TRANSFORMATIONS OF BOOLEANS
Mar. onnren Makenonnja, 13 (40) (1990), 15-26
G. Cupona, N. Celakoski

Abstract. We say that (M;f) is,a Boolean unar iff f is a
mapping from a subset‘éaf of »(M)'’ intc ¢»(M). Subunars, homo-
morphisms and free objects are defined in a usual way. The main
subject of the paper is the problem of existence of free objects
in several classes of Boolean unars. Almost everywhere one ob-
tains the following "unusual" property: there are more than one
endomorphisms in a free Boolean unar which induce the identity
transformation of the basis (as it is well-known, free algebras
have not this property ([1])).

§1. BOOLEAN UNARS AND SUBUNARS

Let M be a nonempty set, o) < ¢5(M) and f:a) + M) a
mapping from of into (3(M). Then we say that M = (M;f) is a Boo-
ther on, instead of "boolean unar" we will simply write "unar"

We note (once more) that the carrier M of a unar M is not
empty, but we allow the domain &3M to be empty. In the case when

&jM =¢, we say that M is a zero unar.

2)

M' =(M;£f'), then:
Ms M <=>0) Saf, and £=£|0,° . (1.1)
It is clear that: - -
Proposition 1.1. The zero unar with the carrier M is the
least member of (ll ,. A unar M= (M;f) is a maximal member of JUM
iff Dy = ). x

A unar N = (N;g) is called a subunar of a unar M = (M;f) iff

the following conditions are satisfied:
NeM, D =D, N >Ny, g=£[9y- (1.2)
The following propogition_shows that the family of subunars

of a given unar (M;f) can be characterized by the family of the-
ir carriers (as in the case of the "usual" unars).

Proposition 1.2. If M= (M;f) is a unar and N a nonempty sub-
set of M, then there exists at most one unar N = (N;g) which is a
subunar of M. Such a unar N do exists iff the following condition

s satisfied: xeg, N Bm) —> £(x)1e B(N). (1.3)
Proof. Let N’ = (N;g’) and N" = (N;g") be subunars of M. By
1.2 h :
( } we ave O@Nr - oaM Ia @(N) =°8N“ and g; = gv_I'
i.e. N’ = N". = = =
Now, let N =(N;g) be a subunar of M and XGCSM N J5(8). Then

£(X) =g(X)€ B(N), i.e. the condition (1.3) is satisfied.
Conversely, if (1.3) holds, then putting

Dy =D, N > and (X)) g(X) = £(X),

1) 5 (M) is the Boolean of the set M, i.e. the family of all subsets of M.

2) The term "unar" is usually used for an algebra with one unary
operation([Z]).However this fact will not make any misunderstanding.

3) f'IAﬂM is the restriction of f’ on Aﬁm,i.e.(Vxeoan)f(x)-f'(xh
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one obtains a subunar N = (N;g) of M. X

According to this proposition, whenever we consider a sub-
unar of a given unar M= (M;f), we will think of a nonempty sub-
set N of M which satisfies the condition (1.3); in that case we
will write N < M.

The following proposition gives a description of the unars
whose all the nonempty subsets are subunars.

Proposition 1.3. Every nonempty subset N of a set M is a subunar
of the unar M= (M;f) iff the following condition is satisfied:

(¥x,ve HM)) (xeHy N A (Y) => £(X)eBH(Y)). X (1.4)

It is clear that ;very zero unar and, more generally, every

inclusive unar satisfies the condition (1.4). (We say that a
unar M = (M;f) is inclusive iff (VXeddy) f(X)E X.)

The following property will bring us to the concept of a
subunar which is generated by a given nonempty subset.

Proposition 1.4. Let M = (M;f) be a unar and N, i€I, a fa-
mily of subunars of M. If N = fghﬂi # P, then N = M. X

Proposition 1.5. Let §j={M;£) be a unar and B a nonempty
subset of M. Then there exists a unique subunar <B> of M with
the following properties:

(i) B=<B>;
(ii) N < M and BEN => <B> ¢ N.
Proof. Namely, <B> is the intersection of the family of

subunars N of M such that B N. X

Remark. If the family of subunars of a unar has the least
element, say P, then every subset of P generates P and so does
the empty set @. Further on, the notation <@> will make sense
only in this case.

Below we will give a more convenient description of <B>, assu-
ming that M = (M;f) is a given unar and B is a nonempty subset of M.

Let B,=B and let

c, = ulye A (M) | Y=£(X) for some X€g, N @ (B,)}. (1.5)

Then we set

Boet =B, U C.. (1.6)
It is easy to show that.
<B>=U{Ba|u20}. (1.7)

ve integer o such that c€B,. And, if dEM\<B>, then we say that
the B-hierarchy of 4 is infinite.
Now, by the above considerations, we obtain the following
Proposition 1.6. If M= (M;f) is a unar and # #B< M, then
<B> = {x€M | x has a finite B-hierarchy}. X

§2. HOMOMORPHISMS
If M=(M;f) and M’ =(M";f’) are unars, then a mapping
$:M » M’ is called a homomorphism from M into M’ iff the follo-
wing conditions are fulfilled:
6 (D) S By, and (VXEoDy) ¢ (£(X)) =£(4(X)). (2.1)

Here, for X<M, ¢(X) -} 4 {¢(x) | x€X?}, and, in the same sense:

M«BM} = {¢(X) Ixeaaﬂ}.

morphism such that ¢~' is also a homomorphism.
It is easy to show that:



Proposition 2.1. A bijective homomorphism ¢:M - M’ is an

isomorphism from M=(M;£) into M'=(M’;£’) iff ¢(a® )=<d,,. x

We note that there are bijective homomorphisas which are
not isomorphisms. For example, if M= (M;f) and M" = (M;f’) are
such that aBM < aS'M, , then the identity transformation of M

is a bijective homomorphism, but it is not an isomorphism.

Proposition 2.2. Let M,=(M;f,) and §==(M;fz) be two unars
with the same carrier .M and let M, < M,. If ¢:M + M’ is a ho-
momorphism from M, into M’ =(M’";£"), then ¢ is a homomorphism
from M, into M’ too. X

Proposition 2.3. Let M= (M;f) be a unar, § # NcM, and let
/'y be the family of all the unars (N;g) with the carrier N such
that the inclusion mapping*) ¢ from N into M is a homomorphism
from (N;g) into M. Then, the unar N = (N;h), defined by

oauuoamn ™ (N) and h = £]|D ,

is the greatest member ;f f?;. In the case when_N < M, the unar
(N;h) coincides with the unar induced by N, by the agreement ma-
de afther P.1.2. X

Proposition 2.4. Let ¢ be a homomorphism from a unar M=(M;f)
into a unar M'=(M’;f’). If N’ S M’ is such that ¢~ '(N’) =N #¢,
then N = M.

Proof. Let xec@M N (O(N). Then ¢(X)€4(B,) < oD, and
¢ (X) S N'. Therefore, ¢ (X)€od,, M ¢S (N') which implies that

$(E(X))=£'(¢(X))E N, L.e. £(X)c ¢™"(N') = N. X

Note that a homomorphic image of a subunar is not necessa-
rily a subunar. For example, let M be the zero unar with the
carrier M, and M’' = (M;f) a unar with the same carrier, such that
there exists at least one nonempty subset N of M which is not a
subunar of M'. Then N £ M, l,:x ¥ x is a homomorphism from M

into M’, 1H{N) =N, but N is not a subunar of M’,

It is also natural to ask the following question: Is it
possible to exist distinct homomorphisms ¢,9:(M;£f) - (M*";£’)
such that their restrictions on some generating set B of (M;f)
are equal? It is easy to show that the answer is yes, as the
following example shows.

Example 2.5. Let M={a,b,c,dl=M",

D, = ({a,b}}, £({a,b}) =M= £'({a,b}).

Then B={a,b} is a generating set of M=M’, and there are
exactly 16 hamomorphisms from M into M’ (i.e. endomorphisms of
M) which are extensions of the inclusion ( =(: E) from B into M.

There are two distinct isomorphisms between them.

§3. FREE UNARS

Let & be a class of unars. We say that a unar M= (M;f) is
a free object in ¢ with a basis B iff the following conditions
are fulfilled:

(i) B is a generating set of M,

(11) For every unar M’ =(M’;f’) and every mapping A:B -+ M’
there exists a homomorphism ¢:M - M’ which is an extension of A,
i.e. (VbeB) ¢(b) = i(b).

The fact that every mapping from a zero unar into another one
is a homomorphism implies that the following proposition is true.

“) (¥xeN) ((x) =x.



Proposition 3.1. If M= (M;f) is the zero unar with the car-
rier M, then M is a free unar with the basis M, in every class
of unars ¥ such that MEET . X

Now we will show that the zero unars are the only free ob-
jects in the class of all unars.

Proposition 3.2. If M= (M;f) is a nonzero unar, then M is
not a free object in the class of all unars.

Proof. Let M = (M;f) be a nonzero unar and P be a set dis-
joint with M, but of greater cardinality than M. We set M'=MUP
and define a unar M’ = (M’';f") with:

°‘9w = o@M and (VXeod,,) £'(X) = £(X)UP.

We will show that there is no homomorphism from M into M', Name-
ly, if such a homomorphism ¢:M -~ M’ exists, then for any Xe€.d,

we would have 4 (f(x)) = £7(¢(X)) = £(¢(X)) U P.
But this is not possible since the left hand side has strictly
smaller cardinality than the right hand side. X

The proposition 3.2 suggests to consider "smaller" classes
of unars and to search free objects there.

One of the "simpler" classes of unars in which free objects
do not exist is the class of constant unars, which we denote by
Con. Here, a unar M = (M;f) is said to be constant iff M is not a

zero unar and there exists A<M, such that ntxeaa“) f(X) =A.

If M is a constant unar in the proof of the previous propo-
sition, then the obtained unar M’ will be also constant, and so
the following is true:

Proposition 3.3. There are no free objects in Con. X

As a contrast of Con is the class &/ of unars defined in
the following way:

M= (M;f)e¥ iff By = B(M) and (YXsM) £(X) = X.

Proposition 3.4. Every object M = (M;f)€9 is free in % with
the basis M. X

Now we will consider a family of subclasses of Con, every-
one of which has free objects. Let o be a cardinal and let

Con(a) = {MECon |oQ, = (M) A (VXSM) | £(X)| < o},

The class Con(a) can be described as a class of ordered
pairs (M,A), where A<M and |A| < o. Namely, the pair (M,A7)
will represent the unar M = (M;f)€Con(a), such that
Specially, (¥Xc M) £(X) = A.

Con(0) = {MeCon | o8, = B(M) A (YXSM) £(X) = §}.

Now we have: -

Proposition 3.5. (i) Be M is a generating set of (M,A)
iff M\NAESB.

(ii) A mapping ¢:M + M’ is a homomorphism from (M,A)

into (M,A') 1iff ¢(A) = A". X

By P.3.5, we easily come to the following description
of the free objects in Con(a).

Proposition 3.6. (M,A) is a free object in Con(a) iff a=|A].
In this case, B=M\A is a basis of (M,A). X

Assuming that a=|A|, in the following statements we descri-
be all the basis of the free object (M,A) in Con(a).

Proposition 3.7. If A is a proper subset of M, then M\A is
the unigue basis of (M,A). X

8) |y| is the cardinal number of the set Y.




Proposition 3.8. If |M|=a, then BEM is a basis of (M,M)iff |M\B|=a.X
Proposition 3.9. If ais finite, then @ is the unique basis of (M,M). X

Proposition 3.10. If a is infinite, then there exist infinitely
many nonequivalent basis of (M,M). X

At the end of the paper, we will consider one more class of unars
without free objects and one subclass of it with free objects.

Let ﬁ‘ be the class of unars M = (M;f) such that

By = (XSM:l <[xX| <& ) and (VX€aB),) 1S |£(X)] < 5y .

First we will show that: -

Proposition 3.11. There are no free objects in ?’

Proof. Let M= (M;f), M’ = (M',£’)e Z and a€M, a’eéM’ be such that
|£({a})| < |£'({a’})|. Then there is no homomorphism ¢:M +M’ such that
¢(a)=a’, since if such a homomorphism ¢ would exist, then

¢ (f({a}))=f’({a’}) and this would imply |£f’({a’})]| s|£f({al})].

Now suppose that M =(M;f)e £ with the basis B and a€B is such that
|£({a}) |=m. Let M’ be a finite set with m+l elements and put f’ (X’)=M’
for every subset X’ of M’. Then we obtain the unar M’=(M';f’)e Z. By the
above considerations it follows that there is no homomorphism ¢ ::M+M’. X

Now we will consider a subclass g;n of &, defined in the

following way: ve £ <=> me Z ana (¥X€y) 1 < [£(X)] < m
(where m is a finite cardinal). -

Proposition 3.12. Every nonempty set B is a basis of a free unar
Me Z .

Proof. Let us set CowB and let

Cotr ™ CuUme{xC_ZCu: 1 < x| <5}

where No= {1,2,...,m}. Then we put C = U{Cu |a =z 0}.

We will define a unar C=(C;f)e€ '-‘;\m as follows. If XcC is a finite
nonempty subset of C, then there exists an a 2 0 such that X€C, and
then (1,X),(2,X),...,(m,X)€C,,,CC, i.e. ¥={(1,X),(2,X),...,(mX)} 1is
a subset of C with m elements. Therefore we can define f by:

£(X) = {(1,X),(2,X),...,(m,X)}.

If is easy to show that B is a generating set of C.

Clearly, the B-hierarchy of u€C is a+l iff u€C,4,\C,=D,4,. Also,
ueDy 4+ iff u has the form u=(i,X), where i€Np, X<C, and XN Du#@.
This implies that Dy4+, is a disjoint union of the family of sets

{((1,X),(2,X),.00s(m,X)}, (3.1)
where X is a finite nonempty subset of C, such that XN Dy#@.

Let (M;g)€ ,?;n and let ) be an arbitrary mapping from B into M.

Suppose that, for every y = a, a mapping ql>1‘r:(:_\r + M is well defined
with the following properties:

(1) 44 = A,
(i1) ¢,4, is an extension of ¢, (y < a),
(iii) if X is a finite nonempty subset of Cy (y < a), then
o 4 (LX), (2,X) e ey (m,X) ) = glo (X)) (3.2)

We will define a,4,:Cy4q *+ M. First, we assume that ¢,,, is an
extension of ¢,. Upon that, we consider a subset of Dy+1 of the form
(3.1). Then X'=¢,(X) is a finite nonempty subset of M, and 1<|g(X’)|<m.
By this it follows that there exists a surjective mapping

Vi LX) peee, (M, X))} >~ g(X7) = gl (X)). (3.3)

Let Yy44:Dg4+4 » M be the extension of all Yy, and ¢5441:Cypq* M

the extension of ¢, and V,4+1. So we obtain a sequence of mappings




{dt,‘;u:.‘Y + M | y 2 0} which satisfies (i), (ii) and (iii) for every y.
Assuming ¢ to be the extension of this sequence on C, we obtain that
¢ is a homomorphism from C into M which is an extension of . X

Below we will denote by C=(C;f) the free object in ﬁ“m with
the basis B, constructed in the proof of P.3.12.

Proposition 3.13. If ¢ is an endomorphism of C such that
(VbeB) ¢ (b)=b, then ¢ is an automorphism of C.

Proof. Suppose that ¢(Cy)=C, and that the corresponding trans-
formation ¢, induced by ¢ on Cy is a permutation and also ¢(D,)=D,.
Consider a subset of D,,, of the form (3.1). Since X is a finite
nonempty subset of C,, we have:

(0L, X), ..., (mX)D)=¢ (E(X))=£($(X))={(1,¢(X)) ..., (m, ¢(X))}.
The fact that XD, # ¢# and the hypothesis ¢ (D,})=D, imply that
$(X)NDy # @ and thus {(L,¢(X)),...,(m¢(X))}cDyq4,.

Therefore, ¢ induces a bijection from {(1,X),...,{m,X)} into
L, e (X)) peee,(m,p(X))1.

By all this one easily comes to the asked final conclusion that
¢ is a permutation of C. X

Remark. We note that if o« is infinite and if M is a free object
in Con(a) with a basis B, then there exist infinitely many endomor-
phisms ¢ on M, such that (¢b€B) ¢(b)=b, but they are not automorphisms.

Now we will complete the description of free objects in me'

Proposition 3.14. Any two free objects in ﬁm with the same basis
B are isomorphic.

Proof. It suffices to show that an arbitrary free object M=(M;gled,
with the basis B is isomorphic with the free object C, constructed above.

Let ¢:C = M, ¥:M > C be homomorphisms with the property (¥b€B)
¢ (b)=y(b)=b. Then £=¢¢:C+C is an endomorphism of C such that (¥b€B)
E(b)=b, and thus £ is an automorphism. Therefore ¢ is an injective
homomorphism, and thus it suffices to show that ¢ is surjective.

Namely, it can be easily shown that, in .‘;Z;n, homomorphic images
of subunars are subunars. Therefore, E=¢(C) is a subunar of M such that
BcE, and this implies that E=M, for B is a generating set of M. X
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TPAHC®OPMAIIMH HA BYJIEAHH
PesumMme

Hexka M e HemnpasHO MHOXeCTBO, f5(M) e 6GyneaHoT (T.e.NapTHTHBHOTO
MHOXECTBO) Ha M, o)< fH(M) K f:)+/>(M) e npecnuKyBame. Toram BejuMe eKa
(M;f) e 6ynos yuwap co HOcCHTen M, pmejcteo f H nomeH 4. lMoumuTe momyHap,
XOMOMOD®H3aM H CJIoBomeH o6jeKT, BO TPYOOT Ce BOBeAyBaaT Ha BooGHYaeH
HauyuH. [MTaBHHOT NpemMeT Ha patoTaBa € MCMNHTYBame Ha Mpo6JyeMOT 3a
ersMcTeHlHja Ha cnoBomHH OGJeKTH BO HEKOJNIKY KJAacH on GYJIOBH YHAapH.
CKOpPO BO CHTe THe Cnyuau ce NoGuBa CJIenHOBO "HeoO6HYHO" cBOjCTBO:
nocrojar nopeke eHOOMOPPHIMH BO CIIOSONHHOT GYJIOB YHAp KOHWTO ja
MHAYLMpaaT MIOeHTHYHATa TpaHcpopmaumja Ha Gasara (a mo6po e mosHaTO
neka cnoGomHMTe anre6pd ro HeMaaT Toa CBOJCTEBO).



