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GAUSS-STEFFENSEN TYPE INEQUALITIES

JOSIP PEČARIĆ AND KSENIJA SMOLJAK KALAMIR

Abstract. In this paper we extend Gauss-Steffensen’s inequality to the class
of functions that are “convex at point c”. As a consequence we obtain Gauss-
Steffensen type inequality for convex functions. Further, we produce linear
functional which generates exponential convexity and Stolarsky type means.

1. Introduction

In [3] Gauss mentioned the following inequality:

Theorem 1. If f is a nonnegative and nonincreasing function and k > 0 then∫ ∞
k

f(x)dx ≤ 4

9k2

∫ ∞
0

x2f(x)dx.

The well-known Steffensen inequality reads (see [10]):

Theorem 2. Suppose that f is nonincreasing and g is integrable on [a, b] with
0 ≤ g ≤ 1 and λ =

∫ b
a
g(t)dt. Then we have∫ b

b−λ
f(t)dt ≤

∫ b

a

f(t)g(t)dt ≤
∫ a+λ

a

f(t)dt.

The inequalities are reversed for f nondecreasing.

In [5] Pečarić proved the following result.

Theorem 3. Let G : [a, b] → R be an increasing function and let f : I → R be a
nonincreasing function (I is an interval from R such that a, b,G(a), G(b) ∈ I). If
G(x) ≥ x then ∫ G(b)

G(a)

f(x)dx ≤
∫ b

a

f(x)G′(x)dx. (1.1)

If G(x) ≤ x, the reverse inequality in (1.1) is valid.
If f is a nondecreasing function and G(x) ≥ x then the inequality (1.1) is reversed.
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Inequality (1.1) is usually called Gauss-Steffensen’s inequality. As pointed out in
[9] Gauss-Steffensen’s inequality includes as special cases three famous inequalities:
Volkov’s, Steffensen’s and Ostrowski’s inequality.

The aim of this paper is to obtain Gauss-Steffensen type inequalities by extend-
ing Gauss-Steffensen’s inequality to the class of convex functions. Further, we give
an application of obtained inequalities to Stolarsky type means.

Throughout the paper we assume that I is an interval from R containing
a, b,G(a) and G(b).

First, let us recall some notions; log denotes the natural logarithm function and
by I◦ we denote the interior of interval I.

2. Main results

In [8] Pečarić and Smoljak introduced a new class of functions that extends the
class of convex functions. Let us recall the definition.
Definition 2.1: Let f : I → R and c ∈ I◦. We say that f belongs to classMc

1(I)
(resp. Mc

2(I)) if there exists a constant A such that the function F (x) = f(x)−Ax
is nonincreasing (resp. nondecreasing) on I ∩ (−∞, c] and nondecreasing (resp.
nonincreasing) on I ∩ [c,∞).

We can describe the property from the previous definition as “convexity (con-
cavity) at point c”.
Remark 2.1: If f ∈Mc

1(I) or f ∈Mc
2(I) and f ′(c) exists, then f ′(c) = A.

Let us show this for f ∈ Mc
1(I). Since F is nonincreasing on I ∩ (−∞, c] and

nondecreasing on I ∩ [c,∞) for every distinct points x1, x2 ∈ I ∩ (−∞, c] and
y1, y2 ∈ I ∩ [c,∞) we have

[x1, x2;F ] = [x1, x2; f ]−A ≤ 0 ≤ [y1, y2; f ]−A = [y1, y2;F ].

Therefore, since f ′−(c) and f ′+(c) exist, letting x1 = y1 = c, x2 ↗ c and y2 ↘ c we
get

f ′−(c) ≤ A ≤ f ′+(c). (2.1)
In the following theorem we recall the connection between the class of functions

Mc
1[a, b] and the class of convex functions proved in [8].

Theorem 4. The function f : I → R is convex (concave) on I if and only if it is
convex (concave) at every c ∈ I◦.

In the following theorem we obtain Gauss-Steffensen type inequality for class
of functions that are “convex at point c”.

Theorem 5. Let G : [a, b]→ R be an increasing function such that G(x) ≥ x and
let c ∈ (a, b). If f ∈Mc

1(I) and∫ c

a

G(t)dt−
∫ b

c

G(t)dt = 2cG(c)−aG(a)−bG(b)+
G2(b) +G2(a)− 2G2(c)

2
, (2.2)

then ∫ c

a

f(t)G′(t)dt−
∫ b

c

f(t)G′(t)dt ≥
∫ G(c)

G(a)

f(t)dt−
∫ G(b)

G(c)

f(t)dt (2.3)
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holds.
If f ∈Mc

2(I) and (2.2) holds, the inequality in (2.3) is reversed.

Proof. Let A be the constant from Definition 2.1 and let f ∈ Mc
1(I). We have

c ∈ (a, b) ⊆ I◦. Let us consider the function F : I → R, F (x) = f(x)−Ax. Since
F is nonincreasing on I ∩ (−∞, c] we can apply inequality (1.1) to the function F ,
so ∫ G(c)

G(a)

F (t)dt ≤
∫ c

a

F (t)G′(t)dt.

Hence, we obtain

0 ≤
∫ c
a
F (t)G′(t)dt−

∫ G(c)

G(a)
F (t)dt =

=
∫ c
a
f(t)G′(t)dt−

∫ G(c)

G(a)
f(t)dt−A

(
cG(c)− aG(a)−

∫ c
a
G(t)dt− G2(c)−G2(a)

2

)
.

(2.4)
Further, the function F is nondecreasing on I ∩ [c,∞) so we can apply the reverse
inequality (1.1), so we have∫ b

c

F (t)G′(t)dt ≤
∫ G(b)

G(c)

F (t)dt.

Hence, we obtain

0 ≤
∫ G(b)

G(c)
F (t)dt−

∫ b
c
F (t)G′(t)dt =

=
∫ G(b)

G(c)
f(t)dt−

∫ b
c
f(t)G′(t)dt−A

(
G2(b)−G2(c)

2 − bG(b) + cG(c) +
∫ b
c
G(t)dt

)
.

(2.5)
Now combining (2.4) and (2.5) we obtain∫ c

a
f(t)G′(t)dt−

∫ G(c)

G(a)
f(t)dt−

∫ b
c
f(t)G′(t)dt+

∫ G(b)

G(c)
f(t)dt ≥

≥ A
(

2cG(c)− aG(a)− bG(b)−
∫ c
a
G(t)dt+

∫ b
c
G(t)dt+ G2(a)+G2(b)−2G2(c)

2

)
.

Now, from (2.2), we conclude that (2.3) holds.
Proof for f ∈Mc

2(I) is similar so we omit the details. �

As a consequence of previous theorem we obtain the following Gauss-Steffensen
type inequality for class of convex functions.

Corollary 5.1. Let G : [a, b] → R be an increasing function such that G(x) ≥ x
and let c ∈ (a, b). If f : I → R is convex and (2.2) holds then (2.3) holds. If
f : I → R is concave and (2.2) holds, the inequality in (2.3) is reversed.

Proof. Since the function f is convex, from Theorem 4, we have that f ∈ Mc
1(I)

for every c ∈ (a, b) ⊆ I◦. Hence, we can apply Theorem 5. �

Remark 2.2: If the function G in Theorem 5 and Corollary 5.1 is such that
G(x) ≤ x, then the reverse inequality in (2.3) holds.
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Remark 2.3: Condition (2.2) can be weakened. From the proof of Theorem 5 we
have that for f ∈Mc

1(I) condition (2.2) can be replaced by the weaker condition

A

(
2cG(c)− aG(a)− bG(b)−

∫ c

a
G(t)dt+

∫ b

c
G(t)dt+

G2(a) +G2(b)− 2G2(c)

2

)
≥ 0, (2.6)

where A is the constant from Definition 2.1. Also, for f ∈ Mc
2(I) condition (2.2)

can be replaced by condition (2.6) with the reverse inequality.
Furthermore, condition (2.2) can be further weakened if the function f is mono-

tonic. Since (2.1) holds, if f ∈ Mc
1(I) is nondecreasing or f ∈ Mc

2(I) is nonin-
creasing, from (2.6) we obtain that (2.2) can be weakened to∫ c

a

G(t)dt−
∫ b

c

G(t)dt ≤ 2cG(c)−aG(a)−bG(b)+
G2(a) +G2(b)− 2G2(c)

2
. (2.7)

Also, if f ∈ Mc
1(I) is nonincreasing or f ∈ Mc

2(I) is nondecreasing, (2.2) can be
weakened to (2.7) with the reverse inequality.

3. Mean value theorems and n−exponential convexity

We begin this section with mean value theorems related to Gauss-Steffensen
type inequality obtained in previous section. Let us define the following linear
functional:

L(f) =

∫ c

a

f(t)G′(t)dt−
∫ b

c

f(t)G′(t)dt−
∫ G(c)

G(a)

f(t)dt+

∫ G(b)

G(c)

f(t)dt. (3.1)

Remark 3.1: Under assumptions of Theorem 5 we have that L(f) ≥ 0 for f ∈
Mc

1(I). Further, under assumptions of Corollary 5.1 we have that L(f) ≥ 0 for
any convex function f .

First, we give the Lagrange type mean value theorem.

Theorem 6. Let G : [a, b]→ R be an increasing function such that G(x) ≥ x and
let c ∈ (a, b). Assume that (2.2) holds. Then for any f ∈ C2(I) there exists ξ ∈ I
such that

L(f) =
f ′′(ξ)

2

[∫ c

a

x2G′(x)dx−
∫ b

c

x2G′(x)dx+
G3(b) +G3(a)− 2G3(c)

3

]
,

(3.2)
where L is defined by (3.1).

Proof. Since f ∈ C2(I) there exist

m = min
x∈I

f ′′(x) and M = max
x∈I

f ′′(x).

The functions

Φ1(x) = f(x)− m

2
x2 and Φ2(x) =

M

2
x2 − f(x)
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are convex since Φ′′i (x) ≥ 0, i = 1, 2. Hence, by Remark 3.1 we have L(Φi) ≥ 0,
i = 1, 2 and we obtain

m

2
L(x2) ≤ L(f) ≤ M

2
L(x2), (3.3)

where

L(x2) =

∫ c

a

x2G′(x)dx−
∫ b

c

x2G′(x)dx+
G3(b) +G3(a)− 2G3(c)

3
.

Since x2 is convex, by Remark 3.1 we have L(x2) ≥ 0.
If L(x2) = 0, then (3.3) implies L(f) = 0 and (3.2) holds for every ξ ∈ I.

Otherwise, dividing (3.3) by L(x2)/2 > 0 we get

m ≤ 2L(f)

L(x2)
≤M,

so continuinity of f ′′ ensures existence of ξ ∈ I satisfying (3.2). �

We continue with the Cauchy type mean value theorem.

Theorem 7. Let G : [a, b] → R be an increasing function such that G(x) ≥ x
and let c ∈ (a, b). Assume that (2.2) holds. Then for any f, h ∈ C2(I) such that
h′′(x) 6= 0 for every x ∈ I, there exists ξ ∈ I such that

L(f)

L(h)
=
f ′′(ξ)

h′′(ξ)

holds, where L is defined by (3.1).

Proof. Let us define Φ ∈ C2(I) by Φ(x) = L(h)f(x)− L(f)h(x). Due to linearity
of L we have L(Φ) = 0. Now, by Theorem 6 there exist ξ, η ∈ I such that

0 = L(Φ) = Φ′′(ξ)
2 L(x2)

0 6= L(h) = h′′(η)
2 L(x2).

Therefore, L(x2) 6= 0 and

0 = Φ′′(ξ) = L(h)f ′′(ξ)− L(f)h′′(ξ),

which gives the claim of the theorem. �

Let us recall definition and some results on exponential and n−exponential
convexity, for more details see [1], [2], [4] and [6].
Definition 3.1: A function ψ : J → R is n-exponentially convex in the Jensen
sense on J if

n∑
i,j=1

ξiξj ψ

(
xi + xj

2

)
≥ 0,

holds for all choices ξ1, . . . , ξn ∈ R and all choices x1, . . . , xn ∈ J .
A function ψ : J → R is n-exponentially convex on J if it is n-exponentially

convex in the Jensen sense and continuous on J .
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Remark 3.2: It is clear from the definition that 1-exponentially convex functions
in the Jensen sense are in fact nonnegative functions.

Also, n-exponentially convex functions in the Jensen sense are k-exponentially
convex in the Jensen sense for every k ≤ n, k ∈ N.
Definition 3.2: A function ψ : J → R is exponentially convex in the Jensen sense
on J if it is n-exponentially convex in the Jensen sense on J for every n ∈ N.

A function ψ : J → R is exponentially convex on J if it is exponentially convex
in the Jensen sense and continuous on J .
Remark 3.3: A function ψ : J → R is log-convex in the Jensen sense, i.e.

ψ

(
x+ y

2

)2

≤ ψ(x)ψ(y), for all x, y ∈ J, (3.4)

if and only if

α2ψ(x) + 2αβψ

(
x+ y

2

)
+ β2ψ(y) ≥ 0

holds for every α, β ∈ R and x, y ∈ J , i.e., if and only if ψ is 2-exponentially convex
in the Jensen sense. By induction from (3.4) we have

ψ

(
1

2k
x+

(
1− 1

2k

)
y

)
≤ ψ(x)

1

2k ψ(y)1− 1

2k .

Therefore, if ψ is continuous and ψ(x) = 0 for some x ∈ J , then from the last
inequality and nonnegativity of ψ (see Remark 3.2) we get

ψ(y) = lim
k→∞

ψ

(
1

2k
x+

(
1− 1

2k

)
y

)
= 0 for all y ∈ J.

Hence, 2-exponentially convex function is either identically equal to zero or it is
strictly positive and log-convex.

The following lemma is equivalent to the definition of convex functions (see [7]).

Lemma 1. A function ψ : J → R is convex if and only if the inequality

(x3 − x2)ψ(x1) + (x1 − x3)ψ(x2) + (x2 − x1)ψ(x3) ≥ 0

holds for all x1, x2, x3 ∈ J such that x1 < x2 < x3.

We also use the following result (see [7]).

Proposition 3.1. If f is a convex function on J and if x1 ≤ y1, x2 ≤ y2, x1 6= x2,
y1 6= y2, then the following inequality holds

f(x2)− f(x1)

x2 − x1
≤ f(y2)− f(y1)

y2 − y1
.

If the function f is concave, the inequality is reversed.

Definition 3.3: The second order devided difference of a function f : J → R, J
is an interval in R, at mutually different points x0, x1, x2 ∈ J is defined recursively
by

[xi; f ] = f(xi), i = 0, 1, 2
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[xi, xi+1; f ] =
f(xi+1)− f(xi)

xi+1 − xi
, i = 0, 1

[x0, x1, x2; f ] =
[x1, x2; f ]− [x0, x1; f ]

x2 − x0
. (3.5)

Remark 3.4: The value [x0, x1, x2; f ] is independent of the order of the points
x0, x1 and x2. This definition may be extended to include the case in which some
or all the points coincide. Taking the limit x1 → x0 in (3.5), we get

lim
x1→x0

[x0, x1, x2; f ] = [x0, x0, x2; f ] =
f(x2)− f(x0)− f ′(x0)(x2 − x0)

(x2 − x0)2
, x2 6= x0

provided that f ′ exists, and furthermore, taking the limits xi → x0, i = 1, 2 in
(3.5), we get

lim
x2→x1

lim
x1→x0

[x0, x1, x2; f ] = [x0, x0, x0; f ] =
f ′′(x0)

2

provided that f ′′ exists.
In the following theorem we show n−exponential convexity of functional L.

Similar result was proved in [8] so we omit the proof. In the sequel J and K
denote intervals in R.

Theorem 8. Let Ω = {fp : J → R | p ∈ K} be a family of functions such that
for every mutually different points x0, x1, x2 ∈ J the mapping p 7→ [x0, x1, x2; fp]
is n−exponentially convex in the Jensen sense on K. Let L be linear functional
defined by (3.1). Then the mapping p 7→ L(fp) is n−exponentially convex in the
Jensen sense on K.
If the mapping p 7→ L(fp) is continuous on K, then it is n−exponentially convex
on K.

If the assumptions of Theorem 8 hold for all n ∈ N, then we have the following
corollary.

Corollary 8.1. Let Ω = {fp : J → R | p ∈ K} be a family of functions such that
for every mutually different points x0, x1, x2 ∈ J the mapping p 7→ [x0, x1, x2; fp] is
exponentially convex in the Jensen sense on K. Let L be linear functional defined
by (3.1). Then the mapping p 7→ L(fp) is exponentially convex in the Jensen sense
on K.
If the mapping p 7→ L(fp) is continuous on K, then it is exponentially convex on
K.

We continue with the result which is useful for the application to Stolarsky type
means. Again, similar result was obtained in [8] so we recall it without the proof.

Corollary 8.2. Let Ω = {fp : J → R | p ∈ K} be a family of functions such that
for every mutually different points x0, x1, x2 ∈ J the mapping p 7→ [x0, x1, x2; fp]
is 2-exponentially convex in the Jensen sense on K. Let L be linear functional
defined by (3.1). Then the following statements hold:
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(i) If the mapping p 7→ L(fp) is continuous on K, then for r, s, t ∈ K, such
that r < s < t, we have

[L(fs)]
t−r ≤ [L(fr)]

t−s
[L(ft)]

s−r
.

(ii) If the mapping p 7→ L(fp) is strictly positive and differentiable on K, then
for every p, q, u, v ∈ K such that p ≤ u and q ≤ v we have

µp,q(L,Ω) ≤ µu,v(L,Ω), (3.6)

where

µp,q(L,Ω) =


(
L(fp)
L(fq)

) 1
p−q

, p 6= q,

exp

(
d
dpL(fp)

L(fp)

)
, p = q.

Remark 3.5: Results from Theorem 8, Corollaries 8.1 and 8.2 still hold when
two of the points x0, x1, x2 ∈ J coincide, say x1 = x0, for a family of differentiable
functions fp such that the function p→ [x0, x1, x2; fp] is n−exponentially convex
in the Jensen sense (exponentially convex in the Jensen sense, log-convex in the
Jensen sense), and furthermore, they still hold when all three points coincide for
a family of twice differentiable functions with the same property. The proofs are
obtained by recalling Remark 3.4 and suitable characterization of convexity.

We continue with some families of functions for which we use Corollaries 8.1 and
8.2 to construct exponentially convex functions and Stolarsky type means related
to Gauss-Steffensen type inequality.
Example 3.1: Let

Υ1 = {fp : R→ [0,∞)| p ∈ R}

be a family of functions defined by

fp(x) =

{
epx

p2 , p 6= 0;
x2

2 , p = 0.

For every p ∈ R we have that fp is a convex function on R since d2

dx2 fp(x) = epx > 0.
Furthermore, p 7→ d2

dx2 fp(x) is exponentially convex by definition. Similar as in
proof of Theorem 8 we conclude that p 7→ [x0, x1, x2; fp] is exponentially convex
(and so exponentially convex in the Jensen sense). Using Corollary 8.1 we obtain
that p 7→ L(fp) is exponentially convex in the Jensen sense. It is easy to verify
that this mapping is continuous, so it is exponentially convex. For this family of
functions, from Corollary 8.2 we have the following:

∗ for p 6= q, p, q 6= 0:

µp,q(L,Υ1) =

q2

p2

∫ c
a
epxG′(x)dx−

∫ b
c
epxG′(x)dx+ epG(b)+epG(a)−2epG(c)

p∫ c
a
eqxG′(x)dx−

∫ b
c
eqxG′(x)dx+ eqG(b)+eqG(a)−2eqG(c)

q

 1
p−q
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∗ for p 6= q, q = 0 (or p = 0):

µp,0(L,Υ1) =

 2

p2

∫ c
a
epxG′(x)dx−

∫ b
c
epxG′(x)dx+ epG(b)+epG(a)−2epG(c)

p∫ c
a
x2G′(x)dx−

∫ b
c
x2G′(x)dx+ G3(a)+G3(b)−2G3(c)

3

 1
p

= µ0,p(L,Υ1)

∗ for p = q 6= 0:
µp,p(L,Υ1) =

exp

( ∫ c
a
xepxG′(x)dx−

∫ b
c
xepxG′(x)dx+

epG(b)(pG(b)−1)+epG(a)(pG(a)−1)−2epG(c)(pG(c)−1)

p2∫ c
a
epxG′(x)dx−

∫ b
c
epxG′(x)dx+ epG(b)+epG(a)−2epG(c)

p

− 2
p

)
∗ for p = q = 0:

µ0,0(L,Υ1) = exp

(
1

3

∫ c
a
x3G′(x)dx−

∫ b
c
x3G′(x)dx+ G4(b)+G4(a)−2G4(c)

4∫ c
a
x2G′(x)dx−

∫ b
c
x2G′(x)dx+ G3(b)+G3(a)−2G3(c)

3

)
.

Applying Theorem 7 on functions fp, fq ∈ Υ1 and functional L it follows that

Mp,q(L,Υ1) = log µp,q(L,Υ1)

satisfies min I ≤ Mp,q(L,Υ1) ≤ max I. So Mp,q(L,Υ1) is a monotonic mean by
(3.6).
Example 3.2: Let

Υ2 = {hp : (0,∞)→ R | p ∈ R}
be a family of functions defined by

hp(x) =


xp

p(p−1) , p 6= 0, 1;

− log x, p = 0;
x log x, p = 1.

We have that hp is a convex function on R+ since d2

dx2hp(x) = xp−2 > 0 for x > 0.
Furthermore, p 7→ d2

dx2hp(x) is exponentially convex by definition. Smiliar as in
Example 3.1 we obtain that p 7→ L(hp) is exponentially convex in the Jensen sense.
It is easy to verify that this mapping is continuous, so it is exponentially convex.
Hence, for this family of functions, from Corollary 8.2 we have that µp,q(L,Υ2) is
given by

µp,q(L,Υ2) =



(
L(hp)
L(hq)

) 1
p−q

, p 6= q;

exp
(
−L(hph0)
L(hp) − 2p−1

p(p−1)

)
, p = q 6= 0, 1;

exp
(
−L(h2

0)
2L(h0) + 1

)
, p = q = 0;

exp
(
−L(h0h1)

2L(h1) − 1
)
, p = q = 1.

Applying Theorem 7 on functions hp, hq ∈ Υ2 and functional L we conclude
that there exists ξ ∈ I such that

ξp−q =
L(hp)

L(hq)
.
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Since the function ξ 7→ ξp−q is invertible for p 6= q we have

min I ≤
(
L(hp)

L(hq)

) 1
p−q

≤ max I

which together with the fact that µp,q(L,Υ2) is continuous, symetric and mono-
tonic (by (3.6)) shows that µp,q(L,Υ2) is a mean.
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