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A bstract Inseveral papers (for ex. [2] and [8]) on fully
commutative vector valued groupoids, corresponding properties
by means of commutative vector valued groupoids are given. The
goal of this paper is to give a direct investigation of the class of
fully commutative vector valued groupoids without leaving the
very class.

1. PRELIMINARIES

In this section we introduce some notations and define some notions
used in this paper. We also give a short summary of sections 2, 3 and 4.

1.1. Throughout this paper, QH') denotes a free commutative semigroup
with a given basis O, where the operation is denoted multiplicatively, i.e., the
operation sign is omitted.

Below we give a list of notations, notions, and properties used later on
in the paper:

1) The mapping x| x| is the homomorphism from Q) into the ad-
ditive semigroup of positive integers, such that | b | = 1 for each be Q.

2) If r is a positive integer, then

0" ={xe 0™ |x|=r).

3) For a given a€ Q, x+>| x|, is the homomorphism from Q(*) into the
additive semigroup of non-negative integers, such that |a|,=1, |b]|,=0, for b # a.

4) For xe Q™) the set cn(x)={be Q: |x|p, > 0} is the content of x.

5)YIf x,ye Q) th
VI xyeQ on Plx,y)= E{glxlaul.}’la[
ae

is called the distance between x and y.

From the given definitions it follows that:

6) The semigroup Q) is cancellative.

7) For each xeQW), x| =X e ol ¥ la=Zsecn(x)| X la is a positive integer.

8) For each pair x, ye Q) | the distance p (x, y) is a non-negative inte-
ger, where p(x,y)=0 iffx=y.

For technical reasons, we will add to Q) an exterior unit e (i.c
eE QHJ ) and obtain that Q) = Q™) U (e} is a free commutative monoid with
a unit element and the basis Q. Therefore ¢ has the following properties:

9) e-x=x=x-e, for every xe Q™); le|=0, cn(e) =0, QO ={e}, x0=p¢,
ple,x)=| x|, for each xe Q™.

1.2. Further on we assume that (n, m) is a pair of positive integers, such
that n—m=k=21.

If f:x— f(x) is a mapping from Q) into Q") then we call fa fully
commutative (n, m)-operation and the pair Q = (Q, f) a fully commutative (n, m)
-groupoid. This notion is introduced first in [3] and [2], but it seems necessary
to explain the prefix "fully commutative"”. One of the reasons is the fact that the
term "commutative (n, m)-groupoid" is used in [1] and [4] for a pair of the form
(Q, f), such that f is a mapping from Q" into Q" with a corresponding property
of commutativity.

In this paper we will consider only fully commutative (n, m)-groupoids,
and thus we will usually omit the prefix "fully commutative".

1.3. In section 2 we define an infinite set {f” :r>=2) of polynomial
mappings in an (12, m)-groupoid (Q, f), and here we will concentrate only to fZ2.
Namely, £2 is a mapping from Q) x Q&) into Q(™) defined by

2 y) = f(f (D)), for xe QW ye Q).

Using this, it follows that there is at most one (n + k, m)-operation f(2), such
that £(2)(xy) = f2(x,y). It comes out that for each pair (n, 1) and a set Q with
at least two distinct elements, there is an (n, m)-groupoid (Q, f) which does not
allow (n + k, m)-operation f{2) with the mentioned property. However, if such
an (n + k, m)-operation exists, then (Q, f) is said to be a fully commurative
(n, m)-semigroup. This definition of (1, m)-semigroup is equivalent to the defi-
nition in [2].

It is assumed in section 3 that (Q, f) is a given (m + k, m)-semigroup and
the General Associative Law is proved. We note that this result is also proved in
[2]. It took place in this paper, too, because its proof is such that we do not
leave the class of fully commutative (1, m)-groupoids.



2. POLYNOMIAL MAPPINGS IN AN (n, m)-GROUPOID
First we will prove the following:

Proposition 2.1. If Q has at least two distinct elements, then there is an

(n, m)-groupoid (Q, f) such that
xy=xy & f(fl)y) = f({xX)y), (2.1
forsome x, X'e QW y y'e QW)

Proof. Leta, b€ Q, a# b and let x,x’e 0 y yv'e Q%) be defined
as rollows: n P , onel , b1
x=a, y=b", xX'=a""b, y=ab""".

If fis a mapping from Q" into Q") with the properties

a™ = f(a")=f(a"'bk ), ™ =f(a"-lb)=f(ab"_l),
then x,x’e @ and y,y e Q%) are such that (2.1) holds. (I

Below we assume that (Q, f) is an (n, m)-groupoid.

We define a set of mappings {f" :r=>1} as follows. First, f'= f. As-
suming that f":D, — Q" is defined, we define f"*': D, ; — Q) where
Dy =D, XQUC) (D = Q(”)), by

for xe D,, ye Q).

Since D; = Q") one obtains that

D, = 0™ x(Q¥)) ! = {(x}, x9,..., x,) : ;€ @), x5,...,x, € QF)},
foreach r=2.

The following proposition will be used in section 3.

Proposition 2.2. For each pair (p, q) of positive integers and
x€e QM x,,..., Xpig € Q%) it holds that

FPI (i, 2550 s X ptig) ST PLL V(e oo s By WXl sorer Kpiigdr.  £2-3)

Proof. For p = 1, (2.3) holds by (2.2). For g = 1, (2.3) can be shown by
induction on p, and for p=2, g=2 by inductionon p +g. O

The following statement is clear.

Proposition 2.3. If r =2, then there is at most one (m + rk, m)-operation
£ such that

A ey = FUFT ()., (2.2)

FOxyxg.. )= FT (X X0,een Xp) (2.4)
for each (x1,x3,...,x,)€ D,. Such an operation ") do exist iff the equality:

fr(.l‘l..l‘z,...,xr)=fr(XI,.’C:';:,...,I:.), (2.5)
holds for every (x{,X2,...,%.),(x],%5,...,x,)€ D,, such that xjx5..x,=

MxXsw X ©
We say that (Q, f) is a fully commutative (n, m)-semigroup iff (Q, f (2)y
is a well-defined fully commutative (n + k, m)-groupoid. As is mentioned in 1.2,
we will omit the prefix "fully commutative” and say simply "(n ,m)-semigroup”.
By Proposition 2.3, it follows that (Q, f) is an (n, m)-semigroup iff the equality
[2(xy) =22, y), (2.6)

FUFY) = FUFEND)Y), (2.7)
holds for all x,x’e Q) y, y'e Q) such that xy=xy".

By the proposition that will be proved below, it follows that this defini-
tion of the notion of an (n, m)-semigroup is equivalent to the definition in [2].
Proposition 2.4. The following conditions are equivalent:
(D) (Q, ) is an (n, m)-semigroup.

(ii) The equalirty
Sf(xa)by) = f(f(xb)ay) (2.8)
holds, for every a,be Q, xe Q"D ye k=D,
Proof. (i) = (ii) follows by (2.7). Suppose that (ii) holds, but that (i)
does not. Then there are 7,r'€ Q) and u,u’e Q*), such that
tw=0u', f(fOuw)=ffeHu’), (2.9)
where o(u,u’) is the lowest possible value. Then u # «”, because for u =u" we
would have r =", which contradicts the inequality in (2.9). Therefore

i.e.,



s=p@,u")>0. Since |u|=|u"|, one obtains that there are a,b€ Q, such that
||y > |4 |qs ||p<|t|p. Then there are xe Q=D ye Q*~D  such that u =
ay, t =xb. By (ii):

fU @) = f(f(xblay) = f(f (xa)by), r=p (byu)<s=p wu),
which is a contradiction of the minimality of s. [J

Remark. Supposing that k = m, beside the infinite set of polynomial
mappings {f" :r>1} in the given (n, m)-groupoid (@, f), one can also define a
finite set of polynomials as follows.

First, since k=m, there is a unique pair of integers (g, p) such that
k=gm+p, g=1, 0< p<m. Therefore, if x1,x7,..., x, € QM. ye Q) are
such that rm+ s =n (=(g+1)m+ p), then

z=f(f (P fixg)... f(x)y)e QU (2.10)
and z does not depend on the disposition of x,x3,...,x,. For r = 1, we have
fz(xl, v), and hence we suppose that r=2. Then, s = (g+1—r)m+ p.

Let (QU)(*) be a free commutative semigroup with the basis Q)
where the product of x,,x5,...,x, € QUY will be denoted by x;®x, ®---®x, in
(QU)*) to make a distinction of their product xjx3...x, in Q). If we put
Dy,1 = (@)D x 0 and

FU(x ey 00 x,, 3) = f(f()f(x2)... f(x)y),  (2.11)
we come to a new set {fI31 g4 £la+21} of polynomial operations, such
that fI7*11 has the domain Dy, and is defined by (2.11). Also, for r =g + 1 in
(2.11) we have that s = p. Hence, for p = 0 and r = g + 1 we have that
Dy = (QU)Y(d+D) and (2.11) obtains the form

S1a (g e xy oo xg ) = f(F () f (62D [ (xg11)) -

3. THE GENERAL ASSOCIATIVE LAW
Below we assume that (Q, f) is an (1, m)-semigroup. We will prove the
following proposition in several steps.

Theorem 3.1. For every positive integer r, (Q, f'7)) is an (m + rk, m)-
semigroup.

(For r = 1, the theorem is true by assumption.)

First, we will prove the following:

Lemma 3.2. Let r=2, xy€ Q) and x,€ Q%) foreach v:2<v<r,
and let x; = y;a, X =byj, a,be Q, for given i, j, such that 1<i< j<r.Then

Frln, x5, )= F (X, X050 X0 ), (3.1)
where x|, =x, for v#i,j, and x;=yb, x;=ayj

Proof. It suffices only to prove the case j =i + 1.

For r=2, (3.1) is in fact (2.8).

Suppose that (3.1) is true for a given r=2. To show that (3.1) is also
true when r is changed to r + 1, we will use the equality (2.3) forp + g =r + 1. If
i<r, i.e. i+1<r+1,then we putg=1i+ 1 in(2.3) and use the inductive hy-
pothesis. For i = r, we put g = 1 in (2.3) and we again use the inductive hy-
pothesis. OJ

Using this lemma in almost the same way as the proof of the part
(if) = (i) in Proposition 2.4, one can show the following:

Proposition 3.3. For each positive integer r, (Q, ") is an (m + rk, m)-

groupoid. O
It remains to be shown that, for each =2, (@, f\)) is an (m + rk, m)-

semigroup, i.e., that
SHoup FOFO (xa)by) = FIF) (xb)ay) (3.2)
holds for every a,be Q, x,ye Q) such that | xa |=m + rk, | by | = rk.



Therefore, representing xa and by in the form
Xa = x1xp - X,Q, by =by\y2---y,,

where |x||=n,|xy|=--=|x,1|=|xal=k=|by;|=|y2|=---=|y,|. we use
(2.4) and (2.3) to represent the left-hand side of (3.2) in the form
P (X Xgeees K a Xy BYL Y20 ) (3.3)

Then, applying equality (3.1) in (3.3), and performing a reverse procedure from
the previous one, we would get the right-hand side of (3.2).

This completes the proof of Theorem 3.1.

The equality in the following proposition is known as the General As-
sociative Law (GAL) for fully commutative (i, m)-semigroups.

Proposition 3.4. Let (Q, ) be an (n, m)-semigroup. Then

rOGPI) PPy F Py iy pO PR Gty - 0 ),
(3.4)
where |x, |=m+kp, for 1<Sv<s, sm+ |y|=m+ rk, and r, p, s are given
positive integers. (Here, it is possible that |y | =0, i.e. y = e).
Proof. For s = 1, (3.4) has the form
SO P @y =P ) 3.5)
(where p stands for p;, and x for x;) which can be proved using (2.4) and (2.3).
Then, supposing that (3.4) is true for some s—1=/, we substitute f(p'}(.tl)_v
with z in the left-hand side of (3.4), apply first the inductive hypothesis and then
(3.5), we obtain (3.4). O
Remark 1. Fully commutative (mm + k, m)-groups are defined in [2].
Namely, a fully commutative (m + k, m)-semigroup is a fully commutative
(m + k, m)-group if for each ae Q%) be 0 there is an xe Q™ such that
flax) = b. These are also considered in: [7], [8], [9], [6]. In [2] it is shown that
every infinite set is a carrier of a fully commutative (m + k, m)-group, that for
m =2 there is no finite fully commutative (m + k, m)-group with more than two
elements, and that there are non-isomorphic fully commutative (m + k, m)-
groups with a two-element carrier. In [7] it is noted that a structure of a fully
commutative (m + k, m)-group can be built on every algebraically closed field,
and in [8] the class of affine and the class of projective (m + k, m)-groups are
defined. In [9], the class of affine and the class of projective (m + k, m)-groups
with sets of complex numbers as their carriers are studied. We also note that in
[5], [8] and [10] several axiom systems of the class of (m + k, m)-groups are
obtained.
Following the idea of [10], a proposition analogous to Theorem 1 in [5]
for fully commutative (m + k, m)-groups can be stated and proved.

Remark 2. The class of fully commutative (m + k, m)-groups is a sub-
class of the class of fully commutative (m + k, m)-quasigroups, defined in [3].
Namely, a fully commutative (m + k, m)-groupoid (Q, f) is said to be a (m + k, m)-
quasigroup iff for each xe Q*?, ye @ there is a unique ze Q?, such that
flxz)=y. It is shown in [3] that each cancellative fully commutative (m + k, m)-
groupoid is embeddable in a fully commutative (m + k, m)-quasigroup. It is also
shown there that, if g =3, then there is a fully commutative (g, g—1)-quasigroup
with g + 1 elements. On the other hand, there is no fully commutative (m + k, m)-
quasigroup with g + 1 elements for 2<g <m. We note that there are many
open problems on finite fully commutative (m + k, m)-quasigroups.
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Pesume
3A TIOTINOJIHO KOMYTATUBHMUTE (n, m)-rPYINOUIHA

Bo nekonky Tpyjosu (Ha npumep [2] u [8]) 3a NOTIONHO KOMYTATHBHH BEKTOP-
CKO BPEJIHOCHH TPYNOWJIM Ce pa3srjejlyBaaT COOABETHH CBOJCTBA €O NMOMOI Ha KOMYTa-
THBHH BEKTOPCKO BpejlHOCHM rpynouas. [naBnaTa uen wa oBaa paboTta € ,,aBTOHOMHO"
HCIIUTYBalLEe Ha KjacaTa MOTHOJHO KOMYTATHBHH BCKTOPCKO BPEHOCHH IPYIOHJIH, T.€.
uenuTyBaibe Ge3 1a ce HaNyIITH caMaTa Kiaca.



