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Abstract. We introduce a covariant derivative in direction of specific vectors
making subset H of the fiber. The corresponding connection is directionally
nonlinear since the subset H does not have subspace structure, so it does not
make a distribution. It follows that the directional vector can not be separated
from the connection coefficients. Thus we make a connection tensor instead
of standard Γk

ijV i. The connection is also nonholonomic because it allows

directionally limited parallel transport only along the vectors from H. The
elements of the subset H of the fiber correspond to the 4-velocities on the
spacetime manifold.

1. Introduction

In the standard formal definition, a fiber bundle (E, B, π, F ) is given by C∞ base space
B, total space E, a continuous surjective map π : E → B and an algebraic structure of
π−1(x) for every x ∈ B so that the compatibility condition holds: For every x ∈ B there
is an open neighborhood U , a fiber space F and a homeomorphism ϕ : U ×F → π−1(U)
such that for every x ∈ U it is πϕ(x, v) = x for all v ∈ F and the map v 7→ ϕ(x, v) gives
an isomorphism of F and π−1(x). The structure group G is a Lie group of symmetries
which provide the matching conditions between overlapping charts, that is, for any two
overlapping charts (Ui, ϕi) and (Uj , ϕj),

ϕ−1
i ϕj : (Ui ∩ Uj)× F → (Ui ∩ Uj)× F, ϕ−1

i ϕj(x, ξ) = (x, tij(x)ξ)

where the continuous map tij : Ui ∩ Uj → G is transition function satisfying tii(x) = 1,
tij(x) = tji(x)−1 and the cocycle condition tik(x) = tij(x)tjk(x) on a triple overlap.

In the special case of tangent bundle, the fiber is a vector space with dimension n,
at a point. In local coordinates (x1, ..., xn) the vector fields ∂

∂xi
span this vector space.

Transition function from these coordinates to another set of coordinates is given by the
Jacobian of the coordinate change, which makes an equivalence class of tangent vector
representations at a point i.e. a tangent vector.

The next natural step is to make a parallel transport connecting the fibers which
means introducing a connection that will characterize the covariant derivative. Every
connection is determined with the relation

∇∂j ∂k = Γi
jk∂i (1)

where ∂i stands for the basis vectors ∂
∂xi

of the vector space. So, in the local chart

it is obviously ∇∂j Y = ∂jY
i + Γi

jkY k which is the classical expression for covariant
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differentiation and ∇X∂k = ωi
k(X)∂i, which is (1,1) tensor field where ωi

k are 1-forms.
So,

Γi
jk ≡ ωi

k(∂j) (2)

and it is not necessarily a tensor. In the classical definition of connection the linearity
property is consisted, meaning that the map F × F → F satisfy the linearity conditions
on the both arguments,

(i) ∇X(Y + Z) = ∇XY +∇XZ,

(ii) ∇X+Y Z = ∇XZ +∇Y Z.

The most well-known example in Riemannian geometry and used in General Relativity
is the Levi-Civita connection, which is metric-compatibile. Given a metric gij on the
manifold B, it is ∇∂kgij = 0 or, equivalently,

Γi
jk =

1

2
gim (∂kgmj + ∂jgmk + ∂mgjk)

So, constructing a connection directly from the metric, the curvature and the geodesics
are easy to express. Moreover, from the metric as a field tensor and its derivatives in
the form of the Ricci scalar the Lagrangian is constructed, so the action is the well
known Einstein-Hilbert action delivering the Einstein field equations. However, it is not
the case that Levi-Civita connection and metric provide unique description of spacetime
with gravitation. A connection may contain not only curvature, but also torsion and/or
nonmetricity and there are many such theories describing gravitation. In more general
theories [1] than General Relativity (GR), like for example Einstein-Cartan and gauge
theories for the Poincare group the gravitation is carried by curvature and torsion. The
most general linear connections used in metric-affine theories introduce nonmetricity to
carry partially or completely the gravitation field [2], [3].

According to this point of view, torsion and nonmetricity represent additional degrees
of freedom, and consequently new physics phenomena might be associated with them
[4]. Note that curvature, torsion and nonmetricity are properties of a connection not of
a manifold. This is implied by their resident appearance in the bundle and therefore the
possibility to define many different connections on the same manifold.

2. Tangent Vectors on Spacetime Manifold

Among the roles played by the tangent vectors, the most fundamental is the role of
the velocity vector along a curve. For a given vector field X on B, a curve l : (a, b) →
B, a, b ∈ R is the integral curve of X if the vector l̇(t) ∈ Tl(t)B at each point coincides
with the value of X at that point. There is a system of differential equations that
should be satisfied by the integral curve through an arbitrary point p ∈ B. Choosing
for simplicity l(0) = p in the local chart (U ; x1, ..., xn) with X = Xi(p)∂i we have

l(t) = (x1(t), ..., xn(t)), so l̇(t) =
dxi(t)

dt
∂i and the system of differential equations that

should be satisfied by the curve is
dxi(t)

dt
= Xi(x1(t), ..., xn(t)). This is a system of

ordinary differential equations of first order, so a solution passing through p exists and
it is unique. The vector

l̇(t) =
dxi(t)

dt
∂i (3)

is velocity vector and the differentiation is by time parameter.
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For the spacetime manifold, we will refer spacetime velocities as 4-velocities. In this
case, differentiation by a time parameter and the presence of time coordinate axis in a lo-
cal chart like in (3) make 4-velocity vector a notion with a compound structure. Treating
t as a coordinate, d

dt
is the basis vector ∂0. The tangent bundle can be considered as a

fiber bundle associated to the principal vierbein bundle L(B)(B, O(1, 3)) with structure
group O(1, 3) constructed in such a way that a vierbein u at x ∈ B can be uniquely
represented as u = (X0, X1, X2, X3) where Xk = Xi

k∂i, Xi
k ∈ O(1, 3). Since

∂0(x
i(t)) ≡ dxi(t)

dt
= Xi(x0(t), x1(t), x2(t), x3(t))

i.e. we can denote it with Xi
0 it follows that (3) is the vector X0 in the vierbein field.

Morphisms among 4-velocities are orthogonal inhomogeneous Lorentz coordinate trans-
formations, which include rotations, reflections and pure hyperbolic rotations, usually
called boosts.

Now, we can make the following conclusions.
(a) On the set H of 4-velocities only boosts make practical sense as transition func-

tions, since tensorial O(3) rotations are not possible for different 4-velocities, and reflec-
tions are not in the connected component SO(1, 3). However, all transformations from
O(1, 3) are admissible.

(b) 4-velocities are determined with the 3 dimensional local spatial basis. The time
component turns into a normalizator coefficient determined by coefficients in front of the
local coordinates that in practice may be given.

(c) Addition operation inherited from the vector space R4 is not closed.
Considering (c), it follows that the velocity vectors make only a subset H, not a

vector subspace, and combining this with (b) it follows that it is not possible to construct
a distribution. Namely, the fourth component is non-constant since it depends on the
other three and moreover, it never acquires the value 0. While all standard structures
on the bundle remain well defined, this situation obviously affects linearity properties
(i) and (ii) of connections given in the introduction. There is a way [5], [6], to define
another addition operation on H, so that H is closed [7] and moreover, to become a loop
space. However, since in two consecutive applications of the operation, additional terms
describing a rotation must appear, as the set of boosts is not closed, the connection still
remains void of linearity properties due to such operation. It is an operation marked
with ⊕ defined for spatial velocity vectors

~u⊕ ~v =
1

1 + ~u·~v
c2


~u +

√
1− u2

c2
~v +

1

c2

1

1 +
√

1− u2

c2

(~u · ~v)~u




and the multiplication with scalar is

α ◦ ~v =
c

v

(
1 + v

c

)α − (
1− v

c

)α

(
1 + v

c

)α
+

(
1− v

c

)α ~v

where c is the limit velocity magnitude implied by the pseudo signature of the Lorentz
group elements and physically is considered as the velocity of electromagnetic wave,
or simply, speed of light. The addition is non-commutative and non-associative while
multiplication by a scalar is non-distributive i.e. α ◦ (~u⊕~v) 6= α~u⊕α~v. Now, if we apply
these operations on the covariant derivative of the standard linear connection used in GR
to the corresponding tangent vectors of spacetime velocities U , V we obtain

∇U⊕V = (U i ⊕ V i)∂j + Γi
jk(Uk ⊕ V k),
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∇α◦V = (α ◦ V i)∂j + Γi
jk(α ◦ V k).

It is obvious that linearity in these covariant derivatives does not hold. However,
the bundle structure is not affected by this, since we use the inherited addition and
multiplication by scalar from the vector space R4. Thus, in order to respect the nonlinear
nature of the operations on velocity vectors, we accept that the connection should be
constructed as nonlinear.

3. Connection Tensor

We assume space-time to be a 4-dimensional differentiable manifold B endowed with a
Lorentzian metric g of signature (+−−−). Our connection requires a globally Lorentzian
spacetime that is a strong restriction imposed to B, but compatible with observations
[12]. We suppose that on B there is a congruence of timelike geodesics being the integral
curves of the tangent vector field U . We shall restrict tangent bundle to the normalized
vector fields U ≡ g(U, U)−1/2U which represent tangent vectors parameterized by their
proper time, i.e. tangent vectors of 4-velocity. At each point of space-time, there is a
tangent space attached to it, given by a Minkowski space, which will be the fiber of the
corresponding tangent bundle. The indices in tangent space are raised and lowered by
the Minkowski metric η = diag(1,−1,−1,−1) or its inverse. Thus, the vector field U has
a constant magnitude implied by η(U, U) = U iUi = c2, where c is the speed of light.

The 4-dimensional spacetime manifold B can be considered as a configuration space
of a nonholonomic structure, where nonholonomity is expressed by the reduction of the
tangent bundle TB on the space of 4-velocities. It means that geodesics are restricted to
the space of 4-velocities, i.e. the geodesic with initial 4-velocity evolve so that all sub-
sequent velocities are 4-velocities. However, since the space of 4-velocities is hyperbolic
(nonlinear) [8] and it is only a subset (not subspace) of tangent space at each point, we
are not able to straightforwardly apply the apparatus based on linear vector distribu-
tions, since a true distribution can not be defined. Thus, we shall build a nonholonomic
connection step by step. In a tangent vector basis

{e0 =
1

c
∂t, e1 = ∂x, e2 = ∂y, e3 = ∂z}

of the spacetime coordinates (ct, x, y, z) the 4-vector of velocity has a constant magnitude
c and takes the form

W = (W 0, W 1, W 2, W 3) = γw(c, wx
∂x

∂t
, wy

∂y

∂t
, wz

∂z

∂t
),

γw = 1√
1−w2

c2

and ~w = (wx, wy, wz) is the corresponding 3-vector of velocity with mag-

nitude w.
To achieve a suitable nonholonomic connection we shall start with an antisymmetric

connection form φij obtained as a exterior derivative of the normalized 4-velocity covector

1

c
W# =

1

c
ηkiW

i

i.e.
1

c
W# =

1

c
(W0dt + W1dx + W2dy + W3dz).

The corresponding exterior derivative of W# gives

dW# =

(
1

c

∂W1

∂t
− ∂W0

∂x

)
dt ∧ dx +

(
1

c

∂W2

∂t
− ∂W0

∂y

)
dt ∧ dy+
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+

(
1

c

∂W3

∂t
− ∂W0

∂z

)
dt ∧ dz +

(
∂W2

∂x
− ∂W1

∂y

)
dx ∧ dy+

+

(
∂W3

∂x
− ∂W1

∂z

)
dx ∧ dz +

(
∂W3

∂y
− ∂W2

∂z

)
dy ∧ dz

that results in the following connection form

φij(W#) =
1

c




0 ax − σx ay − σy az − σz

σx − ax 0 ωz −ωy

σy − ay −ωz 0 ωx

σz − az ωy −ωx 0




=
1

c




0 ~a T − ~σ T

~σ − ~a Ω




where

~σ − ~a = (σx − ax, σy − ay, σz − az) =

=

(
∂W0

∂x
− 1

c

∂W1

∂t
,
∂W0

∂y
− 1

c

∂W2

∂t
,
∂W0

∂z
− 1

c

∂W3

∂t

)
= grad W0 − 1

c

∂ ~w

∂t

is a 3-vector of difference between gradient of W0 given by ~σ and acceleration ~a, while

~ω = (ωx, ωy, ωz) =

(
∂W2

∂z
− ∂W3

∂y
,
∂W3

∂x
− ∂W1

∂z
,
∂W1

∂y
− ∂W2

∂x

)
=

=

(
∂W 3

∂y
− ∂W 2

∂z
,
∂W 3

∂x
− ∂W 1

∂z
,
∂W 2

∂x
− ∂W 1

∂y

)
= rot ~w

is the 3-vector of angular velocity.
We define our connection tensor by

Φ = φi
j = ηikφkj =

1

c




0 ~a T − ~σ T

~σ − ~a Ω




which is antisymmetric in space-space entries and symmetric in space-time entries. It is
obvious that the tensor Φ can be written uniquely as

Φ =
1

c




0 ~a T − ~σ T

~σ − ~a Ω


 =

=
1

c




0 0

0 Ω


 +

1

c




0 ~a T − ~σ T

~σ − ~a 0


 = T + N

where the first tensor T is antisymmetric and the second tensor N is symmetric. The
antisymetric part T can be interpreted as a tensor of torsion and the symmetric part N
is interpreted as a tensor of nonmetricity. Physically, the 4-velocity W can be interpreted
as an ”internal” velocity of the gravitational source, e.g. spin + moving through time
(~σ). The gradient of W0 represented by ~σ carries gravitation of the gravitational source
in rest.
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4. Introduction of the Nonlinear Connection

The tensor Φ is antisymmetric in space-space entries and symmetric in space-time
entries and so, it takes values in the Lie algebra of the Lorentz group. To complete our
connection we shall modify the action of the tensor Φ by a tensor P from the Lorentz
group in a way P−1ΦP to obtain a most general connection based on Φ that remains in
the Lie algebra of the Lorentz group. Physically interpreted, the goal of the tensor P
is to ”synchronize” 4-velocities of the gravitational source and the test body. Thus, we
introduce P as an isometry link in the space of 4-velocities. This isometry is a Lorentz
link by boost that links given 4-velocity U and V [9], [10], [11] given by

P (U, V ) = δ − (U + V )⊗ g(U + V )

c2 + U · V + 2
V ⊗ gU

c2
, (U + V )2 6= 0 (4)

Important property of the isometry link (4) is related to the relationship between Lorentz
boost and orthonormal basis. Namely, in Minkowski space, if {U, e1, e2, e3} is an or-
thonormal basis in a frame of the tangent vector U , then {V, P (U, V )e1, P (U, V )e2, P (U, V )e3}
is the corresponding orthonormal basis in the frame of the tangent vector V which is par-
allel to those of U . Thus, by introducing Lorentz boost P , we achieve the connection S
given in tensorial form by

S = P−1ΦP = ηP T ηΦP (5)

or rewritten in the local chart

Sj
i = (ηP T η)k

i Φj
mP m

k .

The connection defined by (5) is nonmetric because Φ is nonmetric. Additionally,
the connection S is directionally nonlinear and should be considered as nonholonomic
because it can not be separated from the tangent vector V , i.e. V cannot be extracted
from S. The directional nonlinearity of the S is expected and even desirable because the
directions of parallel transport are tangent vectors of 4-velocity. It can be checked that

∇αX+Y 6= α∇X +∇Y

where X and Y are tangent vectors of 4-velocity and α is a constant. This directional
nonlinearity is justified by the nonlinearity of relativistic velocity addition and multipli-
cation by a scalar.

In the forthcoming paper we shall give the geodesics based on the introduced nonlinear
connection and show that the standard relativistic effects get the same outcome as in
GR although the corresponding results are obtained in a rather different way.
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