
Matematiqki Bilten ISSN 0351-336X
Vol.38 (LXIV) No.2
2014 (69–80) UDC: 517.518.28:517.419.68
Skopje, Makedonija

SOME INEQUALITIES FOR THE ČEBYŠEV FUNCTIONAL
AND GENERAL FOUR-POINT QUADRATURE FORMULAE OF

EULER TYPE

M. KLARIČIĆ BAKULA, J. PEČARIĆ, M. RIBIČIĆ PENAVA, AND A. VUKELIĆ

Abstract. We use inequalities for the Čebyšev functional in terms of the
first derivative (see [5]), for some new bounds for the remainder of four-point
quadrature formulae of Euler type and its generalizations for Euler Bullen-
Simpson’s 3/8 formula. As special cases, we consider some new bounds for
Euler Simpson’s 3/8 formula, Euler Simpson’s formula and Euler Gauss 2-
point formula.

1. Introduction

Let x ∈ (0, 1/2] and f : [0, 1]→ R be such that f (2n+1) is continuous of bounded
variation on [0, 1] for some n ≥ 0. In [6], the following formula is obtained:∫ 1

0

f(t)dt− (1/2−A(x))[f(0) + f(1)]−A(x)[f(x) + f(1− x)] + T2n(x)

=
1

(2n+ 2)!

∫ 1

0

F2n+2(x, t)df
(2n+1)(t), (1.1)

where, for t ∈ R,

T2n(x) =

2n∑
k=2

1

k!
Gk(x, 0) [f

(k−1)(1)− f (k−1)(0)],

Gk(x, t) = [1− 2A(x)]B∗k (1− t) +A(x) [B∗k (x− t) +B∗k (1− x− t)] , k ≥ 1

Fk(x, t) = Gk(x, t)−Gk(x, 0), k ≥ 2.

The functions Bk(t) are the Bernoulli polynomials, Bk = Bk(0) are the Bernoulli
numbers, and B∗k(t), k ≥ 0, are periodic functions of period 1, related to the
Bernoulli polynomials as

B∗k(t) = Bk(t), 0 ≤ t < 1 and B∗k(t+ 1) = B∗k(t), t ∈ R.
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The Bernoulli polynomials Bk(t), k ≥ 0 are uniquely determined by the following
identities

B′k(t) = kBk−1(t), k ≥ 1; B0(t) = 1, Bk(t+ 1)−Bk(t) = ktk−1, k ≥ 0.

For some further details on the Bernoulli polynomials and the Bernoulli numbers
see for example [1] or [3]. We have that B∗0(t) = 1 and B∗1(t) is a discontinuous
function with a jump of −1 at each integer. It follows that Bk(1) = Bk(0) = Bk

for k ≥ 2, so that B∗k(t) are continuous functions for k ≥ 2. We get

B∗′k (t) = kB∗k−1(t), k ≥ 1 (1.2)

for every t ∈ R when k ≥ 3, and for every t ∈ R \ Z when k = 1, 2.
If one wants to obtain from (1.1) the quadrature formula with the maximum

degree of exactness (if values of derivatives at the end points are not to be included
in the quadrature, then it is equal to 3), a conditionG2(x, 0) = 0 has to be imposed.
In this way we get:

A(x) = − B2

2(B2(x)−B2)
=

1

12x(1− x)
. (1.3)

Formula (1.1) now becomes:∫ 1

0

f(t)dt−Q(0, x, 1−x, 1)+TQ4
2n (x) =

1

(2n+ 2)!

∫ 1

0

FQ4
2n+2(x, t)df

(2n+1)(t), (1.4)

where

Q(0, x, 1− x, 1) = 1

12x(1− x)
[−6B2(x)f(0) + f(x) + f(1− x)− 6B2(x)f(1)] ,

(1.5)

TQ4
2n (x) =

n∑
k=2

1

(2k)!
GQ4

2k (x, 0) [f
(2k−1)(1)− f (2k−1)(0)], (1.6)

GQ4
k (x, t) =

1

12x(1− x)
[B∗k (x− t)− 12B2(x) ·B∗k (1− t) +B∗k (1− x− t)] ,

(1.7)
FQ4
k (x, t) = GQ4

k (x, t)−GQ4
k (x, 0), k ≥ 2 . (1.8)

Assuming f (2n−1) is continuous of bounded variation on [0, 1] for some n ≥ 1,
then we get:∫ 1

0

f(t)dt−Q(0, x, 1− x, 1) + TQ4
2n (x) =

1

(2n)!

∫ 1

0

GQ4
2n (x, t)df

(2n−1)(t), (1.9)

while assuming f (2n) fulfills the same condition for some n ≥ 0, we get:∫ 1

0

f(t)dt−Q(0, x, 1−x, 1)+TQ4
2n (x) =

1

(2n+ 1)!

∫ 1

0

GQ4
2n+1(x, t)df

(2n)(t). (1.10)

More about quadrature formulae and error estimations (from the point of view
of inequality theory) can be found in monographs [2] and [7].
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For two Lebesgue integrable functions f, g : [a, b] → R, consider the Čebyšev
functional:

T (f, g) :=
1

b− a

∫ b

a

f(t)g(t)dt− 1

b− a

∫ b

a

f(t)dt · 1

b− a

∫ b

a

g(t)dt. (1.11)

In [5] the authors proved the following theorems:

Theorem 1. Let f, g : [a, b]→ R be two absolutely continuous functions on [a, b]
with

(· − a)(b− ·)(f ′)2, (· − a)(b− ·)(g′)2 ∈ L[a, b].
Then we have the inequality

|T (f, g)| ≤ 1√
2
[T (f, f)]

1
2

1√
b− a

(∫ b

a

(x− a)(b− x) [g′(x)]2 dx

) 1
2

(1.12)

≤ 1

2(b− a)

(∫ b

a

(x− a)(b− x) [f ′(x)]2 dx

) 1
2

×

(∫ b

a

(x− a)(b− x) [g′(x)]2 dx

) 1
2

.

The constant 1√
2
and 1

2 are best possible in (1.12).

Theorem 2. Assume that g : [a, b] → R is monotonic nondecreasing on [a, b]
and f : [a, b] → R is absolutely continuous with f ′ ∈ L∞[a, b]. Then we have the
inequality

|T (f, g)| ≤ 1

2(b− a)
||f ′||∞

∫ b

a

(x− a)(b− x)dg(x). (1.13)

The constant 1
2 is best possible.

In this paper we will use the above theorems to get some new bounds for the
remainders of general four-point formulae (1.9) and (1.10). Applications for Euler
Bullen-Simpson’s 3/8 formula are also proved. As special cases, some new bounds
for Euler Simpson’s 3/8 formula, Euler Simpson’s formula and Euler Gauss 2-point
formula are considered.

2. Applications for the general four-point formulae of Euler type

Using Theorem 1 for identities (1.9) and (1.10) we get the following Grüss type
inequalities:

Theorem 3. Let f : [0, 1] → R be such that f (2n) is absolutely continuous for
some n ≥ 1 and

(
f (2n+1)

)2 ∈ L1[0, 1]. Then for x ∈ (0, 1/2] we have∫ 1

0

f(t)dt−Q(0, x, 1− x, 1) + TQ4
2n (x) = TG2n(f), (2.1)
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and the remainder TG2n(f) satisfies the estimations

|TG2n(f)| ≤ (2.2)
1

12x(1− x)

[
1

(4n)!
(−B4n −B4n(1− 2x) + 24B2(x)B4n(x)

−72B2
2(x)B4n

)] 1
2 ×

(∫ 1

0

t(1− t)
[
f (2n+1)(t)

]2
dt

) 1
2

.

For f : [0, 1] → R such that f (2n+1) is absolutely continuous for some n ≥ 0

and
(
f (2n+2)

)2 ∈ L1[0, 1] we have∫ 1

0

f(t)dt−Q(0, x, 1− x, 1) + TQ4
2n (x) = TG2n+1(f), (2.3)

and the remainder TG2n+1(f) satisfies the estimations

|TG2n+1(f)| ≤ (2.4)
1

12x(1− x)

[
1

(4n+ 2)!
(B4n+2 +B4n+2(1− 2x)− 24B2(x)B4n+2(x)

+72B2
2(x)B4n+2

)] 1
2 ×

(∫ 1

0

t(1− t)
[
f (2n+2)(t)

]2
dt

) 1
2

.

Proof. If we apply Theorem 1 for f → GQ4
k , g → f (k), we deduce∣∣∣∣∫ 1

0

GQ4
k (x, t) f (k)(t)dt−

∫ 1

0

GQ4
k (x, t) dt ·

∫ 1

0

f (k)(t)dt

∣∣∣∣
≤ 1√

2

[
T
(
GQ4

k (x, ·) , GQ4
k (x, ·)

)] 1
2 ×

(∫ 1

0

t(1− t)
[
f (k+1)(t)

]2
dt

) 1
2

(2.5)

where

T
(
GQ4

k (x, ·) , GQ4
k (x, ·)

)
=

∫ 1

0

[
GQ4

k (x, t)
]2
dt−

[∫ 1

0

GQ4
k (x, t) dt

]2
.

By easy calculation we get ∫ 1

0

GQ4
k (x, t) dt = 0,

and using integration by part we have∫ 1

0

(
GQ4

k (x, t)
)2
dt

= (−1)k−1 k(k − 1) . . . 2

(k + 1)(k + 2) . . . (2k − 1)

[∫ 1

0

GQ4
1 (x, t)GQ4

2k−1(x, t)dt

]
=

(−1)k−1

12x(1− x)
(k!)2

(2k)!

×
[
12x(1− x)

∫ 1

0

GQ4
2k (x, t)dt+GQ4

2k (x, x) +GQ4
2k (x, 1− x)− 12B2(x)G2k(x, 0)

]
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=
(−1)k−1

144x2(1− x)2
(k!)2

(2k)!

[
2B2k + 2B2k(1− 2x)− 48B2(x)B2k(x) + 144B2

2(x)B2k

]
.

If we put k = 2n using (1.9) and (2.5), we deduce the representation (2.1) and the
bound (2.2). For k = 2n+ 1 using (1.10) and (2.5), we deduce the representation
(2.3) and the bound (2.4). �

Remark 2.1: Because of (1.8) we get∫ 1

0

FQ4
k (x, t) dt =

∫ 1

0

GQ4
k (x, t) dt−

∫ 1

0

GQ4
k (x, 0) dt = −GQ4

k (x, 0) ,

and also∫ 1

0

[
FQ4
k (x, t)

]2
dt =

∫ 1

0

[
GQ4

k (x, t)
]2
dt− 2GQ4

k (x, 0)

∫ 1

0

GQ4
k (x, t) dt

+
[
GQ4

k (x, 0)
]2
.

So, if we put k = 2n + 2 in the proof of above theorem, using (1.4) similar as in
(2.5) (with n ↔ n + 1), we deduce the representation (2.1) and the bound (2.2),
too.

Corollary 3.1. Let f : [0, 1] → R be such that f (2n+1) is absolutely continuous
for some n ≥ 0,

(
f (2n+2)

)2 ∈ L1[0, 1] and f (2n+1) ≥ 0 on [0, 1]. Then for x ∈(
0, 12 −

√
3
6

]
we have

0 ≤ (−1)n
{∫ 1

0

f(t)dt−Q(0, x, 1− x, 1) + TQ4
2n (x)

}
≤ (2.6)

1

12x(1− x)

[
1

(4n+ 2)!
(B4n+2 +B4n+2(1− 2x)− 24B2(x)B4n+2(x)

+72B2
2(x)B4n+2

)] 1
2 ×

(∫ 1

0

t(1− t)
[
f (2n+2)(t)

]2
dt

) 1
2

,

and for x ∈
[
1
3 ,

1
2

]
0 ≤ (−1)n+1

{∫ 1

0

f(t)dt−Q(0, x, 1− x, 1) + TQ4
2n (x)

}
≤ (2.7)

1

12x(1− x)

[
1

(4n+ 2)!
(B4n+2 +B4n+2(1− 2x)− 24B2(x)B4n+2(x)

+72B2
2(x)B4n+2

)] 1
2 ×

(∫ 1

0

t(1− t)
[
f (2n+2)(t)

]2
dt

) 1
2

.

Proof. We are using Lemma 1 from [6]. �

If in Theorem 3 we choose x = 1/3, 1/2, 1/2 −
√
3/6 we get inequality related

to Euler Simpson’s 3/8, Euler Simpson’s and Euler Gauss 2-point formula:
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Corollary 3.2. Let f : [0, 1] → R be such that f (2n) is absolutely continuous for
some n ≥ 1 and

(
f (2n+1)

)2 ∈ L1[0, 1]. Then we have∣∣∣∣∫ 1

0

f(t)dt− 1

8

[
f(0) + 3f

(
1

3

)
+ 3f

(
2

3

)
+ f(1)

]
+ TQ4

2n

(
1

3

)∣∣∣∣ (2.8)

≤ 3

8

[
− 1

(4n)!

(
1

18
+

7

2
3−4n

)
B4n

] 1
2

×
(∫ 1

0

t(1− t)
[
f (2n+1)(t)

]2
dt

) 1
2

.

If f (2n+1) is absolutely continuous for some n ≥ 0 and
(
f (2n+2)

)2 ∈ L1[0, 1] we
have ∣∣∣∣∫ 1

0

f(t)dt− 1

8

[
f(0) + 3f

(
1

3

)
+ 3f

(
2

3

)
+ f(1)

]
+ TQ4

2n

(
1

3

)∣∣∣∣ (2.9)

≤ 3

8

[
1

(4n+ 2)!

(
1

18
+

7

2
3−4n−2

)
B4n+2

] 1
2

×
(∫ 1

0

t(1− t)
[
f (2n+2)(t)

]2
dt

) 1
2

,

where TQ4
0

(
1
3

)
= TQ4

2

(
1
3

)
= 0 and

TQ4
2n

(
1

3

)
=

1

8

n∑
k=2

(32−2k − 1)B2k

(2k)!

[
f (2k−1)(1)− f (2k−1)(0)

]
.

Remark 2.2: For n = 1 in (2.8) if f ′′ is absolutely continuous and (f ′′′)
2 ∈ L1[0, 1]

we get: ∣∣∣∣∫ 1

0

f(t)dt− 1

8

[
f(0) + 3f

(
1

3

)
+ 3f

(
2

3

)
+ f(1)

]∣∣∣∣
≤ 1

24
√
90
×
(∫ 1

0

t(1− t) [f ′′′(t)]2 dt
) 1

2

.

If f ′ is absolutely continuous, (f ′′)2 ∈ L1[0, 1] and n = 0 in (2.9) we have∣∣∣∣∫ 1

0

f(t)dt− 1

8

[
f(0) + 3f

(
1

3

)
+ 3f

(
2

3

)
+ f(1)

]∣∣∣∣
≤ 1

8
√
3
×
(∫ 1

0

t(1− t) [f ′′(t)]2 dt
) 1

2

.

Corollary 3.3. Let f : [0, 1] → R be such that f (2n) is absolutely continuous for
some n ≥ 1 and

(
f (2n+1)

)2 ∈ L1[0, 1]. Then we have∣∣∣∣∫ 1

0

f(t)dt− 1

6

[
f(0) + 4f

(
1

2

)
+ f(1)

]
+ TQ4

2n

(
1

2

)∣∣∣∣ (2.10)

≤ 1

3

[
− 1

(4n)!

(
1

2
+ 22−4n

)
B4n

] 1
2

×
(∫ 1

0

t(1− t)
[
f (2n+1)(t)

]2
dt

) 1
2

.
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If f (2n+1) is absolutely continuous for some n ≥ 0 and
(
f (2n+2)

)2 ∈ L1[0, 1] we
have ∣∣∣∣∫ 1

0

f(t)dt− 1

6

[
f(0) + 4f

(
1

2

)
+ f(1)

]
+ TQ4

2n

(
1

2

)∣∣∣∣ (2.11)

≤ 1

3

[
1

(4n+ 2)!

(
1

2
+ 2−4n

)
B4n+2

] 1
2

×
(∫ 1

0

t(1− t)
[
f (2n+2)(t)

]2
dt

) 1
2

,

where TQ4
0

(
1
2

)
= TQ4

2

(
1
2

)
= 0 and

TQ4
2n

(
1

2

)
=

1

3

n∑
k=2

(1− 22−2k)B2k

(2k)!

[
f (2k−1)(1)− f (2k−1)(0)

]
.

Remark 2.3: For n = 1 in (2.10) if f ′′ is absolutely continuous and (f ′′′)
2 ∈

L1[0, 1] we get:∣∣∣∣∫ 1

0

f(t)dt− 1

6

[
f(0) + 4f

(
1

2

)
+ f(1)

]∣∣∣∣ ≤ 1

12
√
60
×
(∫ 1

0

t(1− t) [f ′′′(t)]2 dt
) 1

2

.

If f ′ is absolutely continuous, (f ′′)2 ∈ L1[0, 1] and n = 0 in (2.11) we have∣∣∣∣∫ 1

0

f(t)dt− 1

6

[
f(0) + 4f

(
1

2

)
+ f(1)

]∣∣∣∣ ≤ 1

6
√
2
×
(∫ 1

0

t(1− t) [f ′′(t)]2 dt
) 1

2

.

Corollary 3.4. Let f : [0, 1] → R be such that f (2n) is absolutely continuous for
some n ≥ 1 and

(
f (2n+1)

)2 ∈ L1[0, 1]. Then we have∣∣∣∣∣
∫ 1

0

f(t)dt−

[
f

(
−
√
3

3

)
+ f

(√
3

3

)]
+ TQ4

2n

(
1

2
− 1

2
√
3

)∣∣∣∣∣ (2.12)

≤ 1

2

[
− 1

(4n)!

(
B4n +B4n

(√
3

3

))] 1
2

×
(∫ 1

0

t(1− t)
[
f (2n+1)(t)

]2
dt

) 1
2

.

If f (2n+1) is absolutely continuous for some n ≥ 0 and
(
f (2n+2)

)2 ∈ L1[0, 1] we
have∣∣∣∫ 1

0
f(t)dt−

[
f
(
−
√
3
3

)
+ f

(√
3
3

)]
+ TQ4

2n

(
1
2 −

1
2
√
3

)∣∣∣
≤ 1

2

[
1

(4n+2)!

(
B4n+2 +B4n+2

(√
3
3

))] 1
2 ×

(∫ 1

0
t(1− t)

[
f (2n+2)(t)

]2
dt
) 1

2

,

(2.13)
where TQ4

0

(
1
2 −

1
2
√
3

)
= TQ4

2

(
1
2 −

1
2
√
3

)
= 0 and

TQ4
2n

(
1

2
− 1

2
√
3

)
=

n∑
k=2

22k

(2k)!
B2k

(
3−
√
3

6

)[
f (2k−1)(1)− f (2k−1)(0)

]
.
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Remark 2.4: For n = 1 in (2.12) if f ′′ is absolutely continuous and (f ′′′)
2 ∈

L1[0, 1] we get: ∣∣∣∣∣
∫ 1

0

f(t)dt−

[
f

(
−
√
3

3

)
+ f

(√
3

3

)]∣∣∣∣∣
≤ 1

4

[
− 17

270
+

1

9
√
3

] 1
2

×
(∫ 1

0

t(1− t) [f ′′′(t)]2 dt
) 1

2

.

If f ′ is absolutely continuous, (f ′′)2 ∈ L1[0, 1] and n = 0 in (2.13) we have∣∣∣∣∣
∫ 1

0

f(t)dt−

[
f

(
−
√
3

3

)
+ f

(√
3

3

)]∣∣∣∣∣
≤ 1

8

[
1

3
− 1

2
√
3

] 1
2

×
(∫ 1

0

t(1− t) [f ′′(t)]2 dt
) 1

2

.

The following Grüss type inequality also holds.

Theorem 4. Let f : [0, 1] → R be such that f (2n) is absolutely continuous and
f (2n+1) ≥ 0 on [0, 1], n ≥ 1. Then we have the representation (2.1) and the
remainder TG2n(f) satisfies the bound

|TG2n(f)| ≤

≤ 1
2(2n−1)!

∣∣∣∣∣∣GQ4
2n−1 (x, t)

∣∣∣∣∣∣
∞

{
f(2n−1)(0)+f(2n−1)(1)

2 − f (2n−2)[0, 1]
}
.

(2.14)

Let f (2n+1) is absolutely continuous and f (2n+2) ≥ 0 on [0, 1], n ≥ 0. Then we
have the representation (2.3) and the remainder TG2n+1(f) satisfies the bound

|TG2n+1(f)| ≤

≤ 1
2(2n)!

∣∣∣∣∣∣GQ4
2n (x, t)

∣∣∣∣∣∣
∞

{
f(2n)(0)+f(2n)(1)

2 − f (2n−1)[0, 1]
} (2.15)

for any x ∈ (0, 1/2] and

f (k)[0, 1] = f (k)(1)− f (k)(0).

Proof. If we apply Theorem 2 for f → GQ4
2n , g → f (2n), we deduce∣∣∣∣∫ 1

0

GQ4
2n (x, t) f (2n)(t)dt−

∫ 1

0

GQ4
2n (x, t) dt ·

∫ 1

0

f (2n)(t)dt

∣∣∣∣
≤ 2n

2

∣∣∣∣∣∣GQ4
2n−1 (x, t)

∣∣∣∣∣∣
∞

(∫ 1

0

t(1− t)f (2n+1)(t)dt

)
. (2.16)

Since ∫ 1

0

t(1− t)f (2n+1)(t)dt =

∫ 1

0

f (2n)(t)[2t− 1]dt =

=
[
f (2n−1)(1) + f (2n−1)(0)

]
− 2

(
f (2n−2)(1)− f (2n−2)(0)

)
,

using the representation (2.1) and the inequality (2.16), we deduce (2.14).



ČEBYŠEV FUNCTIONAL AND GENERAL FOUR-POINT QUADRATURE FORMULAE 77

Similarly, using the representation (2.3) we deduce (2.15). �

3. Aplications for Euler Bullen-Simpson’s 3/8 formula

For function f : [0, 1]→ R, with continuous fourth derivative f (4) on [0, 1] and
f (4)(t) ≥ 0, ∀t ∈ [0, 1], we have

1

8

[
3f

(
1

6

)
+ 2f

(
1

2

)
+ 3f

(
5

6

)]
≤

∫ 1

0

f(t)dt (3.1)

≤ 1

8

[
f(0) + 3f

(
1

3

)
+ 3f

(
2

3

)
+ f(1)

]
.

In the case when f (4) exists, the condition f (4)(t) ≥ 0, ∀t ∈ [0, 1] is equivalent
to the requirement that f is 4-convex function on [0, 1]. However, a function f
may be 4-convex although f (4) does not exist.

P. S. Bullen in [4] proved that, if f is 4-convex, then (3.1) is valid. Moreover, he
proved that the Maclaurin quadrature rule is more accurate than the Simpson’s
3/8 quadrature rule, that is we have

0 ≤
∫ 1

0

f(t)dt− 1

8

[
3f

(
1

6

)
+ 2f

(
1

2

)
+ 3f

(
5

6

)]
≤ 1

8

[
f(0) + 3f

(
1

3

)
+ 3f

(
2

3

)
+ f(1)

]
−
∫ 1

0

f(t)dt, (3.2)

provided f is 4-convex. We shall call this inequality Bullen-Simpson’s 3/8 inequal-
ity.

In [8] the authors established a generalizations of the inequalities (3.1) and
(3.2) for a class of (2r)-convex functions and also to obtain some estimates for the
absolute value of difference between the absolute value of error in the Maclaurin
quadrature rule and the absolute value of error in the Simpson’s 3/8 quadrature
rule. Let us define

D(0, 1)

: =
1

16

[
f (0) + 3f

(
1

6

)
+ 3f

(
1

3

)
+ 2f

(
1

2

)
+ 3f

(
2

3

)
+ 3f

(
5

6

)
+ f (1)

]
.

We shall make use of the following seven-point quadrature formula∫ 1

0

f(t)dt ≈ D(0, 1),

obtained by adding the Simpson 3/8 and the Maclaurin quadrature formulae. It
is suitable for our purposes to rewrite the second inequality in (3.2) in the form∫ 1

0

f(t)dt ≤ D(0, 1). (3.3)

As we mentioned earlier, this inequality is valid for any 4-convex function f and
we call it the Bullen-Simpson’s 3/8 inequality.
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We consider the sequences of functions (Gk(t))k≥1 and (Fk(t))k≥1 defined by

Gk(t) = 2B∗k(1− t) + 3B∗k

(
1

6
− t
)
+ 3B∗k

(
1

3
− t
)

+ 2B∗k

(
1

2
− t
)
+ 3B∗k

(
2

3
− t
)
+ 3B∗k

(
5

6
− t
)
, t ∈ R

and
Fk(t) = Gk(t)− B̃k, t ∈ R (3.4)

where

B̃k = Bk(0) + 3Bk

(
1

6

)
+ 3Bk

(
1

3

)
+ 2Bk

(
1

2

)
+ 3Bk

(
2

3

)
+ 3Bk

(
5

6

)
+Bk(1).

For any function f : [0, 1]→ R such that f (n−1) exists on [0, 1] for some n ≥ 1
we define T0(f) = T1(f) := 0 and

Tm(f) =
1

8

m∑
k=2

1

(2k)!
2−2k(1− 32−2k)B2k

[
f (2k−1)(1)− f (2k−1)(0)

]
. (3.5)

In the next lemma the authors established the Euler Bullen-Simpson 3/8 for-
mulae.

Lemma 1. Let f : [0, 1] → R be such that f (n−1) is a continuous function of
bounded variation on [0, 1], for some n ≥ 1. Then we have∫ 1

0

f(t)dt = D(0, 1) + Tr(f) + τ1n(f), (3.6)

where r = [n/2] and

τ1n(f) =
1

16 (n!)

∫ 1

0

Gn (t) df
(n−1)(t).

Also, ∫ 1

0

f(t)dt = D(0, 1) + Ts(f) + τ2n(f), (3.7)

where s = [(n− 1)/2] and

τ2n(f) =
1

16 (n!)

∫ 1

0

Fn (t) df
(n−1)(t).

Using Theorem 1 for identity (3.6) we get the following Grüss type inequality:

Theorem 5. Let f : [0, 1]→ R be such that f (n) is absolutely continuous for some
n ≥ 1 and

(
f (n+1)

)2 ∈ L1[0, 1]. Then, we have∫ 1

0

f(t)dt−D(0, 1)− Tr(f) = TGBn(f), (3.8)

and the remainder TGBn(f) satisfies the estimations

|TGBn(f)| ≤
1

16

[
2

(2n)!

(
−21 + 43 · 2−2n + 63 · 3−2n − 63 · 6−2n

)
B2n

] 1
2
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×
(∫ 1

0

t(1− t)
[
f (n+1)(t)

]2
dt

) 1
2

. (3.9)

Proof. If we apply Theorem 1 for f → Gn, g → f (n), we deduce∣∣∣∣∫ 1

0

Gn (t) f
(n)(t)dt−

∫ 1

0

Gn (t) dt ·
∫ 1

0

f (n)(t)dt

∣∣∣∣
≤ 1√

2
[T (Gn (·) , Gn (·))]

1
2 ×

(∫ 1

0

t(1− t)
[
f (n+1)(t)

]2
dt

) 1
2

, (3.10)

where

T (Gn (·) , Gn (·)) =

∫ 1

0

[Gn (t)]
2
dt−

[∫ 1

0

Gn (t) dt

]2
.

We get
∫ 1

0
Gn (t) dt = 0 and using integration by part we have∫ 1

0

G2
n (t) dt = (−1)n−1 n(n− 1) . . . 2

(n+ 1)(n+ 2) . . . (2n− 1)

[∫ 1

0

G1(t)G2n−1(t)dt

]
= (−1)n−1 (n!)

2

(2n)!

[
−16

∫ 1

0

G2n(t)dt+ 4G2n (0) + 6G2n

(
1

6

)
+ 6G2n

(
1

3

)]
= (−1)n−1 (n!)

2

(2n)!

[
44B2n(t) + 84B2n

(
1

6

)
+ 84B2n

(
1

3

)
+ 44B2n

(
1

2

)]
.

Using (3.6) and (3.10), we deduce the representation (3.8) and the bound (3.9). �

Remark 3.1: Because of (3.4) we get∫ 1

0

Fk (t) dt =

∫ 1

0

Gk (t) dt−
∫ 1

0

B̃kdt = −B̃k,

and also ∫ 1

0

[Fk (t)]
2
dt =

∫ 1

0

[Gk (t)]
2
dt− 2B̃k

∫ 1

0

Gk (t) dt+ B̃2
k.

So, using (3.7) similar as in (3.10), we deduce the representation (3.8) and the
bound (3.9), too.

The following Grüss type inequality also holds.

Theorem 6. Let f : [0, 1] → R be such that f (n) is absolutely continuous and
f (n+1) ≥ 0 on [0, 1]. Then we have the representation (3.8) and the remainder
TGBn(f) satisfies the bound

|TGBn(f)| ≤
1

2(n−1)! ||Gn−1 (t)||∞
{

f(n−1)(0)+f(n−1)(1)
2 − f (n−2)[0, 1]

}
.

(3.11)

Proof. If we apply Theorem 2 for f → Gn, g → f (n), we deduce∣∣∣∣∫ 1

0

Gn (t) f
(n)(t)dt−

∫ 1

0

Gn (t) dt ·
∫ 1

0

f (n)(t)dt

∣∣∣∣
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≤ n

2
||Gn−1 (t)||∞

(∫ 1

0

t(1− t)f (n+1)(t)dt

)
. (3.12)

So, similarly as in Theorem 4, using the representation (3.8) and the inequality
(3.12), we deduce (3.11). �

Remark 3.2: From [8] we have that for n− 1 = 2k, k ≥ 2

||Gn−1 (t)||∞ = ||G2k (t)||∞ = 21−2k(1− 32−2k)|B2k|.
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