ast_i z$$
 and

 $x \ast_i (y \ast_i z) = \varphi(i, x\varphi(i, yz)) = \varphi(i, x(i, yz)) = \varphi(i, xz) = x \ast_i z.$

Let $x \in Q$, $i \in \mathbb{N}_m$. Using Lemma 2.4. we have:

 $x *_i x = \varphi(i, xx) = \varphi(x) = x.$

Hence, $(Q; *_i)$ are semigroups for each $i \in \mathbb{N}_m$. Moreover, $x *_i y *_i z = x *_i z$ and $x *_i x = x$, for each $i \in \mathbb{N}_m$. So, $(Q; *_i)$ are rectangular bands.

A) Let
$$j \leq i$$
. Then, $(x *_i y) *_j z = \varphi(j, \varphi(i, xy)z) \stackrel{2.3.0}{=} \varphi(j, (i, xy)z)$.
If $j = i$ then:

 $\varphi(i, (i, xy)z) \stackrel{2.5.(I)}{=} \varphi(i, xz) = x *_i z = x *_i y *_i z = x *_i (y *_i z) = x *_i (y *_j z).$ If j < i, then:

 $\varphi(j, (i, xy)z) \stackrel{2.5.(\text{III})}{=} \varphi(i, x(j, yz)) \stackrel{2.3.b)}{=} \varphi(i, x\varphi(j, yz)) = x *_i (y *_j z).$ Hense, $(Q; *_i)$ are rectangular bands that satisfy (i) from Proposition 1.4. B) Let $j \leq i$. Then:

 $(x *_j y) *_i z = \varphi(i, \varphi(j, xy)z) \stackrel{2.3.b)}{=} \varphi(i, (j, xy)z) \stackrel{2.5.(I)}{=} \varphi(i, xz) = x *_i z.$ Hence, $(Q; *_i)$ are rectangular bands that satisfy (ii) from Proposition 1.4. C) Let $j \leq i$. Then:

 $x *_{j} (y *_{i} z) = \varphi(j, x\varphi(i, yz)) \stackrel{2.3.b)}{=} \varphi(j, x(i, yz)) \stackrel{2.5.(\text{II})}{=} \varphi(j, xz) = x *_{j} z.$ Hense, $(Q; *_{i})$ are rectangular bands that satisfy (*iii*) from Proposition 1.4. \Box

Let $[]: Q^{m+k} \to Q^m$ be the mapping defined by: $(\forall x_1^{m+k} \in Q^{m+k}) [x_1^{m+k}]_i = x_i *_i x_{i+k},$

for each $i \in \mathbb{N}_m$. According to Proposition 1.4. and Lemma 2.6., (Q; []) is an (m+k,m)-band.

Theorem 2.7. (Q; []) is a free (m+k, m)-band with a basis B.

Proof. It is clear that $B \subseteq Q$. Let $\langle B \rangle$ be the (m + k, m)-subsemigroup of Q generated by B. Let $u = (i, xy) \in Q$ where $x, y \in \langle B \rangle$ and a be a fixed element of

B. Then,
$$\begin{bmatrix} i^{-1} x a^{k-1} y a^{m-i} \end{bmatrix}_i \in \langle B \rangle$$
, for each $i \in \mathbb{N}_m$, i.e.
 $u = \varphi(u) = \varphi(i, xy) = x *_i y = \begin{bmatrix} i^{-1} x a^{k-1} y a^{m-i} \end{bmatrix}_i \in \langle B \rangle$.

Hence, $Q \subseteq \langle B \rangle$. Because $\langle B \rangle \subseteq Q$, it follows that $Q = \langle B \rangle$ and so (Q; []) is a (m+k,m)-band generated by B.

Let (Q'; []') be another (m + k, m)-band generated by B and let $\lambda : B \to Q'$ be a mapping. By induction on the length we are going to define a mapping $g : Q \to Q'$ as follows:

 $g(b) = \lambda(b), \text{ for } b \in B$ and $(i \to b) = \begin{bmatrix} i-1 & (b) & (b) \\ i \to b & (b) \end{bmatrix}$

$$g(i, xy) = \begin{bmatrix} i^{-1} \\ g(a) \\ g(x) \\ g(a) \\ g(y) \\ g(a) \\ g(y) \\ g(a) \end{bmatrix}_{i}^{k-1}.$$

Concidering the fact that on the right hand side of the definition of g, g is applied on elements with length less than the length of u = (i, xy), it is obvious that g is a well defined mapping.

Let $x, y \in Q$. We will prove, by induction, that $g(\varphi(i, xy)) = g(i, xy)$. If $u = (i, xy) \in Q$ then $\varphi(u) = u$ and $g(\varphi(u)) = g(u)$. If $u = (i, xy) \notin Q$ then, since $x, y \in Q, \varphi(i, xy)$ is not defined by (1).

A) Let u = (i, xx) i.e. $\varphi(u)$ is defined by (2). Then, by induction and using the identity (B V), we have:

$$g(\varphi((i,xx)) = g(\varphi((x)) = g(x) = \begin{bmatrix} i^{-1} \\ g(a) \\ g(x) \\ g(a) \\ g(x) \\ g(a) \\ g(x) \\ g(a) \\ g(x) \\ g(a) \end{bmatrix}_{i}^{m-i} = g(i,xx).$$

We have applied the inductive hipothesis on x, since |x| < |u|. B) Let $u = (i, (j, zw)y), j \le i$, i.e. $\varphi(u)$ is defined by (3). Then, by induction and using the identity (B III), we have:

$$\begin{split} g(\varphi(i,(j,zw)y)) &= g(\varphi(i,zy)) = g(i,zy) = \left[\begin{matrix} i^{-1} \\ g(a) \\ g(z) \\ g(a) \\ g(z) \\ g(a) \\ g(z) \\ g(a) \\ g(z) \\ g(a) \\ g(w) \\ g(a) \\ g(z) \\ g(a) \\ g(y) \\ g(a) \\ g(y) \\ g(a) \\ g(y) \\ g(a) \\ g(z) \\ g(z)$$

We have applied the inductive hipothesis on (i, zy), since |(i, zy)| < |u|. C) Let $\varphi(u)$ is defined by (4), i.e. u = (i, x(j, zw)), $i \leq j$. Then, by induction and using the identity (B IV), we have:

$$g(\varphi(i, x(j, zw))) = g(\varphi(i, xw)) = g(i, xw) = \begin{bmatrix} i^{-1} \\ g(a) \\$$

We have applied the inductive hipothesis on (i, xw), since |(i, xw)| < |u|. D) Let $\varphi(u)$ is defined by (5), i.e. u = (i, (j, zw)y), i < j. Then, by induction and using the identity (B II), we have:

$$\begin{split} g(\varphi(i,(j,zw)y)) &= g(\varphi(j,z(i,wy)) = g(j,z(i,wy)) = \begin{bmatrix} j^{-1} \\ g(a) \\ g(z) \\ g(a) \\ g(z) \\ g(a) \end{bmatrix}_{(a)}^{k-1} \begin{bmatrix} i^{-1} \\ g(a) \\ g(a) \\ g(z) \\ g(a) \\ g(a) \\ g(z) \\ g(a) \\ g(a) \\ g(z) \\ g(z)$$

We have applied the inductive hipothesis on (j, z(i, wy)), since |(j, z(i, wy))| < |u|. E) Let u = (i, x(j, xz)), j < i, i.e. $\varphi(u)$ is defined by (6). Then, by induction and using the identities (B V) and (B II) we have:

$$\begin{split} g(\varphi(i, x(j, xz))) &= g(\varphi(j, xz)) = g(j, xz) = \begin{bmatrix} j^{i-1} \\ g(a) \\ g(x) \\ g(x$$

We have applied the inductive hipothesis on (j, xz), since |(j, xz)| < |u|.

Let
$$x_j \in Q, \ j \in \mathbb{N}_{m+k}$$
. Then:
 $g([x_1^{m+k}]_i = g(x_i *_i x_{i+k}) = g(\varphi(i, x_i x_{i+k})) = g(i, x_i x_{i+k})$
 $= \begin{bmatrix} i^{-1} & k^{-1} & m^{-i} \\ g(a) \ g(x_i) \ g(a) \ g(x_{i+k}) \ g(a) \end{bmatrix}'_i$
 $\stackrel{(BI)}{=} [g(x_1) \dots g(x_{i-1})g(x_i)g(x_{i+1}) \dots g(x_{i+k-1})g(x_{i+k})g(x_{i+k+1}) \dots g(x_{m+k})]'_i$
for each $i \in \mathbb{N}_m$.

Hence, g is an (m+k,m)-homomorphism which is an extention for λ . So, (Q; []) is a free (m+k,m)-band with a basis B.

References

- [1] G. Čupona: Vector valued semigroups, Semigroup forum, 26 (1983), 65-74.
- [2] G. Čupona, N. Celakoski, S. Markovski, D. Dimovski: Vector valued groupoids, semigroups and groups; "Vector valued semigroups and groups", *Maced. Acad. of Sci. and Arts* (1988), 1-79.
- [3] V. Miovska, D. Dimovski: (m+k,m)-bands, Mathematica Macedonica, 4 (2006), 11-24.

"St. Cyril and Methodius University", Faculty of Natural Sciences and Mathematics, Institute of Mathematics, P.O. Box 162

 $E\text{-}mail\ address: \verb"miovska@pmf.ukim.mk"$

 $E\text{-}mail \ address: \texttt{donco@pmf.ukim.mk}$