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Abstract

The following statement is the main result of the paper.

IfV is the variety of groupoids (commutative groupoids) , or V is the variety
of n-idempotent groupoids (commutative n-idempotent groupoids), i.e. groupoids
(commutative groupoids) with an axiom x*! =x, # = 2, then the monoid of powers
is free with a countable infinite basis.

0. Preliminaries
A pair G = (G, -), where G 1s a nonempty set, and - : (x,)) — xv a mapping from
G?imto G, is called a groupoid. A groupoid G = (G,-) is said to be injective iff

Ve, y,u,ve G)(xy=uv = (x,1)=(u,v)). (0,1)
An element a € G is prime in G ! iff
(Vx,ye Ga=xw 0.2)

We note that by a “free groupoid ” we mean ” free groupoid in the variety of
groupoids ” (1.e. an “absolutely fiee groupoid ). Remind that the following Theorem of
Bruck characterizes free groupoids ([1; L.1.5]).

Theorem 0.1. 4 groupoid F = (F,-) is firee iff it satisfies the following conditions:
(1) F is injective,
(11) The set B of primes in F is nonempty and generates F .
(Un that case B is the unique fiee basis of F.)

Throughout the paper we denote by F a free groupoid with the basis B, and /1, u,
Vv, ...,0, B, ... elements of F.

For any veF we define the /ength [v| of v and the set P(v) of parts of v in the
following way: |61=1 |m|=|t|+]|ul, (0.3)
P(b) = {b}, P(tu)= {tu} v P(t) v P(u), (0.4)

1. Groupoid powers
From now on, we will denote by E = (E, -) a free groupoid with a one-element
basis {e}. The elements of E will be denoted by f, g, A, ... and called groupoid powers.
Note that E is a countable ifinite set.
If G = (G.") is a groupoid, then each f & E induces a transformation /¢ of G
(called the interpretation of f in G) defined by:
FE@ = (1),
where ¢, :E—G is the homomorphism from F into G such that ¢.(e) = x. In other words
() =x, ()(x) =f%(x) h°(x), (1.1)
for any f,h e E, xeG . (We will usually write f{x) instead of f€(x) when we work
with a fixed groupoid G.)
By induction on lenght, for any f, geE, t, uek, the following statements can be
shown. (Most of these results are stated in [6], as well.)
Proposition 1.1. [f{H)|=|f||¢]. O
Proposition 1.2. ¢t e P(f{r)). O
Proposition 1.3. (VrclN) ()" = f'(1). O
Proposition 1.4. f{t)=g(u) & |t|=|u| © (f=g&t=u).0
Proposition 1.5. f{t)=g(u) & |t|>|u| < (TheE) (t=h(u) & g=h()). O
Corresponding translations (0.3"), (0.4") and Prop.1.1'-Prop.1.5' (for E) of (0.3),
(0.4) and Prop.1.1-Prop.1.5 are obvious and we will not state them explicitly.
We define an other operation "o " in E by:
_ feg=Rg. (1.2)
So, we obtain an algebra (E, o , -) with two operations, o and -, such that
forany g, f;, focE. ¢°8~8°¢=8 (Wf)eg=(i°8)(2°2),

Using (1.1), (1.2) and Prop.1.4, one can shown the following proposition.

forany b €B, t,u€F.

1The notions as subgroupoid, semigroup, monoid, generating set, homomorphism,
variety of groupoids, ... have usual meanings.



Proposition 1.6. (E,o, e) is a cancellative monoid. []
A power fe E is said to be irreducible iff
f2ze & (f=gech = g=e or h=¢e). (1.3)

The proofs of the following propositions are obvious.

Proposition 1.7. If'the length |f| of [ is a prime integer, then [ is irreducible. ]

Propositionl.8. If p,g<E are irreducible and f op=ho g, then f= h and p=q.[]

Proposition1.9. For every fe E\ {e} there is a unique sequence py, p, ..., Pn of
irrediicible elements in E such that f=p; o pyo ..o p,. 0

By Prop.1.6, 1.7 and Prop.1.9 it follows:

Proposition 1.10. The monoid (E, o, e) is fiee with a countable infinite basis.
(The set of irreducible powers is the basis of the monoid.) [1

If V is a variety of groupoids, then we denote by Ev= (Ev, -) a free groupoid in V,
with a one-element basis {e}. The elements of Ev can be considered as powers in grou-
poids of V. Namely, for every G €V, and f €Ev, we can define a transformation [, as
an interpretation of /°; we say that /®isaV-powerin G.

In the case of the variety of commutative groupoids, we can use the
corresponding Bruck Theorem, modifying the notion of an injective groupoid. Namely,
if G is a commutative groupoid such that

(Vx, v, u,veQ) (xy=uv < {x. 3} = {u,v}), (L.4)
we say that G is injective in the variety of commutative groupoids. We will not formulate
Bruck Theorem for commutative groupoids, because it 1s formally the same as Th.0.1.

Further on, i the paper, we denote by F—(F.-) a free commutative groupoid with
the basis B; also , E=(FE,,") 1s a free commutative groupoid with a one-element basis {e}.

We assume the definitions (0.3), (0.4), (1.1) — (1.3), replacing F, E by F., E.
respectively, as definitions (0.3.), (0.4), (1.1.) — (1.3,) for the corresponding notions in
commutative groupoids. Then, the Pr.1.1 — 1.10, replacing F, E by F, E. respectively,
become Pr.1.1.—-1.10., which hold for commutative groupoids. (We will not formulate
explicitly the Pr.1.1. — 1.10., because they are formally the same as Pr.1.1 —1.10.) By
Pr.1.10 and Pr.1.10. it follows:

Proposition 1.11. The monoids (E,o, e) and (E,.°,e) are isomorphic.[]
We will end this part with a short discussion about the number g(#) of elements in the set

and number &.(#n) of elements in the set VeE:1/1=n} (1.9
ek |fl=n}. (1.6)

Since the groupoid E is injective and e is a prime, we obtain that g(1) = 1, and
that for any n > 2, the following relation holds

&(n) = Z e(k)e(n—k) . (L.7)
By a result of P.Hall (see for example [2], TIT 2, Ex.2, p.125), one obtains the
following result: em)=Q2n -2/ ((n—1) aN.? (1.8)

Because of the commutativity of E_, one obtains that £.(1) =&/(2) = &.(3) =1,
and that for each »> 1, the following relations hold

£d(2n) = ie (k) £,(2n—k), (1.9)
65(2n+1)— Za (k) e, (2n+1-k). (1.10)

But we do not know any elementary function" which expresses g.(n) as (1.8)
expresses &(n).
2. Powers in n-idempotent groupoids

Let V™ be the variety of groupoids with the axiom x™'=x,3 wheren > 1.V is
the variety of idempotent groupoids, and thus E) = {e} is a one-element set; this im-
plies that the monoid (EM, s e) is free with empty basis.
Below, we assume that 7> 2 and we will write £% instead of Eye -
From the main result of [5] it follows that the monoid E® is defined as follows:
EO={fc E|(VgcE) g™ ¢P())}, 2.1)
(V/geE®) [(f*g=fg if fgeE®) &(f+g=g if [ =g")]. 22)
2 Consider the power series G(x) eixtenx’ +.., where g,=¢(n). One can show that 6(x)°—c (x) =0,
whih implies 2 6 (x) =T 4x . Then, usmg ‘the binomial series for JI—4x . one obtains (1.8).
3 For ke[, x* have the ususal meaning, i.e. x! =x xFl=xfx



The main result of this section is the following proposition.

Proposition 2.1. For each n > 2, ( E™, o, e) is a free monoid with an infinite
basis, and the basis consists of irreducible powers which belong to E™.

In order to prove Prop.2.1, we will use some lemmas.

Lemma2.2 (Vf eE)feE”) = P(f)c EW.

Proof. This is an obvious corollary from (2.1) and the deﬁnltlon of P(f). O

Lemma 2.3. (¥ f gcE)(fog cE® = {f g} cC K"

Proof. Assume fog cE®. Clearly, if ec{f, g}, then {f g} C E® Thus we
can assume that | /|22, | g| = 2. Moreover, gcP(fg), implies g cE™. We have to
show that fcE® aswell. If f=f/f;, then (fiog)(frcg) = fogc E™, andbyL.3.2,
this implies { fic g, fic g} < E™; by induction on length we obtain { ol 50
Then f¢ E® implies f;=/f", and then we would have

cg=(fifi)eg=(")og=(hog)™ ¢EV,
a contradiction. [
Lemma 2.4 E" is a submonoid of (E, <, €).

Proof. From (2.1) it follows that ec E®. Let f. g E®. If f=e, then fog= gc E®,

and thus we can assume that f=f, o, where f,, /5 cE®. Assume fiog, f10g cE™, but
feg = (ficeXficg) e EW. o

Then fio g=(f202)" =f" o 2, and this (because of the cancellative law) implies fi=/3",

which is impossible, for then we would have f=f"" ¢ E®. [0

As a corollary of 1..2.3, we have:

Lemma 2.5 If fe E® and f=fiofro..ofy, then fi,fo, o fu € E™.0O

Lemma 2.6. If p c E® is irreducible in E, then p is irreducible in E™, as well. [

Lemma 2.7. The set of irreducible elements in E™ is infinite.

Proof. If q1=e2 qu+1=eqy, then {q1, g2, ..., Q&> Gi+1 5 ---}=Q 18 an infinite set of
irreducible elements in E®™. Namely, from | ¢;|= k+1 , it follows that Q is infinite.

Also, from (2.1) and n > 2) we have g, eE™. Assume that ¢ € E®, gu,2E®™.
Then, there exists #1<E® such that 4" €P(qs+1) = {qz1} ' P(qy) , but this is impossible,
because 4" # qi, and B eP(qy).

It remains to show that ¢, is irreducible. Namely, let {g:, g2, ..., ¢»}, for any
integer p <k be irreducible. Assume that ¢xq =fog forsomek <1,and f, gcFE®™, f
ze, gze. Then, eqr=fog= (ficg)(ficg), i.e. e=fiog, which is impossible. [J

Finally, Prop.2.1 is a corollary of L.2.3-2.7.

As usual, by V" we denote the variety of commutative groupoids in V. Corres-
ponding groupoid E.” e V™ can be defined by (2.1.) and (2.2,), replacing £ in
(2.1) and (2.2) by E{ and E by E..

In the same manner we obtain Lemmas 2.2, — 2.7.. We only need a modification
in the proof that the set of irreducible elements in (ES, e, ) is infinite. Namely, in
E™ we have g; = etl, and therefore (for example) ¢, ¢ E”. But we can obtain an
infinite set of irreducible elements in E™, as follows:

1= e(@) pr=ep
Thus we would obtain the following, analogy of Prop. 2.1.

Proposition 2.1.. For each n>2, (E{, 0, e) is a free monoid with an infinite

basis, and the basis consists of the irreducible elements of E, which belong to E/™. [0
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IrPY1nom/jiHm CTEIIEHH
Peanme

CrnegHOTO TBPIEHE € I'JIaBeH pe3yJTaT BOo paboTasa.

AKO V e MHOryoOpasmeTo Irpynmougud (KOMyTaTHMBHH I'PYyHOHAH), Uiau V e
MHOTyOOpa3nueTo of n-UAeMIIOTeHTHHU IPyHouan (KOMYyTATHBHE 7-HANeMIIOTeHTHH
TPYIIOHUAHW), T.€. rpylnougd (KOMYyTAaTHABHH I'PYIIOHWAH) CO aKcHOMAaTa x""! =x, n =
2, Torall MOHOHJOT OJff CTEIIEHH € CII0O0O0JeH CO OeCKOHEeYHAa IIpeOpojIuBa 6aza.



