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Abstract. A variety ¥ of 2-algebras is said to be primitive if it is defined by a system of primitive
identities, i.e. formulas of form (1.1). The main results are descriptions of closed set of primitive
identities and of free objects in primitive varieties.

1. Introduction

Let € be a set of (finitary) functional symbols, i.e. a type of algebras. By 2, we
denote the set of n-ary symbols in Q (n > 0). A formula of form

Jips oo x Y=8(x;,,...,%;) (1.1)
where fe 2,, g€ Q,, and x,, x,, ... are variables, is said to be a primitive 2-iden-
tity. (Further on we will usually omit the prefix “€", and thus by an algebra we
mean an Q-algebra, by an identity we mean an Q-identity, ... )

Let A be an algebra and let 2, 2’ be sets of primitive identities. Then AF X
means that each identity from 2 holds on A, and % F 2’ means that for every
algebra A we have AF X2 = AF X' Wesaythat Zisclosediff Z FX' = X' c X,

We can certainly assume that the set of variables coincides with the set N of
positive integers, and so we can interpret the formula (1.1) as an ordered quad-
ruple (f. «, f. g), where xe N", feN" are such that «(v)=1i,, f(i)=j, for each
vel{l,2,....n}=mn, Ae€{l,2,....m}=m. If n=0 then we take n=( and
N = {&f}. We say that (f, z, f, g) is an equation.

The main result of Section 2 is a convenient description of clased sets of
equations and, assuming that 2 is a closed set of equations, we give a special
interpretation of X-algebras, i.e. of algebras in the primitive variety of algebras
defined by X. By using this interpretation, in Section 3 we give a convenient
description of free X-algebras. (Corresponding results for primitive varieties of
n-groupoids are considered in [2] and [3].)

In what follows we will use the following convention about the notations. If S,
T, Uare sets and n: §S— T, {: T— U are mappings, then by ¢ - # we denote their
superposition, i.e. £ o n(s)= &(n(s)) for each se S. The image of » is denoted by
imn, i.e. imn={n(s)|seS}. Let A be a set and ze A", fe A™, where n, m are
nonnegative integers. Then by zf/ we denote the concatenation of x and f, i.e.
aff e A"+ is defined by (aff i) = 2(i), (xff¥n+j)= p(j) for each ien, jem. If
m=0 then f=¢ and a = Fx=ua. If e=(f. 2, f,g) is an equation then its
kernel ker e is defined by ker e = ker aff.

The set of all equations will be denoted by 77(£2).

2. Closed sets of equations

Let e =(f, =, f, g) be an equation, A an algebra with carrier A and S:N—>N a
mapping. Define R(e), L(e), e~ ', (e) as follows:

LEe)=(v), RE)=(@gp), e '=(@&pfxf)

f@=Ea,¢ =B, g)

We say that ¢ holds on A if fi(n(x(1)), ..., q(x(m)) =g ((F)). ..., q(f(m))
for each mapping #: N — A4, and then we write A Fe. Thus, AF 2 < (Vee 2)AFe.

If e,e’,e” e II(€2) and {: N—N is a mapping then:

R(e "y=L(e), (e ) '=e, eke ! (2.1)
Le)=R(e) = GEe. ek &(e) (2.2)
R(e)=L(e"), L(¢)= L(e"), R(e')= R(¢") = e, e Fe” (2.3)
e=(f.a, p.g)e =(,a,f.g)kereckere = eFe. (2.4)

A description of the family of closed sets of equations is given by
THEOREM 2.1. A4 set of equations X < I1(Q) is closed iff the following condi-
tions hold:
(i) L(e)= R(e¢) = e X
(i) eeX = ¢ 'e¥
(iii) R(e)= L(¢'), L(e)=L(e"), R(¢')= R(e¢") = (e,e'ed = ¢"€2)
(iv) ee2 = S(e)el, for each mapping £: N —N.



Proof. It follows from (2.1)-(2.4) that if X is closed then (i)—(iv) are satisfied.

Assume now that X satisfies the above conditions. If X = /7(£2) then X is
certainly closed, and thus we can assume that there is an equation e¢=
(f. a, fi, g)e [1(2).X. Define an algebra A with a carrier N as follows:

1 if(fix.p.M)eX

) {2 otherwise
where e 2,. yeN” (p = 0). Then f,(x) =1 by (i), and e ¢ X imply g,(f) = 2, which
means that A ¥ e.

Lete' =(f" 2, B, gNeZ. If fi(2') =1, then (f, 2, a’, f') € £ and by (iii) we have
(fox, flog)ed, e g\(f)=1.1If g\ (f)=1 then (iii) implies /', (x') = 1, since by
(i) we have (g, ', 2", fy=¢""'eX. So, /() =g (). If £:N—N is any map-
ping then by (iv) we get {(e)=(f", & -a', ¢ - B, g")e X, and thus we have shown
that A Fe'. O

Further on we will assume that X' is a given closed set of equations.

Let 4 be a set such that 4 U2, # J. Define a set 2(A4)=|J{Q, x 4" |n =0}
and consider 2, x A" as another notation for Q, (i.e. we take Q, < £2(A)). Further,
define a relation ~ ,, on the set 2(A4) as follows:

(f,a) = ,,(g.b) <= (/.2 f.g)eX) ker ab=ker 28,
where (f,a)e 2, x A", (g,b)e 2, x A™ and abe A *" is the concatenation of a
and b. In what follows we will write = instead of =~ , .

PROPOSITION 2.2. = is an equivalence relation on Q(A). (We denote the
quotient set Q(A)/ . by 2(A).)

Proof. We need to show the tranmsitivity of =~ only. Let (f,a)e 2, x A",
(g.b)e 2, x A", (h.c)ef2,xA” and (f,a)=(g,b)=(h,c). Then there are
(f. o, f.g). (g. 7.0, h)e X such that ker ab = ker 2ff, ker be = ker 0, and this im-
plies

ker a = ker o, ker b= ker f = ker 7, ker ¢ = ker 0.

We can assume that im off nim p6 = & since, in contrary, we can take an
injection #:N—N such that a'=n-ca, f'=n-f, (Lo, fL)F(fia’ ' gk
(fs %, fi,g) and ima'fi' nim 76 = @. So we have

imanimy=imaonimo=imfnimy=impnimd=J (2.5)

Define a mapping &: N — N such that ¢ is identical over Nym y and & - y= f.
The equality ker fi = ker 7 implies that ¢ is well defined and, by (2.5), ¢ is injective
over Nym fi. Then ker & -0 =kerd=ker e and, by Theorem 2.1, we have
(g.f. ¢ 6. h),(fL2, & 0, h)eX. We remark that, as a consequence of (2.5), one
can show that

ker o(& = 8) = ker ac (2.6)
and this complete the proof, since (2.6) implies the existence of a mapping ¢y: N >N
such that ker oy - (2(& = d))=ker ac and (f,f - 2, = & <3, h)e 2. O

Let A be an algebra with carrier 4. We can interpret A as a mapping
A: Q2(A)— A, such that A(f. a) = f,(a) for each fe 2,, ae A". Having in mind such
an interpretation of the algebras, we obtain the following characterization of the
2 -algebras (i.c. algebras in the variety of algebras defined by X):

PROPOSITION 2.3. An algebra A: Q(A)— A is a X-algebra iff ~ < ker A.l]

So, any X -algebra with carrier 4 can be viewed as a mapping A: 2'(4) — A4, and
further on such an interpretation will be assumed.

PROPOSITION 2.4. If A. G are sets and @: X(A)— G and G: G — A are map-
pings, then A =G - ¢ is a X-algebra with carrier A. (If ¢ is bijective. then usually we
do not make any distinction between A and G.) O

EXAMPLE 2.5. Let #° be the variety of commutative groupoids which satisfy
the identity x* =y, and let 2 be the corresponding closed set of equations. We
may assume that 2(4)= A°, where 4 # (7, and then 2(A) has the following
description: ue 2(A) iff u= {(a.a)|ae A} or u= {(a, b), (b, @)}, where a, be 4 and
a # b. This suggests that we consider the set G= {e}u{ia. b} |a,bed,a#b} and
define a bijection ¢: 2(A)— G by

¢o: (@, a)|lae A} —e, Ha. b), (b,a)y — {a, b}y (a#b)

Moreover, having in mind this bijection, we could replace 2(A4) by G. O

A partial 2-algebra with carrier 4 and domain D is said to be any mapping
A:D— A, where Dc 2(A). Given a partial X-algebra A: D — A, there exists a
2 -algebra A*: 2(A4)— A such that A is the restriction of A* on D. Also, we note
that if € is finite, then there are only finitely many nonequivalent primitive



2-identities. Consequently, as a corollary of Evans’ Theorem ([4], p. 68). we have
the following.

PROPOSITION 2.6. If @ is finite then the word problem is solvable in any
primitive variety of £2-algebras. O

Let A4, A" be sets and consider a mapping 7: 4 - A'. Then t induces two
uniquely determined natural mappings ¢ 4" — A", where n = 0, and t*: Q(A4)—
2(A"). We will usually omit the upperscripts, i.e. 7 will be a common notation for
each of the mappings 7, ", . Then we have (f,a)x~(g.b) = z(f,a)=
(f.t-a)=(g, 7 -b)=1(g.b) and, moreover. if 7: 4 — A" is injective, then 7(f. a) =
7(g. b) = (/. a) = (g. b). Therefore, t also induces a mapping t*: 2'(4) — 2 (A’) and
if 7 is injective then t* is injective too. Hence, if 4 € A" we can assume X(A4) <
2(A") as well.

Homomorphisms, congruences and subalgebras are characterized as usual.
Thus, a homomorphism from a X-algebra A into a X-algebra A’ is a mapping
t: A— A’ such that 7c A = A’ « 12,

3. Free X-algebras

Here we assume again that X is a given closed set of equations. If f'€ 2 is such
that there exists an equation (f, «, f/, g) € X, where imanim ff = &, then we say
that f/is a X -constant. (Thus, if f€ Q,, then fis a 2 -constant for any X.) If fe 2,
and k <n is the largest nonnegative integer such that

a, feN", lim x| < k, limpl<k = (L, p.NeZ,
then we say that k is the order of X-singularity of f.

For technical reasons only, the following conditions will be also supposed in this
section:

(D If f,ge R, and (/. €, €. g)e 2, where €(i) =i for each ien, then f=g.
(I If fe 2, is a X-constant and # > 1, then there are ge @, and xeN" such
that (f, =, . g)e .
(I If feQ,, n=>2 and xzeN" are such that «(/)=/ for each ien and
(f. 2 B,g)e’Z, then im ff =n.'

As a consequence of (I)—(I11) we can make the following assumptions:

(a) If ALQ,# & then Q,< X(A).

(b) If A: 2(A)— A is injective, then 2,< 4.

(c) If fe 2, then fis not a X-constant.

(d) If k is the order of X-singularity of fe Q,, n> 1, then k <n.

Let A be a set, ue2(A4) and denote by [u] the following collection of subsets of A:

[u]={ima|(f.a)eu}.
We say that (f, a) e u is a minimal element of « iff im a is a minimal member in [u].
(The existence of at least one minimal member in « is obvious.)

VIf the pair (£2, 2') does not satisfy the conditions (I} (I11), then we can define a new type of algebras
" and a closed set of equations 2 such that the pair (€2°, £) does satisfy the mentioned conditions and
the corresponding primitive variety defined by X' is not essentially distinct from that defined by 2 (see
[6], 29-34). .

By an application of the condition (iv) of Theorem 2.1, one can show the
following statement:

PROPOSITION 3.1. If ue X(A), then there exists a unique minimal member
im a in [u], and it is the least member in [u]. (We say that im a is the content of u and
denote it by Cont(u). Thus, Cont(u) = iff ue Q,.) l

EXAMPLE 3.2. If condition (II) does not hold, then the conclusion of the last
proposition could not be true. Such a situation occurs in Example 2.5. Namely, if
uy=1{(a,a)|ae A} and if [4| =2, then [uy] = {{a} |ae A}, i.e. each one-element
subset of 4 is a minimal member in [u,]. In this case we add a new 0-ary symbol
e to 2=1{-} and obtain Q'={e,-}. If X’ is the closed set of £’-equations
generated by x? = e, xy = yx, then we obtain a pair (€', X') which satisfies all three
conditions. C

As a corollary of Proposition 3.1 we have

PROPOSITION 3.3. If A=A and ucX(A"), then ue 2(A) iff Cont(u)=A. [

Now we are ready to “build” a free X -algebra with a given basis. Given a set
B such that Bn 2, = & and Bu Q, # (. define a sequence of sets {B, |p > 1} and
a set U (=U(B, 2)) as follows:

B, =BuQ,, B, ,=B,0X(B,), U=U{B,|p=1}.

'



Define a mapping y (called hierarchy) from U into N by: y(u) = k iff k is the least
positive integer such that ue B,.

We note that U= B, iff =, and if Q # Q, then B, < B, , for each p = 1.
Also, if uelU then y(u)=1 < ueB,, y(u)=p+1l(p=1) < Cont(u)= B, &
(Fve Cont(u))y(v)=p.

PROPOSITION 34. X(U)=U'B. O

The following statement gives a description of free X-algebras.

THEOREM 3.5. If U is the embedding of 2(U) into U, ie. U(u) =u for each
ue 2(U), then U is a free X-algebra with unique basis B.

Proof. U is well defined by Proposition 3.4, and by an induction on hierarchy
one can show that B is a generating subset of U.

Let A: 2(4)— A be a X-algebra and let r: B— A be a mapping. Define a chain
of mappings {7, |,0 > 1} as follows. 7,(b) = t(b) for each b e B, and (/) = A(f) for
each fe £,. Further, if 7,: B, — A is defined, let 7, ,: B, | — A be the extension of

P
7, such that it coincides with A= on X(B,)\B,. Then 7= ])(z,|p=1) is an

o
extension of 7 and a homomorphism from U into A as well. (|

Below we will give another description of free X -algebras, and for that purpose
we need a few more definitions. Let A: 2(4)— A be a X-algebra. If A(u)=a and
b e Cont(u) then we say that b is a divisor of a. A sequence a,, a,, . . ., of elements
ol A4 is said to be a divisor chain in A if @, , is a divisor of g, for each i. An element
ae A is said to be prime in A iff a¢im A.

THEOREM 3.6. A X-algebra F: X(F)— F is free (in the primitive variety of
X -algebras) iff it satisfies the following conditions:

(i) F is injective.

(ii)) Every divisor chain in F is finite.

Then, the set of prime elements in F is the unique basis of F.

Proof. Clearly, the free X-algebra defined in Theorem 3.5 satisfies (i) and (ii),
and B is the set of primes in U.

Assume now that (i) and (i) hold in a X-algebra F: X(F)— F. By (i) and
Proposition 3.1, the set D of divisors of an element a € F is finite, and D = &7 iff a
is prime or a € F(£2,). By (ii) we obtain that the set of lengths of the divisor chains
with a common first member is bounded. This can be shown, for example, by an
application of Konig's lemma ([5], 381). If a € F, then we denote by d(«) the largest
possible length of a divisor chain with the first member a. Let B be the set of primes
in F, and let U: X' (U) — U be the free X'-algebra defined in Theorem 3.5. Then there
is a unique isomorphism ¢: U —F such that y(a) = d(¢@(a)), @(c)=-c, @(f)=F(f),
for any ae U, ce B, fe(2,. (|

Since the conditions (i) and (ii) of Theorem 3.6 are hereditary we have

COROLLARY 3.7. Every subalgebra of a free X-algebra is free too. O

The following statement is a generalization of well known results concerning
relations between the ranks of free @2-algebra and their subalgebras, in the variety
of Q-algebras.

THEOREM 3.8. A4 free X-algebra contains subalgebras with an infinite rank iff
at least one of the following conditions is satisfied:

() |2,|=2.

(11} There exists an fe 22,0 2,) which is not a X-constant.

(i) Q)| =1 and QyQ,u Q) # .

(iv) 2yQ,u Q) # J and |Q(,| >k, where k is the least order of X -singularity of

some functional symbol in QYQ,0 Q). O

EXAMPLE 3.9. Let 2 = @, = {f} and denote by X the closed set of equations
induced by the following set of identities:

x3=yrz, Xyz = Xzy = VXZ.

Note that the order of X-singularity of f'is 2. Define a new signature Q' = {e, [},
where ¢ is a 0-ary symbol, and a new set of equations X' generated by x* = x%y =e,
xyz = xzy = yxz. Then (£’, ') satisfies the conditions (I)—(III), and we can use the
pair (2’, 2’) to apply the construction of free objects given in this section. If
B = {a, b} then by (iv) of Theorem 3.8 the free X2 -grouped U with basis B contains
subgroupoids with infinite ranks. To get such a subgroupoid, we give firstly a more
detailed description of U. Namely, U= U{B,‘. | &£ =1}, where

B, =1{e,a b}, B,={e,a, b, {e,a b},

Be =B, ulix.y.z}|x,y,z€B x £y £z #x}
and the ternary operation on U is defined by




e if |{x, y, 2} <2
SEPZE { {x,y,z} otherwise
If we define an infinite subset C={¢, |k=1} of U by ¢,=1le,a, b}, ¢\ =
e, a, ¢, |, then the subgroupoid of U generated by C has infinite rank.
Note that for each ueU, {u} is the basis of the subgroupoid {e, u} of U. []
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