GROUPOID POWERS

Мат. билтен Македонија, 25 (51) (2001), 5-12

Gorgi Čupona, Naum Celakoski, Snežana Ilić

Abstract

The following statement is the main result of the paper.

If V is the variety of groupoids (commutative groupoids), or V is the variety of *n*-idempotent groupoids (commutative *n*-idempotent groupoids), i.e. groupoids (commutative groupoids) with an axiom $x^{n+1} = x$, $n \ge 2$, then the monoid of powers is free with a countable infinite basis.

0. Preliminaries

A pair $G = (G, \cdot)$, where G is a nonempty set, and $\cdot : (x,y) \mapsto xy$ a mapping from G^2 into G, is called a *groupoid*. A groupoid $G = (G, \cdot)$ is said to be *injective* iff $(\forall x, y, u, v \in G)$ $(xy = uv \Rightarrow (x, y) = (u, v))$.

$$(\forall x, y, u, v \in G) (xy = uv \implies (x, y) = (u, v)). \tag{0,1}$$

An element $a \in G$ is *prime* in \mathbf{G}^1 iff

$$(\forall x, y \in G) \ a \neq xy. \tag{0.2}$$

We note that by a "free groupoid" we mean " free groupoid in the variety of groupoids " (i.e. an "absolutely free groupoid"). Remind that the following Theorem of Bruck characterizes free groupoids ([1; L.1.5]).

Theorem 0.1. A groupoid $F = (F, \cdot)$ is free iff it satisfies the following conditions:

F is injective,

(ii) The set B of primes in F is nonempty and generates F .

(In that case B is the unique free basis of F.)

Throughout the paper we denote by F a free groupoid with the basis B, and t, u, ν , ..., α , β , ... elements of F

For any $v \in F$ we define the *length* |v| of v and the set P(v) of parts of v in the following way: (0.3)

$$|b| = 1, |tu| = |t| + |u|,$$
 (0.3)
 $P(b) = \{b\}, P(tu) = \{tu\} \cup P(t) \cup P(u),$ (0.4)

for any $b \in B$, $t, u \in F$.

1. Groupoid powers

From now on, we will denote by $\hat{E} = (\hat{E}, \cdot)$ a free groupoid with a one-element basis $\{e\}$. The elements of E will be denoted by f, g, h, ... and called *groupoid powers*. Note that *E* is a countable ifinite set.

If $G = (G, \cdot)$ is a groupoid, then each $f \in E$ induces a transformation f^{G} of G(called the *interpretation* of f in G) defined by:

$$f^{\mathbf{G}}(x) = \varphi_{x}(f),$$

where $\varphi_x : E \to G$ is the homomorphism from E into G such that $\varphi_x(e) = x$. In other words $e^{G}(x) = x$, $(fh)^{G}(x) = f^{G}(x) h^{G}(x)$,

for any $f, h \in E, x \in G$. (We will usually write f(x) instead of $f^{G}(x)$ when we work with a fixed groupoid G.)

By induction on length, for any $f, g \in E$, $t, u \in F$, the following statements can be shown. (Most of these results are stated in [6], as well.)

Proposition 1.1. |f(t)| = |f| |t|.

Proposition 1.2. $t \in P(f(t))$.

Proposition 1.3. $(\forall n \in \mathbb{N}) (f(t))^n = f^n(t)$.

Proposition 1.4. $f(t) = g(u) \& |t| = |u'| \Leftrightarrow (f = g \& t = u).$

Proposition 1.5. $f(t) = g(u) \& |t| \ge |u| \Leftrightarrow (\exists! h \in E) (t = h(u) \& g = h(f)). \square$

Corresponding translations (0.3'), (0.4') and Prop.1.1'-Prop.1.5' (for E) of (0.3), (0.4) and Prop.1.1-Prop.1.5 are obvious and we will not state them explicitly.

We define an other operation " \circ " in E by:

$$f \circ g = f(g). \tag{1.2}$$

So, we obtain an algebra (E, \circ, \cdot) with two operations, \circ and \cdot , such that $e \circ g = g \circ e = g$, $(f_1 f_2) \circ g = (f_1 \circ g) (f_2 \circ g)$,

for any g, f_1 , $f_2 \in E$.

Using (1.1), (1.2) and Prop. 1.4, one can shown the following proposition.

¹The notions as subgroupoid, semigroup, monoid, generating set, homomorphism, variety of groupoids, ... have usual meanings.

Proposition 1.6. (E, \circ, e) is a cancellative monoid. \square

A power $f \in E$ is said to be *irreducible* iff

(1.3)

 $f \neq e \& (f = g \circ h \implies g = e \text{ or } h = e).$ The proofs of the following propositions are obvious.

Proposition 1.7. If the length |f| of f is a prime integer, then f is irreducible. \Box **Proposition 1.8.** If $p,q \in E$ are irreducible and $f \circ p = h \circ q$, then f = h and $p = q \cap Q$

Proposition1.9. For every $f \in E \setminus \{e\}$ there is a unique sequence $p_1, p_2, ..., p_n$ of irreducible elements in E such that $f = p_1 \circ p_2 \circ ... \circ p_n$. \square By Prop.1.6, 1.7 and Prop.1.9 it follows:

Proposition 1.10. The monoid (E, \circ, e) is free with a countable infinite basis. (The set of irreducible powers is the basis of the monoid.) \square

If V is a variety of groupoids, then we denote by $E_V = (E_V, \cdot)$ a free groupoid in V, with a one-element basis $\{e\}$. The elements of E_V can be considered as powers in groupoids of V. Namely, for every $G \in V$, and $f \in E_V$, we can define a transformation f^G , as an interpretation of f; we say that f^G is a V-power in G.

In the case of the variety of commutative groupoids, we can use the

corresponding Bruck Theorem, modifying the notion of an injective groupoid. Namely, if **G** is a commutative groupoid such that

we say that **G** is *injective* in the variety of commutative groupoids. We will not formulate Bruck Theorem for commutative groupoids, because it is formally the same as Th.0.1.

Further on, in the paper, we denote by $F_c=(F_c,\cdot)$ a free commutative groupoid with the basis B; also, $E_c=(E_c, \cdot)$ is a free commutative groupoid with a one-element basis $\{e\}$.

We assume the definitions (0.3), (0.4), (1.1) – (1.3), replacing F, E by F_c , E_c respectively, as definitions (0.3_c) , (0.4_c) , (1.1_c) – (1.3_c) for the corresponding notions in commutative groupoids. Then, the Pr.1.1 – 1.10, replacing F, E by \bar{F}_c, E_c respectively, become $Pr.1.1_c - 1.10_c$, which hold for commutative groupoids. (We will not formulate explicitly the $Pr.1.1_c - 1.10_c$, because they are formally the same as Pr.1.1 - 1.10.) By Pr.1.10 and $Pr.1.10_c$ it follows:

Proposition 1.11. The monoids (E, \circ, e) and (E_c, \circ, e) are isomorphic. \square We will end this part with a short discussion about the number $\varepsilon(n)$ of elements in the set $\{f \in E : |f| = n\},\$ (1.5)and number $\varepsilon_c(n)$ of elements in the set

$$\{f \in E_{\mathbf{c}} : |f| = n\}.$$
 (1.6)

Since the groupoid E is injective and e is a prime, we obtain that $\varepsilon(1) = 1$, and that for any $n \ge 2$, the following relation holds

$$\varepsilon(n) = \sum_{k=1}^{n} \varepsilon(k) \, \varepsilon(n-k) \,. \tag{1.7}$$

By a result of P.Hall (see for example: [2], III 2, Ex.2, p.125), one obtains the following result: $\varepsilon(n) = \sum_{k=1}^{n} \varepsilon(k) \varepsilon(n-k). \tag{1.7}$ By a result of P.Hall (see for example: [2], III 2, Ex.2, p.125), one obtains the following result: $\varepsilon(n) = \frac{(2n-2)!}{((n-1)!} \frac{n!}{n!}.^2 \tag{1.8}$ Because of the commutativity of E_c , one obtains that $\varepsilon_c(1) = \varepsilon_c(2) = \varepsilon_c(3) = 1$, and that for each $n \ge 1$, the following relations hold

$$\varepsilon_{c}(2n) = \sum_{k=1}^{n} \varepsilon_{c}(k) \ \varepsilon_{c}(2n-k) \ , \tag{1.9}$$

$$\varepsilon_{\rm c}(2n+1) = \sum_{k=1}^{n} \varepsilon_{\rm c}(k) \, \varepsilon_{\rm c}(2n+1-k) \,. \tag{1.10}$$

 $\varepsilon_{\rm c}(2n) = \sum_{k=1}^{n} \varepsilon_{\rm c}(k) \, \varepsilon_{\rm c}(2n-k) \,, \tag{1.9}$ $\varepsilon_{\rm c}(2n+1) = \sum_{k=1}^{n} \varepsilon_{\rm c}(k) \, \varepsilon_{\rm c}(2n+1-k) \,. \tag{1.10}$ But we do not know any "elementary function" which expresses $\varepsilon_{\rm c}(n)$ as (1.8) expresses $\varepsilon_{\rm c}(n)$. 2. Powers in *n*-idempotent groupoids

Let $V^{(n)}$ be the variety of groupoids with the axiom $x^{n+1} = x$, where $n \ge 1$. $V^{(1)}$ is the variety of idempotent groupoids, and thus $E^{(1)} = \{e\}$ is a one-element set; this implies that the monoid $(E^{(1)}, \circ, e)$ is free with empty basis. Below, we assume that $n \ge 2$ and we will write $E^{(n)}$ instead of $E_{V^{(n)}}$. From the main result of [5] it follows that write $E^{(n)}$ is defined as follows: $E^{(n)} = \{f \in E \mid (\forall g \in E) \mid g^{n+1} \notin P(f)\}, \qquad (2.1)$

$$E^{(n)} = \{ j \in E \mid (\forall g \in E) \ g^{(n)} \notin P(j) \}, \tag{2.1}$$

 $(\forall f, g \in E^{(n)}) [(f \bullet g = fg \text{ if } fg \in E^{(n)}) \& (f \bullet g = g \text{ if } f = g^n)].$ (2.2)

The considering power series $\sigma(x) = \varepsilon_1 x + \varepsilon_2 x^2 + \dots$, where $\varepsilon_n = \varepsilon(n)$. One can show that $\sigma(x)^2 - \sigma(x) + x = 0$, which implies $2 \sigma(x) = \sqrt{1 - 4x}$. Then, using the binomial series for $\sqrt{1 - 4x}$, one obtains (1.8). For $k \in \mathbb{N}$, x^k have the ususal meaning, i.e. $x^1 = x$ $x^{k+1} = x^k x$.

The main result of this section is the following proposition.

Proposition 2.1. For each $n \ge 2$, $(E^{(n)}, \circ, e)$ is a free monoid with an infinite basis, and the basis consists of irreducible powers which belong to $E^{(n)}$.

In order to prove Prop.2.1, we will use some lemmas.

Lemma 2.2 $(\forall f \in E) f \in E^{(n)} \Rightarrow P(f) \subseteq E^{(n)}$.

Proof. This is an obvious corollary from (2.1) and the definition of P(f). \square

Proof. This is an obvious corollary from (2.1) and the definition of P(f). \Box **Lemma 2.3.** $(\forall f, g \in E) \ (f \circ g \in E^{(n)} \Rightarrow \{f, g\} \subseteq E^{(n)})$. **Proof.** Assume $f \circ g \in E^{(n)}$. Clearly, if $e \in \{f, g\}$, then $\{f, g\} \subseteq E^{(n)}$. Thus we can assume that $|f| \ge 2$, $|g| \ge 2$. Moreover, $g \in P(f \circ g)$, implies $g \in E^{(n)}$. We have to show that $f \in E^{(n)}$, as well. If $f = f_1 f_2$, then $(f_1 \circ g) (f_2 \circ g) = f \circ g \in E^{(n)}$, and by L.3.2, this implies $\{f_1 \circ g, f_2 \circ g\} \subseteq E^{(n)}$; by induction on length we obtain $\{f_1, f_2\} \subseteq E^{(n)}$. Then $f \notin E^{(n)}$ implies $f_1 = f_2^n$, and then we would have a contradiction. \Box

a contradiction. \square

Lemma 2.4 $E^{(n)}$ is a submonoid of (E, \circ, e) .

Proof. From (2.1) it follows that $e \in E^{(n)}$. Let $f, g \in E^{(n)}$. If f = e, then $f \circ g = g \in E^{(n)}$, and thus we can assume that $f = f_1 f_2$, where $f_1, f_2 \in E^{(n)}$. Assume $f_1 \circ g$, $f_2 \circ g \in E^{(n)}$, but $f \circ g = (f_1 \circ g)(f_2 \circ g) \notin E^{(n)}$.

Then $f_1 \circ g = (f_2 \circ g)^n = f_2^n \circ g$, and this (because of the cancellative law) implies $f_1 = f_2^n$, which is impossible, for then we would have $f = f_2^{n+1} \notin E^{(n)}$. \square

As a corollary of L.2.3, we have: Lemma 2.5 If $f \in E^{(n)}$ and $f = f_1 \circ f_2 \circ ... \circ f_n$, then $f_1, f_2, ..., f_n \in E^{(n)}$. \square

Lemma 2.6. If $p \in E^{(n)}$ is irreducible in E, then p is irreducible in $E^{(n)}$, as well. \Box **Lemma 2.7.** The set of irreducible elements in $E^{(n)}$ is infinite.

Proof. If $q_1 = e^2$, $q_{k+1} = eq_k$, then $\{q_1, q_2, ..., q_k, q_{k+1}, ...\} = Q$ is an infinite set of irreducible elements in $E^{(n)}$. Namely, from $|q_k| = k+1$, it follows that Q is infinite.

Also, from (2.1) and $n \ge 2$) we have $q_1 \in E^{(n)}$. Assume that $q_k \in E^{(n)}$, $q_{k+1} \notin E^{(n)}$. Then, there exists $h \in E^{(n)}$ such that $h^{n+1} \in P(q_{k+1}) = \{q_{k+1}\} \cup P(q_k)$, but this is impossible, because $h^{n+1} \neq q_{k+1}$, and $h^{n+1} \notin P(q_k)$.

It remains to show that q_k is irreducible. Namely, let $\{q_1, q_2, ..., q_p\}$, for any integer $p \le k$ be irreducible. Assume that $q_{k+1} = f \circ g$ for some $k \le 1$, and f, $g \in E^{(n)}$, f

ponding groupoid $E_c^{(n)} \in V_c^{(n)}$ can be defined by (2.1_c) and (2.2_c), replacing $E^{(n)}$ in

ponding groupoid $E_c^{(n)} \in V_c^{(n)}$ can be defined by (2.1_c) and (2.2_c) , replacing $E^{(n)}$ in (2.1) and (2.2) by $E_c^{(n)}$ and E by E_c .

In the same manner we obtain Lemmas $2.2_c - 2.7_c$. We only need a modification in the proof that the set of irreducible elements in $(E_c^{(n)}, \circ, e)$ is infinite. Namely, in $E_c^{(n)}$ we have $q_k = e^{k+1}$, and therefore (for example) $q_n \notin E_c^{(n)}$. But we can obtain an infinite set of irreducible elements in $E_c^{(n)}$, as follows:

 $p_1 = e(e^2)^2$, $p_{k+1} = ep_k$.

Thus we would obtain the following, analogy of Prop. 2.1. **Proposition 2.1**_c. For each $n \ge 2$, $(E_c^{(n)}, \circ, e)$ is a free monoid with an infinite basis, and the basis consists of the irreducible elements of E_c which belong to $E_c^{(n)}$. \square

[1] R.H. Bruck, A Survey of Binary Systems, Springer-Verlag, 1958.
[2] P.M. Cohn, Universal Algebra, Harper & Row, 1965.
[3] G. Čupona, N. Celakoski, Free groupoids with xⁿ = x, Proceed. of the First Congress of Math. and Informat. of Rep. of Macedonia, Ohrid 1996, p. 19–25.
[4] G. Čupona, S. Ilic, Free groupoids with xⁿ=x, II, Novi Sad, J. Math., Vol 29, No.1, 1999, 147-154.

ГРУПОИДНИ СТЕПЕНИ РезимеСледното тврдење е главен резултат во работава.

Ако V е многуобразието групоиди (комутативни групоиди), или V е многуобразието од n-идемпотентни групоиди (комутативни n-идемпотентни групоиди), т.е. групоиди (комутативни n-идемпотентни групоиди), т.е. групоиди (комутативни групоиди) со аксиомата $x^{n+1} = x, \ n \ge 2$, тогаш моноидот од степени е слободен со бесконечна пребројлива база.