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Abstract
In this paper poly-algebras of a given type F are considered. Name-
ly, 8 # F = U{F, : n > 0} is a disjoint union, and a poly—F —algebra
A with a carrier 4 # @ is a mapping A : f — f4 such that f4 : A" —
P(A), for every f € Fp,n > 0. Subalgebras are defined in the ‘usual
way, but, there are considered three kinds of homomorphisms, which
implies three kinds of "freeness”. Several results about subalgebras,

homomorphisms and free objects in different classes of poly-algebras
are given.

1. Poly-algebras

Let A be a non-empty set. Any mapping from A" into the family P(A)
of all subsets of A is called a poly-n-operation on A. Intuitively, a poly-
algebra is a non-empty set with some poly-operations. Precisely, let F be a
(non-empty) disjoint union of some sets {F,, : n € N}, (i.e. sets of n—ary
functional symbols). The set F we call a type (of poly-operations). We
assume that F # # but it can be F, = () for some n € N. We say that
A is a poly-algebra of type F (or poly — F — algebra) with a carrier A if
A: f s fA4is a mapping from F into the family of poly-operations on A,
such that if f € F, then fA is a poly—n—operation on A. The family of
poly—F —algebras with the carrier A will be denoted by F(A). In this paper
we shall assume that F is a fixed type of poly-operation.

IfAe F(A), f€ Foy,n>1,and Q C A", then fA(Q) has the usual
meaning, i.e. fA(Q) = U{fA(z):z € Q}.

If we do not make any distinction between an element a € A and the
corresponding one element subset {a} of A, then every usual n—ary opera-
tion f: A™ — A can be considered as a special poly-operation. In this sense
every algebra is a special poly-algebra.

Partial algebras are also special poly-algebras. Namely, we say that
A€ F(A) is a partial F—algebra on A if |f(z)| < 1, for every f € Fp,n >
0,z € A™. Clearly, there is not an essential difference between this definition
of partial algebras and the usual one (see for example [5]).

Also, there is a bijection poly-operations on a set A and n + l1—ary
relations of 4 (i.e. subsets of A"*1), Namely, if R € A"*! then the corre-
sponding poly-operation f& is given by

¥ € fB(z1,...,2n) <= (21,-..,25,Y) € R.
(Note that a poly-0-operation on A is a subset of A.) This bijection implies
that every poly-algebra can be interpreted as a relational structure and con-
versely. It should also be noted that a poly-algebra A € F(A) induces a
usual (universal) algebra Cm(.A). Cm(.A) is a Boolean algebra with opera-
tors. The carrier of Cm(A) is P(A), and the operators { f€™(A) ; f € F} are
defined in the following way: if f € F,, then
FE A My, M) = U{F A (®r, ey 20) g € M)
The algebra Cm(.A) is called the complex algebra of A. These complex alge-
bras turn out to be very useful in studying various representability questions
in the case of Boolean algebras with operators (see for example [4], [6], [7]).
We also note that if the type F contains only one binary operation symbol,
then a poly—F —algebra is usually called a multi-grupoid ([1], 1.7, p. 41).
We can define a natural ordering < in F(A) in the following way:



A < Ay iff fA(z) C fA(z), foralln € N, f € Fp,z € A™.
It is not hard to see that (F(A), <) is a complete boolean lattice. The least
element in this lattice will be denoted by o(A) (the so called singular poly-
algebra on A) and the largest by e(A) (the unit poly-algebra on A). Thus,
foralln € N, f € F,z € A™ we have
oW (z) = 8, and F*A(z) = A.
We shall say that A€ F(A) is regular iff fA(z)#0, for allneN, feF,,zc A™

In the sequel, special notations for some classes of poly-algebras will be
used. Thus, Pol(F), Reg(F), Parc(F), Ual(F), E(F), O(F) is the class
of all the poly—F—algebras, regular poly—F —algebras, partial—F—algeb-
ras, universal F —algebras, unit poly —F—algebras, and singular poly— F —al-
gebras, respectively. Because of the assumption that the type F will be fixed
in the sequel, we shall omit the symbol F from these notations. If K is a
class of poly— F—algebras and o a cardinal number, then K+, K(«a), K[a] is
the class K N Reg,{A € F(A)NK : |A] < a},{A € F(A)NK : |A| < «a},
respectively. A poly-algebra A € F(A) will be called constant if there is
a M C A such that for all n € N, f € F,,x € A™ it holds that f4(z) =
M. These algebras will be denoted also by (A, M). For example, o(A) =
(A,0),e(A) = (A, A). The class of the constant poly—F —algebras will be
denoted by Con(F) (or simply by Con). Instead of ”a poly-algebra” we shall
often say "an object”.

The notions of F—terms over a set X is defined in the usual way (see,
for example [1], II.1.). Namely, if X is a non-empty set, disjoint with F,
then the set X(F) of all F—terms over X is the least set of finite sequences
on X U F satisfying the following conditions:

(i) XU JFo C X(F)
(i) fe Fu,n > 1,t,...,t € X(F) = f(l1,82,...,tp) € X(F).
A mapping h : X — Y can be extended to a mapping g : X(F) — Y (F)
defined as follows:
(iii) ¢ = z,z € X = g(z) = h(=), (iv) fe Fo=g(f) = f,
(V) t= f(t1,---,tn) = g(t) = f(g(t1),--.,9(tn))-
Assume now that A € F(A), X C A,t € X(F). Define a mapping ¢ — ¢4
from X(F) into P(A) in the following way:
(vi) t € X,t = b= tA = {b); (vii) t € Fo,t = f = 14 = 4
(vili) If t = f(i1,---.tn) € X(F), f € Fn,n 2 1,1,...,t, € X(F), then
A = fAR, ..., 1.
{(We remind the reader that:
f‘A(Ml,...,Mn) = U{f%a1,...,an) : ar € M;,1 < k < n}.)
We say that ¢t is the value of ¢ in A.

2. Homomorphisms

Here we shall define three kinds of homomorphisms, every one of which
coincides with the usual notion of homomorphism in Ual. Let 4 € F(A),B €
F(B) and h : A — B. The corresponding mapping from P(A) into P(B)
and from A" into B™ induced by A will be also denoted by A.
Definition 2.1. Let A € F(A),B € F(B) and h : A — B. We say that
h: A — B is an i—homomorphism iff for every f € F,,xz € A" the following
condition (H;) (¢ € {1,2,3}) holds:

(H1) R(fA(=)) = fE(h(=));

(H2) h(fA(=)) € F5(h(x));

(Hs) h(fA(z)) 2 FE(h(z)).
The set of all the i—homomorphisms h : A — B will be denoted by H;( A, B).
Note that in case n = 0, fA(2) = f4 and we have k(f4) = B, r(fA) C
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FE R(F*) D fB, respectively. (We shall usually omit the expression ”for
every f € Fn,m > 0,z € A™”.) The following proposition shows that all
of this definition of homomorphisms reduce in the special case of universal
algebras to the usual definition of homomorphism.
Proposition 2.2. If A,B € Ual then H,(A,B) = H2(A,B) = Ha(A,B) =
H(A,B), where H(A,B) is the set of all the (usual) homomorphisms h :
A — B.
One of the most important properties of homomorphisms is that "we can
composed them”.
Proposition 2.3. For every 7 € {1,2,3}, a superposition of i—homomor-
phisms is also an i—homomorphism.
From this proposition we get that Peol is the class of objects of three cate-
gories, Pol(1), Pol(2), and Pol(3), where, for each ¢ € {1,2,3}, morphisms
of Pol(i) are i—homomorphisms.
What relationship do we have between these three kinds of homomorphisms?
It is easy to see that if 2 : A — B is a 1-homomorphism, then it is also an
i—homomorphism for : = 2 and ¢ = 3, and conversely:
Proposition 2.4. For any A, B € Pol, it holds that H,(A,B) = Ha( A, B)n
Ha(A,B).
The following example shows us that there are 2-homomorphisms which are
not 3-homomorphisms and conversely:
Example 2.5. Let A be a non-empty set and 1 : A — A the identity
mapping. Then 1 : e(A) — o(A) is a 3-homomorphism but not a 2-
homomorphism. Also, 1 : o(A) — e(A) is a 2-homomorphism which is
not a 3-homomorphism.
Proposition 2.6. Let A € F(A),B € F(B), and h be a mapping from A
into B; Denote also by h the corresponding mapping g from A(F) into B(F)
induced by h. Then, for every t € A(JF) the following implications hold:

I) h e Hl(AaB) = h’(tA) — h(t)Ba

2) h € Ha(A,B) = h(t?) C h(t)",

3) h € H3(A,B) = h(t*) D h(t)".
Proposition 2.7. If A;, A, A € F(A) and By, B3,B8 € F(B) are such that
Ay < As, By < By then the following inclusions hold:

a) H2(Az,B) C Ha( A1, B); b)) Hz(A1,B) C Ha(As, B);

c) Ha(A,B,) € Ha(A,B2); d) Ha(A,B2) C Ha(A,By)
Proposition 2.8. If A € F(A),B € F(B), then the following implications
hold:

a) A = o(A) or B = e(B) = H2(A,B) = BA (B4 is the set of all the

mappings h : A — B);

b) B =o(B) = (H2(A,B) -—,é (D = A= o(.A))

c) B=o(B)= Hs(A,B) =

d) A=¢€(A) and h: A — B is sur:jectwe = h € H3(A,B);

e) Ha(A,B) # 0 and B € Reg = A € Reg;

f) If there is a surjective h € Hy(A,B) and A € Reg then B € Reg.

It is natural to give the following definition of an ¢—isomorphism:
Definition 2.9. Let A € F(A),B € F(B), and let h : A — B be a bijection.
Then, we say that h : A — B is an i—isomorphism ff h € H;(A, B) and
h™1 € H (B, A).

We show below that we have only one kind of z-—lsomorphlsm for any ¢ E
{1,2,3}. From Prop. 2.3. we also get that for z € {1,2 3} a superposition
of i—isomorphisms is also an i—isomorphism.



Proposition 2.10. Let A€ F(A), Be F(B), and h: A—B is a bijection then:
a) h € Hi(A,B) & h™! € H (B, A);
b) h € Ha(A,B) = h~1 € H3(B, A).
Proposition 2.11. Let A € F(A),B € F(B), and h: A — B is a bijection
then the following statements are equivalent:

a) h € H1(A,B); b) h is a 1-isomorphism;

c) h is a 2-isomorphism; d) h is a 3-isomorphism.

The last results suggest to say “isomorphism” instead of "i—isomor-
phism”, for every ¢ € {1,2,3}. As usualy, we say that A and B are isomor-
phic and write A = B iff there is an isomorphism h : A — B.

Remark 2.12. Three kinds of homomorphisms for partial algebras are con-
sidered in [5]. Namely, if A,B € Parc, then "h € H2(A,B)”."h € H1(A,B)”
in [5] means "k : A — B is a homomorphism”, ”h : A — B is a strong
homomorphism”, respectively. ”Full homomorphisms” are the third kind
of homomorphisms considered in [5]. To obtain the notion of "full homo-
morphisms” in Pol, we have to make a modification of the definition of
3-homomorphisms. Namely, if A € F(A),B € F(B),h : A — B, let us
say that A : A — B is a 3’-homomorphism iff the following inclusion (H3z)
holds:

(Ha) FB(h(x)) N h(A) T h(SA(R(2))),

for every f € Fp,n > 1,z € A™. (If f € Fo, then (Hz ) gets the following
form: f®Nh(A) C h(f*).) For h : A — B we say that it is a full homomor-
phism iff k is both a 2-homomorphism and 3'-homomorphism. We also note
that in the case of multi-groupoids i.e. poly—2-groupoids, "homomorphism”
means the same as our ”1-homomorphism”. (See, for example, [1], IL.7.)

Congruences on poly-algebras can be defined as kernels of homomor-
phisms. Namely, if A € F(A), then an equivalence =~ in A is called an
i—congruence on A iff there is a h € H;(A, B) such that = is ker(h), i.e.

(Vz,y € A)(z = y & h(z) = h(y))-

The following statements imply that only 1-congruences can be of some
interest.
Proposition 2.13. If i € {2,3}, then every equivalence = in A is an
i—congruence on A € F(A).
Proof. Denote by A the quotient set Ay = {Z : = € A}, where Z is
the =~ —equivalence class containing z, iie. Z = {y € A : 2 = y}. De-
note also by h the corresponding natural mapping 2 : # — %. Then k €
Ha(A,e(A)) N Ha(A, 0(A)), and = is ker(h). O

Let = be an equivalence in A4, and X,Y C A. We shall write X = Y if

it holds that
VeeX)(VyeY)FTueY)TveX) (z=uAy=v)

Proposition 2.14. An equivalence = in A is a I-congruence on A € F(A)
iff the following condition holds:

(+) e~y = fAe) = fAy),

for every f € Foon > 1l,x,y € A™.

Proof. Assume that h: A — B is a 1-homomorphism, f € F,. If = is the
kernel of & and if z,y € A™ are such that z = y, then we have h(z) = h(y),
i.e. A(fA(z)) = fB(h(z)) = fB(h(y)) = R(fA(¥)), and this implies that
fA(z) = fA(y). Therefore, every 1-congruence = safisfies (*). Conversely,
let =~ be an equivalence on A such that (*) holds. Then, we can define an
algebra A € F(4), by FAE) = {a:ue fA(x)},



for every f € Fn,n > 0,z € A™. It can be easily seen that A is well defined
and h € H1(A, A). D

All statements about 1-homomorphism suggest to say "homomorphism”
instead of ”1-homomorphism”, and in the same way ”congruence” instead
of ”1-congruence”
Proposition 2.15. The intersection of two congruences is not necessarily
a congruence.

Proof. Assume that F = F; {f}. Let A = {b,c,b1,b2,¢1,c2} and let
A € F(A) be defined by f(b)

{b1,b2}, f(c) = {e1,e2}, f(b1) = f(b2) =
fler) = f(e2) = 0.

If Afny = {{b, e}, {b1,c2}, {e1,b2}}, A/n, = {{b’c}a {blacl}:{bZ:CZ}}s then

=1 and =, are congruences. Their intersection =~ is not a congruence.

Namely, we have b = ¢ but f(b) = {b1,b2} % {c1,¢c2} = f(e). D

3. Subalgebras

The notion of a subobject is defined in the usual way.

Definition 3.1. Let A € F(A),B € F(B) be such that B C A. We say that
B is a subalgebra of A iff f5(z) = fA(z) for every f € Fn,n > 0,z € B™.
The set of all the subalgebras of A will be denoted by S(.A).

Remark 3.2. Note, that the Def. 3.1. is not the only "natural” definition
of the notion of subalgebra. Namely, let A € F(A),B € F(B) be such that
B C A. We say that B is a weak subalgebra of A iff for every f € F,,n >

0,z € B™ it holds that: f""‘(z);é@:»f“(x)ﬂfs(z);éﬂ.
It is easy io see that in the class Pare the notions of subalgebra and weak
subalgebrza coincide. Also, it should be noted that generalizing the corre-
sponding notion in Parc (see [5], § 13) we obtain two new kinds of subalge-
bra. Namely, if A € F(A),B € F(B) and B C A, then we say that B is a
relative subalgebra of A iff it holds that:

z € B" = f5(z) = fA(z)n B;
B is a weak relative subalgebra of A iff it holds that:

z € B" = f5(z) C f*(z)n B.
Here, we shall consider only subalgebras defined by Def. 3.1.
Proposition 3.3. Let A€ F(A),B € S(A) and t € B(F). Then t& = tA,
Proposition 3.4. If A € F(A),B € F(B) and B C A, then the following
implications hold:

a) A=o0(A)= (Be S(A) iff B = o(B));
b) A=¢e(A)= (BeSA) iff B=A).

Proposition 3.5. If A € F(A),d # B C A, then there is al most one
BeF(B) which is a subalgebra of A. Such a subalgebra Be F(B) exists iff:
(%) . fA(:c} C B, for every f€ F,,n >0,z € B"™.
Let A€ F(A) and @£ BC A. We say that B is a subobject of A iff (*)holds.
Proposition 3.6. If B is a subobject of A, then t*C B, for every t € B(F).

The following statement implies the notion of ”subobject generated by a
subset”.

Proposition 3.7. A non-empty intersection of subobjects is a subobject.

If Ae F(A),and X C A, X # 0, then by Prop 3.7., there exists the least
subobject B of A such that X C B. We shall write B = (X ) 4, and say that
{X) 4 is generated by X. If there exists a least subobject B of 4 € F(A) then
we shall write B = {@) 4; othervise, (@) 4 is meaningless. Namely, (@} 4 exists
if there is a ¢ € A such that c € N{(z)}4 : ¢ € A}, and then {P) 4 = (c) 4.

The notion of 7 —terms over set a X can be used for giving a description
of the subobject {X) 4 of A generated by X.



Proposition 3.8. If A€ F(A) and 0 # BC A then (B)4=U{t*:te B(F)}.
Remark 3.9. We can define the algebra B(F) also in the case B = (. The
definition of the algebra @(F) of F—terms over { is the same as in the case
B # (. But, the Proposition 3.8. does not hold in the case B = 0. For
example, if 7o = @, then for all A € F(A), we have {t* : t € B(F)} = 0.
On the other hand, if we assume that F # Fg then for A = e(A) we have
(Wa=A#U{tA:t € B(F)} = 0. Even in the case o # 0 (and B = 0)
the equation from Proposition 3.7. can be not true. For example, let A be
a poly-algebra such that for all f € Fo(Fo # @) it holds that f4 = @, and
for all f € Fp(n > 1), and all z € A", fA(z) = A. In this case we also have
u{t? :t € B(F)} =0, but (@) 4 = A.
Proposition 3.10. Let A € F(A) and B be a non-emply subset of A. Then
the following statements are equivalent:
a) B is a subobject of A;
b) There is a unique object B € F(B) such that the embedding from B
into A is a 1-homomorphism from B into A.
Proposition 3.11. If A € F(A), A € F(A') and h : A — A’ is an in-
jective 1-homomorphism, then B = h(A) is a subobject of A’ such that the
corresponding subalgebra B € F(B) is isomorphic to A.
Proposition 3.12
1) A I-homomorphic image of a subobject is also a subobject, and also, a
non-empty inverse homomorphic image of a subobject is a subobject.
2) A 3-homomorphic image of a subobject is also a subobject.
3) A non-empty inverse 2-homomorphic image of a subobject is also a
subobject.
We can see that only 1-homomorphisms have the ”preserving property” in
both directions.
Example 3.13. Let |A] > 2 and B be a non-empty proper subset of A.
Then 1 : o(A) — e(A) is a 2-homomorphism, B is a subobject of o( A), but
1(B) = B is not a subobject of e(A). Conversely, 1 : e(A) — o(A) is a
8-homomorphism, B = 171(B) is an inverse 3-homomorphic image of the
subobject B of o( A), which is not a subobject of e( A).

4. Free objects

Let A € F(A),C € F(C) and B C A. We say that B is an i—basis of A
over C if the following two conditions hold:

1) B generates A;

2) For every mapping h : B — C there is an extension g : A — C which

is an {—homomorphism g : .4 — C.
If K is a class of F—poly-algebras then B is an i— basis of A over K iff B is
an i—basis of A over every object C € K. In this case, if A € K, we say that
B is an i—basis of A in K.
A is said to be i—free over C iff there is an i—basis B of A over C. If there
is an i—basis B of A over every object C € K then we say that 4 is i—free
over K; if, moreover A € K, then is an i—jree object in K.
It is well known that if A € F(A),C € F(C) are universal algebras and

B is a basis of A4 over C, then for every i : B — (' there exists a unique
homomorphism ¢ : A — C which is an extension of A. In most of the following
examples for poly-algebras, the set of such homomorphisms is infinite. It is
also well known that any two free members with the same bases, in a class
of universal algebras, are isomorphic. In the case of poly-algebras we have
many examples of non-isomorphic i—free algebras with the same ¢{—bases.




Proposition 4.1. Let A,C € Ual. The following statements are equivalent:

a) B is a 1-basis of A over C; b} B is a 2-basis of A over C;

¢) B is a 3-basis of A over C; d} B is a basis of A over C.
Proposition 4.2. If X C £ are two classes and if an object A is i—free
over L, then A is also i— free over K.
Proposition 4.3, Let A € F(A) be 2-free over D € F(D) with an 2-basis
B. Let H be a subobject of P. Then A ts 2—free over H, with the same 2-basis B.
Proposition 4.4. If B is a I-basis of A over C, then B is both a 2-basis
and a 3-basis of A over C.
This proposition suggests to say "basis” and "free” instead of ”1-basis” and
7 1—free”, respectively.

In the following we shall investigate ¢—free objects over (and in) some
classes of poly-algebras.
Proposition 4.5. A singular object o( A) is 2—free over any object B. If
|4] > 2 then A is the unique 2-basis of o(A) over B. If |A| = 1, then 0 and
A are a 2-basis of o{ A) over B.
Proposition 4.6. Let A be a 2-free object with 2-basis B over a class K,
and let D € F(D) be a non-regular object in K. If one of the following
conditions hold: a) |B| = |D|; or b) B is infinite; then A is also non-regular.
Proof. From the non-regularity of D it follows that fP(d) = @, for some
f e F.,d € D*,n > 0. Either of the conditions a), b) implies that there
exists an A : B — D and & € B™ such that h(b) = d. If g : A — D is
a 2-homomorphism which is an extension of h, then we have g(fA(b)) C
fP(g(b)) = fP(d) = 0, and this implies fA(d) = 0. O
Proposition 4.7. Let B be an object such that there exists a singular sub-
object of B. Then A € F(A) is 2—free over B iff A = o( A).
Proof. Let D be a singular subobject of B. Then A is 2—free over D = o( D),
as well, and therefore there exists a 2~homomorphism h : A — o( D), which
implies that A = o(A). O
As a corollary we obtain the following:
Proposition 4.8. Let K € {Pol, Con, Pol(a), Con(a), Pol[3], Con[3]},
where «, 3 are cardinals such that e > 0. Then, an object A € F(A) 1is
2—~free over (or in) K iff A = o(A).

Here we consider some subclasses of Reg.
Proposition 4.9. Fvery generating set of an object A is a 2-basis of A
over £. Specially, if A=e(A), then any subset B of A is a 2-basis of A in £.
Proposition 4.10. Every object (A, M) € Con* is 2—free in Cont. B is a
2-basis of (A, M) in Cont ff B = A\M.
Below we state some results concerning i—free objects, for z € {1,3}.
Proposition 4.11. FEvery generating subset of an object A is a 3-basis of
A over O. Every object o(A) € O is free in O.
Proposition 4.12. If there is a non-regular 3—free object A over a class IC,
then every object of K is also non-regular.
Proposition 4.13. Let A € F(A) be a free object over K with a non-empty
basis B, and assume that there is at least one regular object in K.

a) If B is infinite then every object in I is regular.

b) If B‘is finite and if D € F(D)NK is such that |B| > |D|, then D is

regular.

Proof. Proposition 4.12. implies that A4 is regular. Either of the assumptions

a), b) implies that for every f € Fn,d € D™, n > 0, thereisan h: B — D
and a b € B™ such that h(b) = d, and then we should apply the assumption
that B is a basis of A over K, and the fact that A is regular. O



Proposition 4.14. Let o be an infinite cardinal, K = {e(A) : |A] < a},
and L = OUK. Then:
a) e(D) is a free object in K iff |D| = a, and B C D is a basis of e(D)
in K iff | D\B| = a.
b) Every object e(A) € K is 2-free in K and any subset B of A is a
2-basis of e(A) in K.
c) A€ L is a 3—free object in L iff A is a free object in K.
d) There is no free object in L.
Proposition 4.15. IfK € {&£,Con, Pol, Reg,Con*} then there is no 3 free
object over K.
Proof. & is the least member of K, and thus it is enough to consider the
case K = £. If A € F(A),e(M) € £ are such that |A| < |M|, then there is
no 3—homomorphism A : A — e(M). O
As a corollary of Propositions 4.13., 4.14., 4.15. we obtain the following:
Proposition 4.16. If K € {£, Con, Pol, Reg, Pol(a), Pol[3], Con(a),
Con[B3],Cont}, where & > 0, then there is no free object over K.
In all the examples of classes X containing 3-free objects obtained above
we had the situation that K contained a 2—free object as well. Now we shall
give a class with 3—{ree objects without 2—{ree objects.

Proposition 4.17. Let K be the class of all the non-singular objects A €
F(A), such that |A| < «a, where a is an infinite cardinal. Then there is
no 2-free object in K. A € F(A) is a 3—free object in K iff A = e(A) and
|A| = a; In this case B is a 3-basis of e(A) in K iff |A\B| = a.
Proof. Clearly, there exist members of X with singular subobjects. Thus,
by Proposition 4.7., K does not contain a 2-free object. O

Proposition 4.4, sugests the following
Problem 4.18. Find a pair of objects .A, B with the following property:

a) A is not free over B, but A is both a 2-free and a 3—{ree over B.

b) There is a B € A which is both a 2-basis and a 3—-basis of .A over B,

but B is not a basis of A over B.
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REZIME O POLI-ALGEBRAMA

U ovom radu se razmatraju poli-algebre proizvoljnog tipa F. Ak je F
neprazna, disjunktna unija funkcijskih simbola, 7 = U{F, : n > 0}, onda
poli-algebra tipa F sa nosatem A # @ jeste svako preslikavanje A : f — fA
tako da je f*: A" — P(A), za sve f € F,,,n > 0. Podalgebre se definisu na
uobiéajen naéin. U radu se posmatraju tri tipa homomorfizma, koji impli-
ciraju tri tipa slobodnih objekata. Dokazani su rezultati o podalgebrama,
homomorfizmima i slobodnim objektima za razne klase poli-algebri.



