ON FREE OBJECTS IN SOME CLASSES OF FINITE SUBSET STRUCTURES

Contribution to General Algebra, Wien, 7 (1991), 75-85

G. Čupona and B. Janeva

Introduction

The notions of groupoid and free groupoid are generalized in an unpublished paper [6]. One class of groupoids, generalized in this way, and existence of free objects in various subclasses are investigated in this paper.

Namely, every pair of covariant functors G, H from the category of sets (Set) into itself determines a class of (G, H)-groupoids, defined as follows.

An ordered pair (Q;f), where Q is a nonempty set and f a mapping from G(Q) into H(Q), is said to be a (G,H)-groupoid. Special classes of (G,H)-groupoids are, for example, the class of (binary) groupoids, or, more generally, the class of (n,m)-groupoids, where $G(Q) = Q^n$ and $H(Q) = Q^m$.

If (Q;f) and (Q';f') are (G,H)-groupoids, a mapping $\varphi:Q\to Q'$ is said to be a homomorphism, if the following diagram commutes.

$$Q \xrightarrow{G} G(Q) \xrightarrow{H} H(Q)$$

$$\downarrow \varphi \qquad \qquad \downarrow G(\varphi) \qquad \downarrow H(\varphi)$$

$$Q' \longrightarrow G(Q') \longrightarrow H(Q')$$

Let (Q;f) be a (G,H)-groupoid, B,P nonempty subsets of Q. P is said to be a subgroupoid of (Q;f) iff $f(G(P)) \subseteq H(P)$, and B generates (Q;f) iff Q is the unique subgroupoid of (Q;f) containing B.

Having in mind all said above, we obtain that (G,H)-groupoids form a category, where morphisms are the homomorphisms.

The following definition of free (G,H)-groupoids in a class \mathcal{C} of (G,H)-groupoids is formally the same as the usual one. Namely:

 $\mathbf{Q} = (Q; f) \in \mathcal{C}$ is a *free* (G, H)-groupoid with a basis B in the class \mathcal{C} iff the following conditions are satisfied:

- (i) B generates (Q;f);
- (ii) for any (G,H)-groupoid $(Q',f')\in \mathcal{C}$ and any mapping $\lambda:Q\to Q'$, there exists a homomorphism $\varphi:(Q;f)\to (Q';f')$ which extends λ .

The following problems for a class $\mathcal C$ of (G,H)-groupoids appear to be interesting for investigation.

- 1. Is any (nonempty) set B a basis of a free (G,H)-groupoid in \mathcal{C} ? If the answer is positive, then:
 - II. Is the homomorphism ϕ uniquely determined by λ ?
 - III. Are two free (G,H)-groupoids with a same basis isomorphic?
- IV. Give a description of a free (G,H)-groupoid with a given basis B in the class \mathcal{C} . It is shown in [3], [8] and [7], that the answer to each of the questions above is, in general, negative.

In this paper we consider a special class of (G,H)-groupoids, namely the class of (F,F)-groupoids, where for each nonempty set Q, F(Q) is the family of all nonempty finite subsets of Q. All the mentioned problems are investigated for various classes of "associative" (F,F)-groupoids.

Further on, instead of (F,F)-groupoid (Q;f) we will say object, using the fact that it is an object in the category of (F,F)-groupoids, but we will not use any category theory approach in investigating (F,F)-groupoids.

1. Associative objects

Let Q be a nonempty set, and denote by F(Q) the collection of finite nonempty subsets of Q. We say that (Q;f) is an *object* if f is a transformation of F(Q), i.e. a mapping from F(Q) into F(Q). If (Q;f) and (Q';f') are two objects, then a mapping

 $\varphi:Q\to Q'$ is a homomorphism from (Q;f) into (Q';f') iff $F(\varphi)f=f'F(\varphi)$, where $F(\varphi)$: $F(O) \rightarrow F(O')$ is the corresponding mapping induced by φ . We will usually write φ instead of $F(\varphi)$. If (Q; f) is an object and P a nonempty subset of Q such that $X \in F(P) \Rightarrow f(X) \in F(P)$, then we say that P is a subobject of (Q; f). The following statements are clear. Proposition 1.1. A nonempty intersection of subobjects of an object (Q;f) is also a subobject of (Q;f). **Proposition 1.2.** If $\varphi: Q \to Q'$ is a bijective homomorphism from (Q; f) into (Q'; f') then $\varphi^{-1}: Q' \to Q$ is a homomorphism from (Q'; f') into (Q; f). (In this case we say that φ is an isomorphism.) Proposition 1.3. A homomorphic image of a subobject is a subobject, and a nonempty inverse homomorphic image of a subobject is a subobject as well. From Proposition 1.1 it follows that if (Q;f) is an object then every nonempty subset B of Q generates a uniquely defined subobject $\langle B \rangle$ of (Q; f). An object (Q;f) is said to be associative if: $(\forall X, Y \in F(Q)) f(f(X) \cup Y) = f(X \cup Y).$ **Proposition 1.4.** If (Q; f) is an associative object and * is a (binary) operation on F(Q)defined by $(\forall X, Y \in F(Q)) X * Y = f(X \cup Y)$ (1.2)then (i) (F(Q);*) is a commutative semigroup, (ii) $(\forall X, Y, Z \in F(Q)) X * (Y \cup Z) = X * Y * Z$, (iii) $(\forall X \in F(O)) f(X) = X * X$. Conversely, if (F(Q);*) satisfies the conditions (i), (ii) and $f:F(Q) \to F(Q)$ is defined by (iii), an associative object (Q;f) is obtained, such that (1.2) is satisfied. (We say that (Q; f) and (F(Q); *) are associated.) Note that if (Q; f) is an associative object and * is defined by (1.2), then $f(\{a_1, \ldots, a_n\}) = a_1 * a_2 * \ldots * a_n.$ (1.3)(Here we do not make any distinction between $\{a\}$ and a, when $a \in Q$.) **Proposition 1.5.** Let (Q; f) and (Q'; f') be associative objects, and (F(Q); *) and (F(Q'); *)the associated semigroups. Then (i) P is a subobject of (Q;f) iff F(P) is a subsemigroup of (F(Q);*). (ii) $\varphi:Q\to Q'$ is a homomorphism iff $F(\varphi):F(Q)\to F(Q')$ is a homomorphism, as well. \square An object (Q;f) is said to be an m-object if $f(F(Q)) \subseteq F_m(Q)$, where $F_m(Q)$ = $= \{A \in F(O) | |A| \le m\}.$ **Proposition 1.6.** An associative object (Q;f) is an associative m-object iff $(\forall X, Y \in F(Q)) X * Y \in F_{CO}(Q).$ (Then $F_m(Q)$ is an *ideal* in (F(Q);*).) Proposition 1.7. The class of associative objects (m-objects) is hereditary and closed under homomorphic images. Now we are ready to define a special class of associative m-objects, for every positive integer m. Namely, we say that (Q;f) is an m-semilattice iff (Q;f) is an associative m-object such that the corresponding semigroup $(F_m(Q);*)$ is a semilattice. Having in mind that $X*X=f(X\cup X)=f(X)$, we obtain the following characterization of m-semilattices.

Proposition 1.8. An object (Q;f) is an m-semilattice iff it is an associative m-object with the following property:

 $(\forall X \in F_m(Q)) \ f(X) = X, \tag{1.4}$ i. e., f is a retract.

Proposition 1.9. The class of m-semilattices is hereditary and closed under homomorphic images.

In the special case, when m=1, we have the following

Proposition 1.10. (Q;f) is a 1-semilattice iff there is a (uniquely defined) semilattice (Q;*) such that (1.3) holds. Then the following statements are also satisfied:

- (i) P is a subobject of (Q;f) iff P is a subsemilattice of (Q;*).
- (ii) B is a generating subset of (Q;f) iff B is a generating subset of (Q;*).
- (iii) Let (Q;f) and (Q';f') be 1-semilattices. A mapping $\varphi:Q\to Q'$ is a homomorphism from (Q;f) into (Q';f') iff it is a homomorphism from (Q;*) into (Q';*). \square Further on we will assume that $m\geq 2$.

From Proposition 1.8 it follows that if $|Q| \le m$, and if (Q; f) is an m-semilattice, then f(X) = X, for every $X \in F(Q)$.

Proposition 1.11. If (Q;f) is an m-semilattice and if $X \in F(Q)$, |X| > m, then |f(X)| = m. Proof. Assume that |f(X)| < m. Then there exists an $a \in X \setminus f(X)$, and therefore we would have: $f(X) \cup a = f(f(X) \cup a) = f(X \cup a) = f(X)$.

Example 1.12. Let Q be a set with at least m distinct elements, and let $A \in F(Q)$ be such that |A| = m. Then, by

 $f(X) = \begin{cases} A & \text{if } |X| > m \\ X & \text{if } |X| \le m \end{cases}$ (1.5)

an m-semilattice is defined, and the corresponding associated semigroup (F(Q);*) is defined by $(A \quad \text{if } |X \cup Y| > m$

 $X*Y = \begin{cases} A & \text{if } |X \cup Y| > m \\ X \cup Y & \text{if } |X \cup Y| \le m. \end{cases}$ onstant m = consideration

We say that (Q; f) is a constant m-semilattice.

Example 1.13. Let $Q = \{a, b, c, d\}$ and let $f: F(Q) \to F(Q)$ be defined as follows:

 $f(\{a,b,c\}) = \{a,b\},$ $|X| \le 2 \Rightarrow f(X) = X,$ $|X| \ge 3, X + \{a,b,c\} \Rightarrow f(X) = \{c,d\}.$ Then we obtain a non-constant 2-semilattice (Q;f), and the corresponding semigroup

Then we obtain a non-constant 2-semilattice (Q; T), and the corresponding semigrous (Q; *) is defined by $X*Y = X \cup Y \text{ if } |X \cup Y| \le 2, \quad X*Y = \begin{cases} \{a, b\} & \text{if } |X \cup Y| = \{a, b, c\} \\ \{c, d\} & \text{if } |X \cup Y| \ge 3, |X \cup Y| \ne \{a, b, c\}. \end{cases}$

2. Free associative m-objects

Let @ be a class of objects.

An object $(Q;f) \in \mathcal{C}$ is said to be a *free object in* \mathcal{C} with a basis B iff the following conditions are satisfied:

- (i) B is a generating subset of (Q; f);
- (ii) for every object $(Q';f') \in \mathcal{C}$ and every mapping $\lambda: B \to Q'$ there is a homomorphism from (Q;f) into (Q';f'), which is an extension of λ .

The following results are shown in [3].

Proposition 2.1. There does not exist a free object in the class of all objects.

Proof. Let (Q;f) be an object and B a nonempty subset of Q, and let f(a) = A, where $a \in B$, $A \in F(Q)$. Let P be a nonempty set such that $B \subseteq P$, $|A| \le |P|$, and let (P;g) be an object such that $(\forall X \in F(P)) g(X) = C$, where $|A| \le |C|$, and C is a given element of F(P). Then the embedding mapping $\lambda : B \to P$ can not be extended to a homomorphism φ from (Q;f) into (P;g).

Proposition 2.2 ([3, Prop. 3.12]). Let B be a nonempty set, $B \cap \mathbb{N} = \emptyset$ and let a sequence of sets $\{C_{\alpha} | \alpha \ge 0\}$ be defined by

$$C_0 = B, \qquad C_{p+1} = C_p \cup (\mathbb{N}_m \times F(C_p)),$$
 (2.1)

where $\mathbb{N}_m = \{1, 2, \dots, m\}$, and m is a given positive integer. If $S_B = \bigcup \{C_p | p \ge 0\}$, and if an object $(S_B; f)$ is defined by

$$(\forall X \in F(S_{R})) f(X) = \{(1,X), \dots, (m,X)\},$$
 (2.2)

then $(S_B; f)$ is a free m-object with a basis B in the class of all m-objects.

Moreover, every endomorphism φ of $(S_B;f)$, such that $(\forall b \in B) \varphi(b) = b$ is an automorphism, and the set of all such automorphisms is infinite.

Every free m-object (Q;f') with a basis B is isomorphic to $(S_{R};f)$.

Proposition 2.3. The class of associative objects does not contain free members. Proof. The object (P;g) from the proof of 2.1 is an associative object.

Now we are going to show that there do exist free objects in the class of associative m-objects, and in the class of m-semilattices, as well.

For that purpose we will choose a special subset R_B of the set S_B , which was defined in Proposition 2.2.

Let $y \in S_B$. If p is the least nonnegative integer such that $y \in C_B$, then we write $\chi(y) = p$ and say that p is the *hierarchy* of y. The hierarchy $\chi(Y)$ of a set $Y \in F(S_B)$ is the number $\max{\{\chi(y)|y \in Y\}}$.

We will next define a relation α in $F(S_B)$.

(a) If $X,Y \in F(S_R)$, then: $X \propto Y \Leftrightarrow X \propto y$, for each $y \in Y$.

Thus, it remains to define the meaning of $X \propto y$, for $X \in F(S_B)$, and $y \in S_B$, and we will define this relation by induction on the hierarchy of y. (Here we use the notation u for the set $\{u\}$.)

First:

(b) $\chi(y) = 0 \Rightarrow (X \alpha y \Leftrightarrow y \in X)$.

Assume that $u=(i,Y)\in S_B$, $\chi(u)=t\geq 1$, and we have a procedure to determine whether $X\alpha y$, for every $X\in F(S_B)$, $y\in S_B$, such that $\chi(y)< t$. Then $X\alpha u$, iff at least one of the following conditions is satisfied:

 (c_1) $u \in X$, (c_2) $X \alpha y$, for every $y \in Y$.

By induction on hierarchy, it can be easily seen that α is a well defined relation in $F(S_B)$. (If $X\alpha Y$, we say that "X absorbs Y".)

Proposition 2.4. If $X,Z \in F(S_B)$, $y \in S_B$ are such that $X \subseteq Z$ and $X \propto y$, then $Z \propto y$.

Proof. In the case $y \in X$ the conclusion is trivial. Assume that y = (i, U), and that $Z \alpha u$, for every $u \in U$. Therefore, using induction on hierarchy, we obtain $Z \alpha y$.

Proposition 2.5. If $X \in F(S_B)$, $y \in S_B \setminus X$ and $X \propto y$, then there exists a subset Z of X, such that $Z \propto y$ and $\chi(Z) < \chi(y)$.

Proof. It is clear that $y \in B$. Therefore $y = (i, U) \in C_{p+1} \setminus C_p$, for some $p \ge 0$, $i \in \mathbb{N}_m$, $U \in F(C_p)$, and we have $X \alpha u$, for every $u \in U$. By induction on hierarchy, we can assume that for every $u \in U$, there is a $Z_u \in X$, such that $Z_u \alpha u$, $\chi(Z_u) \le \chi(u) \le p$. If $Z = \bigcup \{Z_u | u \in U\}$, then by Proposition 2.4, we obtain that $Z \alpha u$ for every $u \in U$, and therefore $Z \alpha y$. Moreover, we have $\chi(Z) \le \chi(U) \le \chi(y)$.

Now we will define a subset R_B of S_B (we will say that R_B is the set of irreducible elements of S_B) as follows:

- B⊆R_B;
- 2) $u=(i,Y) \in R_B$ iff the following conditions are satisfied:
- 2.1) $Y \in F(R_R)$,
- 2.2) there does not exist a $z \in Y$, such that $(Y \setminus z) \alpha z$,
- 2.3) Y does not contain a subset of the form $\{(1,Z),(2,Z),\ldots,(m,Z)\}$.

An $X \in F(R_R)$ is said to be *reducible* iff it satisfies the following conditions:

- 2.2') there exists a $z \in X$ such that $(X \setminus z) \alpha z$,
- 2.3') there exists a subset of X of the form $\{(1,Z),(2,Z),\ldots,(m,Z)\}$.

 $X \subseteq R_B$ is *irreducible* iff it is not reducible.

The next step is to define an associative object on R_B . For that purpose we need a definition of $norm \|X\|$, $X \in F(R_B)$. It is defined by induction on hierarchy, in the following way:

- 3.1) $||X|| = 0 \Leftrightarrow X \subseteq B$;
- 3.2) $\|(i,X)\| = 1 + \|X\|$;
- 3.3) if $X = \{x_1, \dots, x_n\}$, |X| = n, then $||X|| = ||x_1|| + ||x_2|| + \dots + ||x_r||$.

Now we will define an associative object $(R_B;g)$ as follows:

(i) If $X \in F(R_B)$ is irreducible, then g(X) = X.

Assume now that $X \in F(R_B)$ is reducible and for every $Y \in F(R_B)$, such that $\|Y\| < \|X\|$, an irreducible set $g(Y) \in F(R_B)$ is well defined and the following relation holds:

$$g(Y) \neq Y \Leftrightarrow ||g(Y)|| \leq ||Y||. \tag{2.3}$$

Consider, first, the case when 2.2') is satisfied, and let

$$X = X_{p_1} \cup \ldots \cup X_{p_k}, \tag{2.4}$$

where $p_1 < \ldots < p_k$, and $x \in X_{p_v} \Leftrightarrow \chi(X) = p_v$.

By Proposition 2.5, X_{p_1} does not satisfy 2.2'). Let s be the greatest number such that

$$X' = X_{p_1} \cup \ldots \cup X_{p_n}$$

does not satisfy 2.2'). Then $1 \le s < k$. Denote by Z the set of all $z \in X \setminus X$ ', such that $X \circ \alpha z$, and let $Y = X \setminus Z$. Then we have $Z \neq \emptyset$, $Z \cap Y = \emptyset$ and $\|Y\| \le \|X\|$. Therefore $g(Y) \in F(R_B)$ is a well defined irreducible set, and now we define g(X) by:

(ii) g(X) = g(Y).

We have $||g(X)|| = ||g(Y)|| \le ||Y|| \le ||X||$, i.e. (2.3) holds.

Finally, assume that X does not satisfy 2.2'). Then 2.3') holds, and therefore X has the form

 $X = X' \cup \{(1,Z_1), \dots, (m,Z_1), \dots, (1,Z_k), \dots, (m,Z_k)\},\$

where $X' = \emptyset$ or X' is irreducible and $v \neq \lambda \Rightarrow Z_v \neq Z_\lambda$. Now we have $\|X' \cup Z_1 \cup \ldots \cup Z_k\| < \|X\|$, and thus g(X) can be defined by:

(iii) $g(X) = g(X \cup Z_1 \cup \ldots \cup Z_k)$.

In this case, we also have

 $||g(X)|| = ||g(X' \cup Z_1 \cup ... \cup Z_k)|| \le ||X' \cup Z_1 \cup ... \cup Z_k|| \le ||X||.$

Therefore $g: F(R_B) \to F(R_B)$ is a well defined mapping, such that (2.3) holds for every $Y \in F(R_B)$.

Proposition 2.6. If $y \in X \in F(R_B)$ and $(X \setminus y) \propto y$, then $g(X) = g(X \setminus y)$.

Proof. In the recursive definition, g(X) is defined by (ii). If $y \notin Z$ (Z is as in (ii) of the definition of g), then by induction on norm we have:

$$g(X) = g(X \setminus Z) = g((X \setminus Z) \setminus y) = g(X \setminus y).$$

If $y \in \mathbb{Z}$, then

$$g(X) = g(X \setminus Z) = g((X \setminus Z) \cup (Z \setminus y)) = g(X \setminus y). \square$$

Proposition 2.7. If $X = X' \cup \{(1,Y), \dots, (m,Y)\} \in F(R_B)$, where $X' = \emptyset$ or $X' \in F(R_B)$, then $g(X) = g(X' \cup Y)$.

Proof. Assume, first, that $(i,Y) \in X'$, for some $i \in \mathbb{N}_m$. Then we obtain the equation $g(X) = g(X' \cup Y)$ by induction on ||X'||. Thus we may assume that the above union is disjoint.

If $(X'\setminus (i,Y))\alpha(i,Y)$ for some $i\in\mathbb{N}_m$, then we have $X'\alpha(i,Y)$, for every $i\in\mathbb{N}_m$, and by Proposition 2.6, we obtain: g(X)=g(X')=g(X').

If $(X' \setminus u) \alpha u$, for some $u \in X'$, then we obtain $g(X) = g(X' \cup Y)$, again by Proposition 2.6.

It remains to consider the case when X does not satisfy 2.2'). Then, if $X' = \emptyset$ or X' is irreducible, the equation $g(X) = g(X' \cup Y)$ follows by (iii); and if

$$X' = X'' \cup \{(1, Z_1), \dots, (m, Z_1), \dots, (1, Z_r), \dots, (m, Z_r)\},\$$

where $X'' = \emptyset$ or X''' is irreducible, then we have:

 $g(X) = g(X'' \cup Z_1 \cup \ldots \cup Z_r \cup \{(1,Y),\ldots,(m,Y) = g(X'' \cup Z_1 \cup \ldots \cup Z_r \cup Y = g(X' \cup Y)).$ Now we can show the following:

Proposition 2.8. $(R_B;g)$ is an associative object.

Proof. If X is irreducible, then $g(X \cup Y) = g(g(X) \cup Y)$. In the case when X is reducible, then by Proposition 2.6 or Proposition 2.7 and an induction on norm we obtain that $g(X \cup Y) = g(g(X) \cup Y)$.

Now we are ready to give a construction of a free m-object with a basis B.

First we define an m-object $(R_B; f)$ by

$$f(X) = \{(1, g(X)), \dots, (m, g(X))\},$$
 (2.5)

for every $X \in F(R_B)$,

Proposition 2.9. $(R_R; f)$ is an associative free m-object with a basis B.

Proof. It is clear that $(R_B; f)$ is an m-object, and, moreover, we have:

$$\begin{split} f(f(X) \cup Y) &= f(\{(1, g(X)), \dots, (m, g(X))\} \cup Y) = \{(i, g(\{(1, g(X)), \dots, (m, g(X))\} \cup Y)) | i \in \mathbb{N}_m\} = \\ &= \{(i, g(g(X) \cup Y)) | i \in \mathbb{N}_m\} = \{(i, g(X \cup Y)) | i \in \mathbb{N}_m\} = f(X \cup Y), \end{split}$$

i.e., $(R_B; f)$ is associative.

Let P be a subobject of $(R_B;f)$ such that $B \subseteq P$. By induction on hierarchy we will show that $P = R_B$. Assume that $\{u \in R_B \mid \chi(u) \le p\} \subseteq P$, and let $y \in R_B$ be such that $\chi(y) = p+1$. Then y = (i,Y) for some $i \in \mathbb{N}_m$, and $Y \in F(R_B)$, where Y is irreducible and $\chi(Y) = p$. Thus

 $Y \subseteq P$, and g(Y) = Y. From (2.5) we obtain:

 $f(Y) = \{(1,Y),(2,Y),\ldots,(i,Y),\ldots,(m,Y)\} \subseteq P,$

and therefore $(i,Y) \in P$. This implies that $P = R_B$, i.e. that B is a generating subset of $(R_B; f)$

Let (Q';f') be an associative m-object and $\lambda:B\to Q'$ an arbitrary mapping. We will show that there is a homomorphism $\phi:R_B\to Q'$, from $(R_B;f)$ into (Q';f') which is an extension of λ .

Denote by D_P the set of all elements x of R_B such that $\chi(x) \le P$, and assume that for every $r \le P$, $\varphi_r : D_r \to Q'$ is a mapping with the following properties:

- (a) $\varphi_0 = \lambda$;
- (b) φ_r is an extension of φ_{r-1} ;
- (c) $\varphi_r(f(X)) = f'(\varphi_r(X)),$

for every $X \in F(D_r)$ and $r \in \mathbb{N}_p$.

Define a mapping $\varphi_{p+1}: D_{p+1} \to Q'$ as follows. First $\varphi_{p+1}(u) = \varphi_p(u)$, for every $u \in D_p$. Let $u = (i, X) \in D_{p+1}$, i. e. $X \in F(D_p)$ is such that $\chi(X) = p$. Then $\varphi_p(X) \in F(Q')$, $|f'(\varphi_p(X))| \le m$, and $f(X) = \{(1, X), (2, X), \dots, (m, X)\}.$

Therefore, there is a surjective mapping $\psi_X: f(X) \to f'(\varphi_p(X))$. If we choose such a surjective mapping ψ_X for every $X \in F(D_p)$, which has a hierarchy p, and if we put:

 $\varphi_{p+1}(i,X) = \psi_X(i,X),$

then we obtain a mapping $\varphi_{p+1}: D_{p+1} \to Q'$ which is an extension of φ_p , and, moreover, (c) is true for r=p+1, as well.

In such a way we will obtain a collection of mappings $\{\varphi_p: D_p \to Q' \mid p \ge 0\}$, such that (a), (b) and (c) are satisfied for every positive integer r. If $\varphi = \bigcup \{\varphi_p \mid p \ge 0\}$, we obtain a homomorphism from $(R_B; f)$ into (Q'; f') which is an extension of λ . \Box Proposition 2.10. Every endomorphism of $(R_B; f)$ which is an extension of the embedding

Proposition 2.10. Every endomorphism of $(R_B; T)$ which is an extension of the embedding mapping from B into R_B is an automorphism, and, moreover (in the case $m \ge 2$) the set of such automorphisms is infinite.

Proof. Let φ be an endomorphism of $(R_B;f)$ which is an extension of the embedding from B into R_B . By induction on p we will show that for every $p \ge 0$, φ induces a permutation η_p of $T_p = \{u \in R_B | \chi(u) = p\}$. First η_0 is the identity permutation on $T_0 = B$. Assume that if we put $(\forall u \in T_p) \varphi(u) = \eta_p(u)$, then we obtain a permutation of T_p . Let $x \in T_{p+1} \setminus T_p$. Then x = (i, X), for some $i \in \mathbb{N}_m$, and $X \in F(R_B)$, such that $\chi(X) = p$, and moreover, $\chi(\varphi(X)) = p$. Then $f(X) = \{(1, X), (2, X), \dots, (m, X)\}$

and this implies

 $\{\varphi(1,X),\varphi(2,X),\ldots,\varphi(m,X)\}=\varphi(f(X))=f'(\varphi(X))=\{(1,\varphi(X)),(2,\varphi(X)),\ldots,(m,\varphi(X))\},$ i.e., there is a permutation $\tau\in S_m$, such that $\varphi(\nu,X)=(\tau(\nu),\varphi(X))$. Hence, φ induces a permutation η_{p+1} of T_{p+1} , as well. This completes the proof that φ is a permutation of R_B , i.e. an automorphism of $(R_B;f)$.

The fact that there exist infinitely many such automorphisms follows from the last part of the proof of the preceding proposition.

Proposition 2.11. Every free associative m-object with a basis B is isomorphic to $(R_B;f)$. Proof. Assume that (T;f') is an arbitrary free associative m-object with a basis B. Then there exist homomorphisms $\varphi:R_B\to T$, and $\eta:T\to R_B$, such that $(\forall b\in B)$ $\eta\varphi(b)=b$, and therefore $\eta\varphi$ is a permutation of R_B , which implies that φ is an injective mapping. Then $P=\varphi(R_B)$ is a subobject of (T;f') which is generated by B, and thus P=T, whence we obtain that φ is an isomorphism. \square

The object $(R_B; f)$ is not an m-semilattice, because $f(X) \neq X$, for every $X \in F_m(R_B)$. Below we will give a construction of free m-semilattices.

First we note that:

Proposition 2.12. If $|B| \le m$, then the trivial m-semilattice on B is a free m-semilattice with a basis B.

Assume now that |B| > m, and define a subset $L_{\mathcal{B}}$ of $R_{\mathcal{B}}$ in the following way:

 $L_0 = B$; $L_{p+1} = \{(i, X) | i \in \mathbb{N}_m, X \in F(L_p), |X| > m\},$ $L_B = \bigcup \{L_p | p \ge 0\}.$

Define an object $(L_B;h)$ as follows. If $X \in F(L_B)$, then:

$$h(X) = \left\{ \begin{array}{ll} X, & \text{if } |X| \leq m, \\ \{(1,g(X)),(2,g(X)),\ldots,(m,g(X))\}, & \text{if } |X| \geq m. \end{array} \right.$$

As a corollary of the Propositions 2.9, 2.10, 2.11 and the fact that if $X \in F(L_p)$ and |X| > m, then |g(X)| > m, we obtain the following statement:

Proposition 2.13. (a) $(L_B;h)$ is a free m-semilattice with a basis B.

- (b) Every endomorphism of $(L_B;h)$ that is an extension of the embedding mapping from B into L_B is an automorphism.
 - (c) Every free m-semilattice with a basis B is isomorphic to (LB;h).

An associative m-object (Q;f) is called an (m,n)-semilattice iff $n \le m$ and $(\forall X \in F_n(Q))$ f(X) = X. Thus the class of (m,m)-semilattices coincides with the class of m-semilattices.

Assume now that |B| > n, where $1 \le n \le m$, and define a subset L_B^n of R_B as follows: $M_0 = B$, $M_{D+1} = M_D \cup (\mathbb{N}_M \times \{X \in F(M_D) | |X| > n\})$,

$$L_B^P = \bigcup \{M_p | p \ge 0\}.$$

Consider the following m-object $(L_B^n;l)$. If $X \in F(L_B^n)$, then

$$t(X) = \left\{ \begin{array}{ll} X, & \text{if } |X| \leq n, \\ \{(1,g(X)),(2,g(X)),\ldots,(m,g(X))\}, & \text{if } |X| \geq n. \end{array} \right.$$

Proposition 2.14. (a) $(L_B^n;t)$ is a free object with a basis B in the class of (m,n)-semi-lattices.

- (b) Every endomorphism of $(L_B^n;l)$ which is an extension of the embedding mapping from B into L_B^n is an automorphism.
 - (c) Every free (m,n)-semilattice with a basis B is isomorphic to $(L_B^n;l)$.

References

- [1] Clifford A. H., Preston G. B.: The algebraic theory of semigroups, I, II. Moskva, 1972 (in russian).
- [2] Čupona Ğ., Celakoski N., Markovski S., Dimovski D.: Vector valued groupoids, semigroups and groups, "Vector valued semigroups and groups". Macedonian Acad. of Sci. Art, 1988 (1-79).
- [3] Čupona G., Celakoski N.: Transformations of booleans of sets. Matem. Bilten 14 (XL) Skopje, 1990 (15-26).
- [4] Čupona G., Dimovski D., Samardžiski A.: Fully commutative vector valued groups. Macedonian Acad. of Sci. Art, Prilozi VIII-2, Skopje, 1987 (5-17).
- E5] Čupona G., Markovski S., Dimovski D., Janeva B.: Introduction to combinatorial theory of vector valued semigroups, "Vector valued semigroups and groups". Macedonian Acad. of Sci. Art, 1988 (141-185).
- [6] Čupona G., Celakovski N., Markovski S., Janeva B.: Free objects in generalized groupoids. (Unpublished).
- [7] Čupona G., Markovski S.: Free objects in the class of vector valued groupoids induced by semigroups. (Unpublished).
- [8] Janeva B.: Free fully commutative vector valued groups. Proc. of the Conf. "Algebra and Logic", Znanstvena revilja Vol 2, Maribor 1989 (75–86).