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Introduction

The notions of groupoid and free groupoid are generalized in an unpublished paper
[6]. One class of groupoids, generalized in this way, and existence of free objects in
various subclasses are investigated in this paper.

Namely, every pair of covariant functors G, H from the category of sets (Set) into
itself determines a class of (G H)-groupolds, defined as follows,

An ordered pair (Q;f), where Q is a nonempty set and f a mapping from G(Q)
into H(Q), Is said to be a (G,H)-groupoid. Special classes of (G,H)-groupoids are, for
example, the class of (binary) groupoids, or, more generally, the class of {n,m)-groupcids,
where G(Q)= Q" and H(IQ)= Q™.

If (Q;f) and (Q";f) are (G,H)-groupoids, a mapping ¢:Q 2> Q' is said to be a
homomorphism, if the following diagram commutes,

G H
Q —»G(Q) —» H(Q)

#cp ¢G(cp) *H(tpl

Q@ —PGQ) —H(Q)

Let (Q;f) be a (G,H)-groupoid, B, P nonempty subsets of Q. P is said to be a
subgroupoid of (Q;f) iff FIG(P)) < HIP), and B generates (Q;f) Iff Q is the unique
subgroupeid of {(Q;f) containing &.

Having in mind all said above, we obtain that {G,H)-groupoids form a category,
where morphisms are the homomeorphisms.

The following definition of free (G,H)-groupocids in a class @ of {G,H)-groupoids
is formally the same as the usual one. Namely:

Q=(@;N el is a free (G,H)-groupoid with a basis B in the class @ Iff the following
conditions are satisfied:

(i) B generates (Q;f);

{ii} for any (G,H}-groupoid (Q',f')J€@ and any mapping A : @ 2 @', there exists
a homomorphism ¢ : {Q;F) > (Q";F") which extends A.

The following problems for a class @ of (G,H)-groupoids appear to be interesting
for investigation.

I. Is any (nonempty) set B a basis of a free (G,H}-groupoid in @7
If the answer is positive, then:

II. Is the homomarphism ¢ uniquely determined by A7

. Are two free (G, H)-groupoids with a same basis isomorphic?

IV. Give a description of a free {G,H)-groupoid with a given basis B in the class €.

It is shown in [3], [8] and [73, that the answer to each of the guestions above
is, in general, negative.

tn this paper we consider a special class of (G,H)-groupoids, namely the class of
(F,F)~groupoids, where for each nonempty set Q, F(Q} is the family of all nonempty
finite subsets of Q. All the mentioned problems are investigated for various classes of
“associatlve” (F,F)-groupoids.

Further on, instead of (F,F)-groupoid (Q;7) we will say object, using the fact that
It is an object in the category of (F,F)-groupoids, but we will not use any category
theory approach in investigating (F,F)-groupoids.

1. Associative objects

Let Q be a nonempty set, and denote by F(Q) the collection of finite nonempty
subsets of Q. We say that (Q;f) is an objact if fis a transformation of F(Q)}, i.e. a
mapping from F(Q) into F{Q). If (Q;F) and (Q";f) are two objects, then a mapping



©:Q > Q is a homomarphism from (Q;f) into (Q":f) iff Fle)f=FFlp), where Flg):
F(QY > F(Q') is the corresponding mapping induced by ¢. We will usually write @ instead
of Flg).

If (Q;7)is an object and F a nonempty subset of Q such that XeF(F) = FIX) e F(P),
then we say that Fis a subobject of (Q;f).

The following statements are clear.

Proposition 1.1. A nonempty intersection of subobjects of an object (Q;f) s also a

subobject of (Q:f). (m]
Proposition 1.2. If ¢: Q = Q" is a bilective homomorphism from (Q;f) into (Q'F) then
ot Q'+ Q Is a homomorphism from (Q',F) into (Q:f). a

{In this case we say that ¢ is an isomorphism.)
Proposition 1.3. A homomorphic image of a subobject is a subobject, and a nonempty
inverse homornorphic image of a subobject is a subobject as well. 0

From Proposition 1.1 it follows that if (Q;f)} is an object then every nonempty
subset B of Q generates a uniquely defined subobject <B> of (Q;f).

An object (Q;f) is said to be associative if:

(VX YeF(Q)) FLFN VY)Y = AIXUY). (1.1}
Proposition 1.4, /f (Q;f) /s an associative object and * is a (binary) operation on F(Q)
defined by

(VX,YEF(Q)) X*Y=f(XUY) (1.2)

() (FLQ);*) is a commutative semigroup,
(i) (WX, ZeF(Q) X*(YUuZ)=X*Y*Z,
(i) (YXeF(Q)) AIX) = X#X.
Conversely, if (F(Q);*) satisfles the conditions (i), (i} and f: F(Q) = F(Q) Is defined
by (i), an associative object (Q;f) is obtained, such that {1.2) is satisfied. O
(We say that (O;f) and (F(Q);#) are associated.)
Note that if (Q;f) is an assoclative object and * is defined by (1.2), then
fllay,....a.1) = aykay* .. . %4, {1.3)
(Here we do not make any distinction between {a) and a, when a€Q.)
Proposition 1.5. Let (Q;f) and (Q' ;') be associative objects, and (F(Q);x} and (F(Q'};*}
the associated semigroups. Then
(i} P is a subobject of (Q;f}) iff F(P) is a subsemigroup of (FIQ);*).
(i) :Q->Q" is a hormomorphism iff Fle): FIQI>F(Q') is a homomorphism, as well. [
An object (Q;f) is said to be an m-object if AIF(Q)) € F (Q), where F(Q)=
={AeF(Q)|1AI=m}.
Proposition 1.6. An associative object (Q;f} is an associative m—object iff
(WX YeF(Q)) XxYeF, (Q). O
{Then £,,(Q) is an ideal in (F(Q);%).)
Proposition 1.7. 7The class of associative objects (m-objects) is hereditary and closed
under homomorphic images. U
Now we are ready to define a special class of associative m-objects, for every
positive integer m. Namely, we say that (Q;f) is an m-semilattice iff (Q;f) is an
associative m—object such that the corresponding semigroup (F,,(@);*) is a semilattice.
Having in mind that X*X=f{(XuX)=7(X), we obtain the following characterization
of m-semilattices.
Proposition 1.8. An object (Q;f) is an m-semilattice iff it is an associative m-object
with the following property:
(WVXef (Q)) AIX)=X, (1.4)
i.e., fis a retract. O
Proposition 1.9. The class of m-semilattices is hereditary and closed under homomorphic
images. O
J In the special case, when m=1, we have the following



Proposition 1.10. (Q;f) is a 1-semilattice iff there is a (uniquely defined) semilattice (Q;*)
such that (1.3) holds. Then the following statements are also satisfied:

(1} P is a subobject of (Q;f) iff Pis a subsemilattice of (Q;¥).

(i} B is a generating subset of (Q;f) Iff B Is a generating subset of (Q;#*).

(i} Let (Q;f) and (Q';f') be 1-semilattices. A mapping ¢ : Q = Q' is a homo-
morphism from (Q;f) into (Q';f') iff it is a homomorphism from (Q;*) into (Q";¥). O

Further on we will assume that mz2.

From Proposition 1.8 it follows that if 1Qlsm, and if (Q;f) is an m-semilattice,
then fA(X) =X, for every XeF(Q).
Proposition 1.11. /f (Q;f) is an m-semilattice and if X€F(Q), IX1>m, then If(X)I=m.
Proof. Assume that If{X)I<m. Then there exists an aeX\f(X), and therefore we would
have: flX)uw a = ffiX)ual = fiXua)=fIX]. a
Example 1.12. Let Q be a set with at least m distinct elements, and let AeF(Q) be

such that 14l=m. Then, by A if IX1>m
00 = { (1.5
X if IXlsm
an m-semilattice is defined, and the corresponding associated semigroup (F(Q);*) is
defined by A if IXUYI1>m

xy= { Xy i IXuYlsm.
We say that (Q;f) is a constant m-semilattice.

Example 1.13. Let Q={a,b,¢,d} and let £: F{Q) > F(Q) be defined as follows:
fiia,b,e}) = {a,b}, IX1£2 = f(X)= X, X123, X*{a,b,c} = fAAX)={cd}.
Then we obtain a non-constant 2-semilattice (Q;f), and the corresponding semigroup

(Q;%) is defihid_by { {a,b})  if XUY={ab,c}
XBY=SXOYIEIXOYIS2, X¥Y =) 1o g #f IxuY123, XY+ {ab,.c).

2. Free associative m-objects

Let @ be a class of objects.

An object (Q;f)€€ is said to be a free object in @ with a basis B iff the following
conditions are satisfied:

(i) Bis a generating subset of (Q;f);

(i) for every object (Q';f)e@ and every mapping A : B = Q' there is a homo-
morphism from (Q;f) into (Q';f'}, which is an extension of A.

The following results are shown in [3],
Proposition 2.1. There does not exist a free object in the class of all objects.
Proof. Let (Q;f) be an object and B a nonempty subset of Q, and let fla)= A, where
a€B, AeF(Q). Let P be a nonempty set such that 8<P, 1AI<IPI, and let (P;g) be an
object such that (YX€F(P)) g(X) = C, where 1AI<ICI, and C is a given element of F(P).
Then the embedding mapping A : B = P can not be extended to a homomorphism ¢ from
(Q;f) into (P:g). O
Proposition 2.2 ([3, Prop. 3.12]). Let B be a nonempty set, BnIN=@ and let a sequence
of sets {C,laz0} be defined by

Co = B, CP+1 = CPU (INfﬂxF{Cp)), (2”
where N,,={1.2,...,m}, and m is a given positive integer. If Sg=U{C|p20}, and if an
object (Sgif) is defined by

(YXeF(Sgh AX)={(1,X),...,(mX]}, 2.2)
then (5g.f) is a free m-object with a basis B in the class of all m-objects,

Moreover, every endomorphism ¢ of (S5g;f), such that (VbeB) o(bl=b is an auto-
morphism, and the set of all such automorphisms is infinite.

Every free m-object (Q;f') with a basis B is Isomorphic to (Sg;f). O
Proposition 2.3. The class of associative objects does not contain free members.
Proof. The object {P;g} from the proof of 2.1is an associative object. O

Mow we are going to show that there do exist free objects in the class of as-
sociative m-objects, and in the class of m-semilattices, as well.
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For that purpose we will choose a special subset Rg of the set Sg, which was
defined in Proposition 2.2.

Let y€Sg. If pis the least nonnegative integer such that y€C,, then we write
x{y)=p and say that p is the hierarchy of y. The hierarchy y(Y) of a set YeF(Sg) is
the number max {x{y)lyer}.

We will next define a relation o in F(Sg).

{a) If X,YEF(Sg), then: Xa¥ & Xay, for each yeY.

Thus, it remains to define the meaning of Xay, for XeF(Sg), and y€S5g, and we
will define this relation by induction on the hierarchy of y. (Here we use the notation u
for the set {u}.)

First:

b) y(y)=0 =2 Xay & yex).

Assume that u={(iY)eSs, ylul=t21, and we have a procedure to determine
whether Xay, for every Xe€F(5g), y€Sg, such that y(y)<t Then Xau, iff at least one

of the following conditions is satisfied:

{cy) weX, (cy) Xay, for every yev.

By induction on hierarchy, it can be easily seen that o Is a well defined relation
in F(Sg). (If XaY, we say that "X absorbs Y}
Proposition 2.4, /f X,ZefF(Sg), y€Sg are such that XSZ and Xay, then Zay.
Proof. In the case y€X the conclusion is trivial. Assume that y=(il/), and that Zau,
for every u€lU. Therefore, using induction on hierarchy, we obtain Za y. O
Proposition 2.5. /f X€F(Sg), y€Sg\X and Xay, then there exists a subset Z of X,
such that Zay and ¥(Z) < y{y).
Proof. 1t is clear that y¢B8. Therefore y={(/,U) € CP+1\CP, for some pz0, ieN,, UeF(C,),
and we have Xau, for every wel) By induction on hierarchy, we can assume that for
every ueU, there is a Z X, such that Z,au, x(Z,) < yluw) sp. If Z=UU{Z luel), then
by Proposition 2.4, we obtain that Zaw for every vel, and therefore Zay. Moreover,
we have ¥(Z) < y(U) < x{y). a

MNow we will define a subset Ag of Sg (we will say that Rg is the set of Irreducible
elements of Sg) as follows:

1) BERg; _

2) w=(iY)€ Rg iff the following conditions are satisfied:

2.1) YeF(Rg),

2.2} there does not exist a z€Y, such that (Y\z)az,

2.3) Y does not contain a subset of the form {(1,2),(2,Z), ... ,(m,Z)}.

An X€F(Rg) is said to be reducible iff it satisfies the following conditions:

2.2") there exists a z€X such that (X\z)az,

2.3') there exists a subset of X of the form {{1,2),(2,2), ..., (m 2}

XC Rg Is Jrreducible iff it is not reducible.

The next step is to define an associative object on Ag. For that purpose we need a
definition of norm XN, XeF(Rg). It is defined by induction on hierarchy, in the following way:

3.1) IXI=0 & X<8;

3.2) NG XON =1+,

3.3 0f X=0q, ... x.) WXTE 0, then 1XE =i+ lxgl+ Lo+l

Now we will define an associative object (Fg;g) as follows:

{i} If XeF(Rg) is irreducible, then g(X)=X.

Assume now that X €F(Rg) is reducible and for every Yef(Rg), such that 1Yl <X,
an irreducible set gl¥]eF(Ag) is well defined and the following relation holds:

or

gy EY e llgiyM <ty (2.3
Consider, first, the case when 2.2°) is satfisfied, and let
X=XV VX, (2.4)

where py<...<p,, and x€X, & y(X)=p,.
By Proposition 2.5, X, does not satisfy 2.2°). Let s be the greatest number such that



X=XV VX
does not satisfy 2.2'). Then 1ss<k. Denote by Z the set of all ze X\X', such that X'« z,
and let Y=X\Z. Then we have Z%@, ZnY=@ and IVl <Xl Therefore g{¥Y}eF(Rg) is a
well defined irreducible set, and now we define glX) by:

(i) gxi=glv).

We have lgCOl=lgy W <yl <lixl, i.e. (2.3) helds.

Finally, assume that X does not satisfy 2.2'). Then 2.3") holds, and therefore X
has the form

X=xu{1,Z), ..., m2), ..., (20, ..., {rm, 203,
whare X'=@ or X' is irreducible and vk = Z .7, . Now we have X" uZu . . vz <X,
and thus g{X) can be defined by:

In this case, we also have

IgON= g UZU .. . UZN<IXUZU . U Zh <X

Therefore g : FIRg) > F(Rg) is a well defined mapping, such that (2.3} holds for
every YeF(fgl.
Proposition 2.8. if yeXeF(Rg) and (X\yloy, then g(X) = g(X\y).
Proof. In the recursive definition, g(X} is defined by (ii). If y§Z (Z is as in (ii) of the
definition of g}, then by induction on norm we have:

glXt=g(X\Z) = glixX\NZN\y) = glx\ ).
If yeZ, then

g{X)=gxX\2Z) = gli\Z)u(Z\yD = glX\y). O
Proposition 2.7. /f X =xX"u{(1Y), ..., ImYN€eF(Rg), where X'=@ or X'€F(Rg}, then
glX)=glX uY).
Proof. Assume, first, that (,Y)e X', for some i€N,,. Then we obtain the equation
g(X) = g(X"uY) by induction on IX"ll. Thus we may assume that the above union is disjoint.

If (XCNGYDaliY) for some /€N, then we have X aliY), for every j€MN,,, and
by Proposition 2.6, we obtain: g(X) = g{X") = g(X"uY}.

If (X'\v)awy, for some ueX’, then we obtain g{X)=g(X'LY), again by Proposi-
tion 2.6.

It remains to consider the case when X does not satisfy 2.2°). Then, if X'=@ or

X' is irreducible, the equation g(X)=g{X"uY) follows by (iii); and if

X =x"ul1,Zy),....imZ),....(1,2),....(mZ.)},
where X" =@ or X" is irreducible, then we have:
gX)=glX"vzZu., wZullly), ... .mY)=gX"uZiu.. Wi uY=gxX'uy) O

Now we can show the following:
Proposition 2.8. (Rg;g) is an associative object.
Proof. If X is irreducible, then g{XUY}=glg(XIUY). In the case when X is reducible,
then by Proposition 2.6 or Proposition 2.7 and an induction on norm we obtain that
g{XxuY) = glgXiuy). O
Now we are ready to give a construction of a free m-object with a basis B.
First we define an m-object {fg;f) by
AX)={{1,g(xN), ... .(mg(XN}, {2.5)
for every XeF{Rg).
Propositlon 2.9. (Rg;f) is an associative free m-object with a basis B.
Proof. |t is clear that (fAg:7) is an m-object, and, moreover, we have:
AAXIUY)= AL XN, . U gOONuY) = {G,glltg(xX)), .. (mgONUY D] ieN, ) =
= {lhglgXIuYDlieN,,) = {ligixuY)lieN,,} = fIXUY),
i.e., (Rg:f) is associative.
Let P be a subohject of (Ag;f) such that BSF. By induction on hierarchy we will
show that P=Rg. Assume that {uv€ Rgly{u)spl€ P, and let y€fig be such that x(y) = p+1.
Then y={(i¥) for some /€N, and Ye€F(Rg), where Y is irreducible and x{Y)=p. Thus
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YESP, and g{¥} =Y. From (2.5) we obtain:

iy ={,yy ey, ....Gn, . ...ImYNEP,
and therefore (1Y) € F. This implies that P=Ffg, i.e. that Bis a generating subset of (Rg;f)

Let (Q%F') be an associative m-object and A : B » Q' an arbitrary mapping. We
will show that there is a homomorphism @ : Rz 2> @, from (Ag;f) into (Q5F) which is
an extension of A.

Denote by O, the set of all elements x of A such that ¥{x) g p, and assume that
for every rip, ©.: 0. Q' is a mapping with the following properties:

{a) o= A

(b) @, is an extension of g._y;

() o)) =1 (e (X)),
for every Xe€F(D.) and reN,.

Define a mapping @pa.q: Dpa g Q' as follows. First @y.4(u) = @ (u), for every veD,,.

Let u=(i,X) € D14, 1. e. X€F(D,) is such that y(X) = p. Then ¢ (X}eF(Q"), If (@(XN = m,

XY= {01,X,(2,X}, ... im0},
Therefore, there is a surjective mapping by : AX) = g (X)), If we choose such a
surjective mapping by for every XeF(0.), which has a hierarchy p, and if we put:

‘-IJP...‘U,X} = EIJ)((E,X),
then we obtain a mapping ¢p+1: Doeq @ Q@ which is an extension of ., and, moreover,
{c} is true for r=p+1, as well,

In such a way we will obtain a collection of mappings {¢,:0, = Q'|p20}, such
that (a), (b} and (c} are satisfied for every positive integer r. If ¢ =U{plp20}, we
obtain a homomorphism from (Rg;f) Into (Q";f') which is an extension of A. O
Proposition 2.10. Every endomorphism of (Rg:f} which is an extension of the embedding
mapping from B into Rg is an automorphism, and, moreover (in the case mz2) the set
of such automorphisms is infinite. '

Proof, Let ¢ be an endomorphism of (Fg;f) which is an extension of the embedding from
Binto Rg. By induction on p we will show that for every p20, ¢ induces a permutation
n, of T,={uefg|ylul=pt. First ng is the identity permutation on Ty = 8. Assume that if
we put (YueT,) ¢lu) = n,{u), then we obtain a permutation of T, Let xe'.gﬂ\T;,. Then
x=(j,X), for some /€N, and X€F(RG), such that yx(X)=p, and moreover, y(p(X))=p.

e = 10,30,2.), . (mX)
and this implies
{p(1,X),@(2,X), .. .,e(mX)}=o{fX)) = F XN ={l1,e(X)),2,e0XD, ... (melX},
i.e,, there is a perrnutation 1€ S,,,, such that ¢(v,X) = (t(v),@(X)). Hence, ¢ induces a
permutation 141 of 7,4y, as well. This completes the proof that ¢ is a permutation of
Rg, 1.e. an automorphism of (Rg;f).
The fact that there exist infinitely many such automorphisms follows from the
last part of the proof of the preceding proposition. O
Proposition 2.11. Every free associative m-object with a basis 8 is isomorphic to (Rg;f).
Proof. Assume that (T;f'} Is an arbitrary free associative m-object with a basis 8. Then
there exist homomorphisms ¢ : Ag=> T, and 1:T—>FAg, such that (YbeB) ne(b)=b, and
therefore n¢ is a permutation of Ag, which implies that ¢ is an injective mapping. Then
P=p(Rg) is a subobject of (T;f'} which is generated by B, and thus P=T, whence we
obtain that ¢ is an isomorphism. O
The object (Rg;f) is not an m-semilattice, because f(X)* X, for every Xef.(fRg).
Below we will give a construction of free m-semilattices.
First we note that:
Proposition 2.12. i 181 < m, then the trivial m-semilattice on B is a free m-semilattice

with a basis B. ]
Assume now that |181> m, and define a subset Lg of Rg in the following way:



Lo=8; Ly =1l XN i€N,,, XEF(L), IXI>m},
Lg =U{L|p20).
Define an object (Lg;h) as follows. If XeF(L), then:
X, if IX1sm,
{(1,g0N,2,g(X)), ... (mgxXD), i IXI>m.
As a corollary of the Propositions 2.9, 2.10, 2.11 and the fact that if X€F(L,) and
IX1>m, then Ig{X)l > m, we obtain the following statement:
Proposition 2.13. (a} (Lg;h) is a free m-semilattice with a basis B.
(b) Every endomorphism of (Lgih) that is an extension of the embedding mapping
from B into Lg is an automorphism.
(c) Every free m-semilattice with a basis B is isomorphic to (Lg;h). o
An associative m-object {Q;f) is called an (m,n)-semifattice iff n=m and
(VXeF(Q)) AX)=X Thus the class of (m,m)-semilattices coincides with the class

of m-semilattices.
Assume now that 1Bl > n, where 12p<m, and define a subset LZ of Rg as follows:

Mo = B, Mry = MoU (N X {XEF(M|IX1>n}),
Lg =U{M,lp20}.
Consider the following m—object (Lg;/). If X€F(Lg), then
X, if 1IX1=<n,
=]
{(L,g(X, 2.0, ..., (m,glxXh), if 1X1> e
Proposition 2.14. (a) (LZ:{) is a free object with a basis B In the class of (m,n)-semi=
lattices.
(b) Every endomorphism of (Lg;l} which is an extension of the embedding mapping
from B into Lg is an automorphism.

oo = {

(c) Every free (m,n)-semilattice with a basis B is isomorphic to (Lg;l). ]
References
11 Clifford A.H., Preston G. B.: The algebraic theory of semigroups, 1, Il. Moskva, 1972
(in russian).

(21 Cupona G., Celakoski N., Markovski S., Dimovski D.. Vector valued groupoids,
semigroups and groups, "Vector valued semigroups and groups”. Macedonian Acad.
of Sci. Art, 1888 (1-79).

[31 Cupona G., Celakoski N.: Transformations of booleans of sets. Matem. Bilten 14
(XL) Skopje, 1990 (15-26).

(41 Cupona G., Dimovski D., Samardziski A.: Fully commutative vector valued groups.
Macedonian Acad. of Sci. Art, Prilozi VIII-2, Skopje, 1987 (5-17).

£51 Cupona G., Markovski S., Dimovski D., Janeva B.: Introduction to combinatorial
theory of vector valued semigroups, "Vector valued semigroups and groups'.
Macedonian Acad. of Sci. Art, 1988 (141-185).

[61 Cupona G., Celakovski N., Markovski S., Janeva B.: Free objects in generalized
groupoids. (Unpublished).

(71 Cupona G., Markovski S.: Free objects in the class of vector valued groupoids
induced by semigroups. {Unpublished).

(8] Janeva B.: Free fully commutative vector valued groups. Proc. of the Conf. "Algebra
and Logic”, Znanstvena revilja Vol 2, Maribor 1989 (75-86).



