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Abstract. Vector valued groupoids induced by semigroups are
considered in [3]. Here we consider vector valued groupoids in-
duced by (nontrivial) varieties of semigroups.

Preliminaries. First we state some definitions and results
concerning vector valued groupoids induced by semigroups, consi-
dered in [3].

Let 8=(S;+) be a semigroup, and Q a nonempty subset of S.
Define a collection of subsets (Q, |e 2 1) of S by: Q, =Q,

Ques = {xy | X€Q » vEQ}. If n and m are positive integers and
f:Qn - Qm a mapping from Q, into Qm' then the ordered pair (Q;f)

(HaiGP,bjte(f(a,-...-an) =b,+...:b =>Db,,...,b €EP)

If (Q;f) is an (S;n,m)-groupoid and (Q’;£f’) is an (S';n,m)-
groupoid, then a mapping $:Q + Q' is said to be a homomorphism

from (Q;f) into (Q’;f’') if for every ai,b €Q the equation
f(aq-...-an) =by+...+b~implies f'(¢{a1)*._,*¢(an)) =
=¢(b1]*...*¢(bm), where S'=(S';*). If, moreover, ¢ is bijective

and ¢~

We state now some results, proved in [3].

(i) A nonempty intersection of strong subgroupoids is a
strong subgroupoid as well, but a nonempty intersection of sub-
groupoids is not necesseraly a subgroupoid.

(ii) A bijective homomorphism is not necesseraly an iso-
morphism.

(iii) A homomorphic image of a subgroupoid is a subgroupoid,
but a homomorphic image of a strong subgroupoid is not necessa-
rily a strong subgroupoid.

(iv) A complete nonempty homomorphic inverse image of a
strong subgroupoid is a strong subgroupoid, but this is not true,
in general, for subgroupoids.

Assume now that Y is a nontrivial variety of semigroups.
(By "a nontrivial" we mean that |/ contains objects with more
than one element.) If Q is a nonempty set then we denote by V(Q)
a free semigroup in | with a basis Q. Every (Y (Q) ;n,m)-groupoid is
called a (V;n,m)-groupoid. Here, we will write VP{Q} instead of Qp.

All mentioned "positive" properties for semigroup (n,m)-
groupoids are, certainly, true for (Y;n,m)-groupoids; neverthe-
less, some properties hold in the class of {(V;n,m) -groupoids,
which do not hold in the general case. Below we state some pro-
perties of this kind.

(i) A nonempty intersection of subgroupoids of a (Y;n,m)-
groupoid (Q;f) is a subgroupoid as well. If P is a subgroupoid
of (Q;f) and if P is not a strong one, then the strong subgrou-
peid generated by P coincides with Q.

(ii’) A bijective homomorphism is an isomorphism. (When we
say that ¢:(Q;f) + (Q';f") is a homomorphism then we assume that



both (Q;f) and (Q’';£f’) are (V;n,m)-groupoids.)

The corresponding "negative"™ properties stated in (iii) and
(iv) remains "negative”, in general, in the class of (\;n,m)-
groupoids as well.

It is given (in Pr. 2.6) a description of the set of varie-
ties | for which every subgroupoid of a (Y;n,m)-groupoid is a
strong subgroupoid too.

In the last part of the paper, some connections between
(Win,m) -groupoids and ({;n,m)-groupcids are described, where
is a nontrivial subvariety of V.

Consider some examples.

Example 1. If Y=sem is the variety of all semigroups then a
(Vin,m)-groupoid is a usual (n,m)-groupoid ([2]).

Example 2. The class of fully commutative groupoids ([4))
is obtained in the case when Y=Comsem is the variety of commuta-
tive semigroups.

Example 3. Let VY=S1 be the variety of semilattices, i.e.
idempotent and commutative semigroups, and let Q be a nonempty
set. As it is well known, the semigroup S1(Q) can be interpre-
ted as the semigroup F(Q) of all finite nonempty subsets of Q,
where the operation is the usual (set theoretical) union. Then
an (51l;n,m)-groupoid can be considered as a mapping f:X -~ Y=f(X)
from {X€F(Q) |1 <|X| €n} into {YEF(Q) |1 =<]|Y| <m}. (|A| denotes
the cardinal number of the set A.)

Example 4. Let \V=RB be the variety of rectangular bands,
i.e. idempotent semigroups satisfying the law xyz =xz. Then,
ValB} =BxB, for every a 22, where an element a€Q is identified
by the pair (a,a) (=a-a). If 1<n,m s 2 then an (RB;n,m)-groupo-
id is the same as an (n,m)-groupocid, according to Ex. 1. If
nz23, m=2, then the class of (RB;n,m)-groupoids coincides with
the class of all (n,m)-groupoids which satisfy all the identi-
ties of the form

flxz ...z _y) = flxu,...u _y).

We also note that in the first three examples there are not
any distinctions between subgroupoids and strong subgroupoids,
but, if m=23, Q0 is the unique strong subgroupoid of an (RB;n,m)-
groupoid (Q;f).

1. Contents in {(Q). Further on we assume that Y is a given
nontrivial variety of semigroups, and Q is a given nonempty set.
We will introduce here a notion of a p-content c_(u) of an ele-
ment ueVP(Q}. =

First, let us make some remarks.
(i) Let a,,a,,... be a sequence of different elements of

Q, and il' jv positive integers. Then

A, A, *...c@;, = @, @&, se..ca,

i‘l ia i jl Ja ]q
is an equality in V(Q) iff

X X s X, = X. X s aX

11 ‘1"2 J'p Ja ja jq

is an identity in V. )
(ii) Let uGVp(Q}, where p>1. We define a family [u;p) of

subsets of Q as follows.

A€[u;p) iff there exist a ,a,,...,a _€Q such that

u=a -a,-...'a and a={a,,a,,...,a_}. (We note that {a1,...,ap}
has the usual meaning, i.e. a€{a,,...,a } <=> (a3) a=ay.)



Clearly we have
uey _(Q)=> [u;p) # ¥ & 0 < |A] < p
for every A€[u;p]. P

(iii) If uEVp(Q) then [u;p] is a family of finite subsets

of Q, and thus for every Le[u;p] there is at least one minimal
element Me[u;p} A

Suppose that M’ and M" are two different minimal elements
of [u;p], and let
1
where M'={a_ ,... ,ap} ¢ M"={b ,... ,bp}. Assume that bjBM‘ and that
|[M"| =2. Choose an element brEM“, such that br#bj. Define

c,l,...,cpeq by: hi if 145
€y = { b, if 1 =3

Then we have u=c,-c,+....c_ and M={c,,...,c_l}is a proper subset
of M", which is impossible. So, if M"\M’ #¥§ then |M"|=1. We ob-
tain symmetrically that |M’| =1. Therefore, we have u=aP=bF, whe-
re a,beQ, a¥b; furthermore, u =cP for every ce€Q.

In such a way we proved the following

Proposition 1l.1. For every positive integer p and every
ueVp(Q} the set [u;p] either contains least element M or every

one element subset of Q is its minimal element. X
The last statement suggests the following definition of a
p-contents c_(u) of an element ueY _(Q). First we put c_(u) =M

if M is the least element of [u;p] , and cp(u)=ﬂ iff |QT =2 and
all one element subsets of Q are minimal members in [u;p].

u = a -az--..-ap = b1-b2-...-bp,

2. Subgroupoids. We assume here that (Q;f) is a given
(V;n,m) -groupoid.

Proposition 2.1. If {Pi | ieTI}l is a family of subgroupoids
of (Q;f) and if P =n{Pi|iGI}5‘ﬁ, then P is a subgroupoid of (Q;f).

Proof. Let a,,...,a €P<P,, and let f(a,-...-.a )=u€V_(Q).
If cm(ul=l!, then we have u =a™ for every a€P, and thus it re-
mains the case when cm(uJ #@. The fact that Pi is a subgroupoid

implies that there exist b, ,...,b. P, such that u=b, -,..-b, .
i, in i i, im

If H=cmtu) then we have u = Cqteee=Cpry where A=[c1....,cm} <
= {bi ,...,b1 } and therefore MeP. X

ll::cnr:cull.au':;1 2.2. Every nonempty subset B of Q generates a
uniquely determined subgroupoid <B> of (Q;f). X

Now we are going to give a suitable description of <B>.

Proposition 2.3. Let B be a nonempty subset of Q and define
a sequence (Bu| a2 0) of subsets of Q as follows:

Bo=B, B, =B U (U ic (£(u)) |ueV (B ))).

Then
<B>=U (B, |a2 0}. x

Consider now some connections between subgroupoids and

strong subgroupoids.

Proposition 2.4. Let P be a subgroupoid of Q which is not a
strong one. If R is a strong subgroupoid of (Q;f) such that
PE Re€Q, then R = Q.

Proof. The assumption that P is a subgroupoid but not a




strong subgroupoid implies that there exists a ueVntQ) and
b"""bm' c ..,cmeo such that
f(u) = b,-___.bm = Cytennn ™’
where b_.€P, ck9R and there is some i such that ciER\P. Let 4
be an arbitrary element of Q and define a sequence d"""dm by
__{ Sy if k # i
d =
k d if k = i
Then we have £{u}=d1-...-dm, which implies that d=d1€R, i.e.Q=R.X
If B is a nonempty subset of Q then we denote by <B>s the
strong subgroupoid of (Q;f) generated by B. (The existence of
<B>S follows from the fact that a nonempty intersection of
strong subgroupoids is a strong subgroupoid as well.)
Corollary 2.5. For every nonempty subset B of Q0 we have
<B>s = <B> or <B>s =Q. X
Now we will describe the set of varieties V of semigroups
for which there are not any differences between subgroupoids and
strong subgroupoids.
Let us say thatV is m-regular iff for every nonempty set Q
and any element ueVm{Q} | [ujm] |[=1. In other words, if ai,bjEQ
are such that

rc

u=a-...-a = b'-...-bm

then (b1,...,bm] is a permutation of (a',...,am).

Proposition 2.6. The following two conditions are equivalent

(a) V is m-regular.

(b) For every (V;n,m)-groupcid (Q;f) each subgroupoid of
(Q;f) is a strong subgroupoid of (Q;f) as well.

Proof. Let | be m-regular and let P be a subgroupoid of a
(Vs;n,m)-groupoid (Q;£f). Let uevn(P) and f(u}=a1-az....-am, whe-
re a €Q. The fact that P is a subgroupoid of (Q;f) implies that

f{u)-b,u..-hm,for some b.€P. Thus, we have a,-...-a =b,-...-b_,

and from m-regularity of | we obtain that ai,...,amGP. Hence, P
is a strong subgroupoid of (Q;f).

Assume now that | is not m-regular. Let Q be a set with at
least m elements. The assumption that Y is not m-regular implies
that there exist ai,bjeo such that A={a1,...,am}EE{b1,...,bm}

and a,-...-a = Db, +...+b_in Vo).

Define a ({;n,m)-groupoid (Q;f) by f{u)=a,-...-am for eve-
ry uGVn(Q). Then A is a subgroupoid of (Q;f), but it is not a
strong one. X

Certainly, Pr. 2.6 does not mean that if | is not m-regular
then the set of strong subgroupoids of a (V{;n,m)-groupcid (Q;f)
is a proper subset of the set of subgroupoids of (Q;f). As an
illustration, consider the following

Example 2.7. Let m =2 3 and let | = RB be the variety of
rectangular bands. Let Q be an arbitrary set and f:Vn(Q]*-Vm(Q}
be defined by f(u)=a™ (=a where a is a fixed element of Q).
Then every subgroupoid of (Q;f) is a strong subgroupoid as well.
(Namely, P is a subgroupoid of (Q;f) iff a€Pr.)

3. Homomorphisms and congruences. First we note that in the
case of (\{;n,m)-groupoids the definition of a homomorphism can
be restate as follows.




Proposition 3.1. If (Q;f) and (Q';£f’) are (V;n,m)-groupoids

then a mapping ¢:Q + Q' is a homomorphism iff
¢mf = f'¢, (3.1)

Proof. We have only to explain what are the meanings of
bpr ¢ in (3.1). First, the mapping ¢:Q + Q' induces a unique
homomorphism §:Y(Q) -+ V(Q’) such that $(VG{Q))=VG(Q'],£or every
@ 2 1. Then we denote by ¢,:V (@) ~ V_(Q") the corresponding
restriction of ¢. X

Proposition 3.2. If «:Q + Q' is a bijective homomorphism
then it is an isomorphism.

Proof. If ¢:Q » Q' is bijective, then ¢ is an isomorphism
1

and ¢Q:VG(QI - VQ(Q'} is bijective as well, and (¢-1}a-(¢a}- .
Then we have

- PP -1 _ - - _ -1
(¢ )mf =(¢ }m(f‘¢n)(¢n) =(¢ )m¢mf(¢n) =f(¢ ). X

We mentioned in Preliminaries that a homomorphic image of a
subgroupoid is a subgroupoid, and that a complete inverse homo-
morphic image of a strong subgroupoid is a strong subgroupoid.
The converse assertions are not true generally, as it show the
following examples.

Example 3.3. Let (0;f) be a (V;n,m)-groupoid containing a
subgroupoid P which is not a strong one, and let g be the res-
triction of f on P. Then P is a strong subgroupoid of (P;g) and
the embedding mapping from P into Q is a homomorphism such that
P is a homomorphic image of a strong subgroupoid of (P;g), but P
is not strong in (Q;f).

Example 3.4. Let | be the variety of commutative semigroups
which satisfies the identity x*=y*, where x,y are different va-
riables. If Q={a,b,c} and Q'={a,8} then

1

V, (@ = {a“,a®b,a3c,b3c}, V. (Q) = (a?,ab,ac,bc},
V“(Q') = {a“,a8}, VZ(Q')= {a?,aB}.
Define (V;4,2)-groupoids (Q;f) and (Q';f’) by
f(u) = bc, £f'(u') = a3,
for every ueY, (Q), u'eV, Q).
Then the mappings ¢ = {: E :), v = (: E :)

are homomorphisms from (Q;f) into (Q';f’). The set A'={a} is a
subgroupoid of (Q’;f’), but A={al=¢""(A’) is not a subgroupoid
of (Q:;f). Furthermore, A={al is a generating subset of (Q;f),
and ¢, ¥y are different homomorphisms which extend the mapping
a~— o from A into Q'.

It is natural to define congruences as follows. Let (Q;f)
be a {V;n,m}-groupoid and p an equivalence on Q. We say that ¢
is a congruence on (Q;f) iff there is a homomorphism ¢:(Q;f) ~
+ (Q';£"), where (Q';£f’) is a (V;n,m)-groupoid, such that p=kers,
i.e. apb <=> ¢(a) = ¢(b).

Let (Q;f), (Q';£f'), ¢,r be as above. Then P’'=¢(Q) is a
subgroupoid of (Q’;f’) and ¢ induces a unique surjective homo-
morphism y:(Q;£f) + (P’';g’), where g’ is the restriction of f’
on P'. Moreover, we have kery=p=ker¢. Thus, we can assume that
¢ is surjective. Then $:a » ¢ (a) is bijective mapping from Q=Q/p
onte Q'=¢(Q), where

2 = {(beqQ | arb} = {beQ | ¢(a) = ¢(b)}.
This implies that if we define I:Vntﬁ} +Vm(6) by



?[51""'En)=51"“'5m<=> f'(di(a,}'---'¢(anll=¢(b,)'---'¢(bm] (3.2)
then we obtain a (V;n,m)-groupoid (Q;f) such that §:a v ¢(a)
is an isomorphism from (Q;f) onto (Q’;f’).

Now we will give another characterization of congruences.
Proposition 3.5. Let (Q;f) be a (Y;n,m)-groupoid and p an
equivalence on Q such that
fla,~...ra )=b,s..cb_, f(c1-...-cn}=d1-...'dm in (Q;£f) (3.3)

and _ _ _ _ V@
a,*..."a@a_ =C_"..."c_ in V(Q) (3.4)
implies ! n ! n

o

B,-...B, =

where Q=0Q/p, a={beQ |apbl}.

Then p is a congruence on {Q;f). Conversely, if o is a cong-
ruence on (Q; £f) then every implication (3.3)&(3.4)==>(3.5) holds.

Proof. Assume that ¢:(Q;f) > (Q';£f") is a surjective homo-
morphism such that p=ker¢, and denote by ¢ the corresponding
isomorphism from (Q;T) into (Q';f’).

If (3.3) holds in (Q;f) then we have (in (Q';£f’)):
£r(d(a,) ..."8(a)) = ¢(b.,)-...-¢t'bm).
f’(@{c1}'---'¢tcn}) = ¢{d1)-...-¢{dm)

yreeerd in V@), (3.5)

and therefore
o f@,-...-a)=b,-...-B_, f(cyreerc)=d,-...-d
in (Q;f). Assuming that (3.4) is satisfied, we obtain (3.5).
Conversely, assume that p is an equivalence on Q such that
every implication (3.3)&(3.4) => (3.5) holds.
If a,,.;.,aneo and f{a,-.._-an3=b1-...-bm in (Q;f), then
we define f(a,....-a ) by
fa,-...ra)) =b,-...'b .
It follows from (3.3)&(3.4) => (3.5) that f is well defined,
i.e. we obtain a (V;n,m)-groupoid (Q;F). Clearly, %:a — a is
a homomorphism from (Q;f) onto (Q;f) and p=kerd , i.e. p is a
congruence. X
(We remark that the above definition and Pr. 3.5 imply
that the well known isomorphism theorems ([1]) holds.)

4. Induced (W;n,m)-groupoids. We assume here that | is a non-
trivial subvariety of a variety \/. Note that W(Q)eY for any non-
empty set Q, which implies that there is a uniquely determined
homomorphism »:Y(Q) + W(Q) with the property n{a)=a for all a€Q.
Moreover, for each positive integer p, n(Vp(QJ)=HP(Q} and this

implies that n induces a surjective mapping npzvp(0)+ NP(Q).

(Vin,m)-groupoid (Q;f) iff the following diagram commutes:

f

V(@) Vo (@)
g

W, () Wy, (Q)

An obvious consequence from this definition is

Proposition 4.1. If (Q;f) is a (V;n,m)-groupoid then there
exists at most one (W;n,m)-groupoid (Q;g) which is induced by
(Q;f). Such a (W;n,m)-groupoid (Q;g) do exist iff (Q;f) satis~-
fies the following condition:

(vu,veV(Q)) (m_(u) = Ta(v) => w f(u) =7 _£(v)). X (4.1)




If a (V;n,m)-groupoid (Q;f) satisfies (4.1) then we say
groupoid iff the following statement holds:

(VU'VGV(Q))(wn(u) = wn(v) => f(u) = f(v)). (4.17)

Proposition 4.2. A (W;:;n,m)~groupoid (Q;g) is induced by at
least one W-(V;n,m)-groupoid (Q;f).

Proof. If ueW, (Q) then = '(u) eV (Q), n_"(g(u))eV_(Q).

If f:Vn(Q) *Vm(Q) is such that for every xGVn(Q) we have
f(x)eﬂ;1(gnn(x)) then we obtain a (V;n,m)~groupoid (Q;f) which
induces (Q;g). Certainly, we can define f in such a way that it
satisfies (4.1'). Namely, let h:Nn(Q) > Vm(Q) be such that
h(wen "g(u) for every uel (Q). Now, if we define £:V_(Q)~+V, (Q)
by f=hr_, then we will obtain a W-(V;n,m)-groupoid (Q; £)
which induces (Q;g). X

The following statements are also clear.

Proposition 4.3. Let (Q;g) be a (W;n,m)-groupoid which
is induced by a (V;n,m)-groupoid (Q;f). Then:

(a) If Pis a subgroupoid of (Q;f) then P is a subgroupoid of (Q;g).

(b) If p is a congruence on (Q; f) then p is a congruence on (Q;g). X

Proposition 4.4. Let (Q;f) and (Q';f’) be (V;n,m) -groupoids
and let (Q;g), (Q'3;g") be (W;n,m)-groupoids such that (Q;g) is
induced by (Q;f) and (Q’';g’) is induced by (Q’;f"). If 4:Q >+ Q'
is a homomorphism from (Q;f) into (Q’;f’) then it is a homo-
morphism from (Q;g) into (Q’";g’) as well. X

The following example shows that Pr. 4.3 (a), in general,
does not hold for strong subgroupoids.

Example 4.5. Let Q={a,b} and let £:Q - Q® be defined by
fla)=f(b)=(a,a,a). Define a mapping g:RB(Q)=Q - RB,(Q) by
gla)=g(b)=a. Then (Q;f) is a (Sem;l,3)-groupoid and (Q;g) is a
(RB;1,3)~-groupoid induced by (Q;f). A={al is a strong subgrou-
poid of (Q;f), but A is not a strong subgroupoid of (Q;g).
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BEKTOPCKD BPETHOCHHM I'PYTIOMOM WHIVIIMPAHM Ol MHOTYOEPASHIA Q@ MNVIVIFYIH
Pes3asunme
BeKTOPCKO BPEONHOCHHTE TPYMNOoHOAH HMHOYLHPaHH OO MNONyrpynH ce

pasrnemyeaaT Bo TpymoT [3]. Opme ce pasriemyBaaT HCTHTe Mpamama
KAaKO H BO NPEeTXOOHO CIOMEeHAaTHOT TPyHO CO TOa mMTO MONYTPYNHTEe Cce
on maneHo MHOryo6pasue onm nonyrpynd. Ce mokaxyBa JeKa HEeKOH pe-—
SYJITATH WTO He BaxXaT BO ONWTHOT CcJiy¥aj BaxaT BO Baka H3BpuleHaTa
pecTpHkUuuja,



