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Several abswtract characterizations of algebras of operations can be
found in [1}—[5] and many other papers. Here we consider two kinds of
normed semigroups, and we show that every such semigroup is a subsemi-
group of a corresponding semigroup of operations, and of a semigroup of
sequences as well.

1. ADDITIVELY NORMED SEMIGROUPS

We say that (S; + ; () is an additively normed semigroup (a.n.s.)
iff (S; +) is a semigroup (not necessarily commutative), and x| x| is a
mapping from S into the set of positive integers, such that | x + y| = |x]| +
+ Iyl—1, for any x,y € S.

Example 1.1. Let A be a non-empty set, and let O, (4)be the set of
all n-ary operations on A4, and O(4) = {0y (4) :n=1}. If £€ Oy (A),
then we write | f| = n. Define a binary operation ”+* on 0 (A) by:

f+ 8 (X1 - - Xmin—y) =f(Zg - - -5 Xm) Xmt1s® - - > Xmtn—1)s
where | f| = n, |g| = m. Then, (0(4); + ;|)is an an.s. An arbitrary a.n.s.
55 +; |) called an additively normed semigroup of operations (2.n.s.0.)
if it is isomorphic to a subsemigroup of (0(A); + ; {), for some A 3£ 8,

Example 1.2 Let(B;.)be a semigroup and S (B) ={(bg, by>- - -, ba)’
:b,€ B, n > 1} be the set of sequences on B with lengths > 2. Then,
(S(B); + ;) is an a.n.s., where:

@ = (8, By, ...508s), b= (Do, by,...,0m),
implies that j@| = n, |b| = m, and:
A+ b= {(a,by,b,,....0m 1, 0m81.0s,...,a8,).
iI‘l:e d:otion of an "additively normed semigroup of sequences“ (a.n.s.s.)
8 ar.

THEOREM 1. Every a.n.s. is an a.n.s.o. and an a.n.s.s. as well.

Proof. Let (S; + ;) be an an.s., and @ € S, |la| = n. Define an
n-ary operation 4 on S in the following way:

(VX - Xy € Sa(xg,...5xp) =a+x3+x3+ ...+ x,.

Iris clear that @+ @ is a homomorphism from (S; + ; [[) into (0 (S); + ; I)-
This homomorphism is injective iff' rhe following implication is satisfied:
] ab € S, lal=|p|l =n and
[(Vxp....0%. €E S)a+x+...+xg=b+x,+...+x,]=>a=b.

If this condition is not satisfied, then we can extend the given a.n.s. to an
a.n.s. which does satisfy it. Namely, we can add a new element e as an iden-
tity and put |e| = 1. Thus, we obtain an a.n.s. (S¢; 4 ;|[) which satisfies
the above implication, and contains (S; +;||) as a subsemigroup.

This shows that every a.n.s. is an a.n.s.o.

(Certainly, the given proof is an obvious generalization of the well-
known proof of the statement that every semiigroup can be embedded into
a semigroup of transformations.)

It remains to be shown that (S; 4+;|) is an a.n.s.s.

First we consider a subset § of SXN (¥ is the set of nonnegative
i d ed by: ~
integers) defined bY:  §_ (@D 10 <i<]al}.

(Instead of (a, ¥) we will write a4.) Denote by (a, &; ¢) the following set of
"semigroup defining relations™:

{@aobo=—Co, By=Cys-+ e sbm_1=Cm_3, bmay=c,, @y=Cm 13-+ -+, Gp=Cm rm—1}s



where lal_-=n, |b] =m, and @ + b = ¢. Let (B,-) be the semigroup with
the following p tation: <§;LJ{(a,b;c) a4+ b=c}>
The mapping:
. ara” = (a5 a...,a,), with |ja| =n,
is a homomorphism from (S; + ;|[|) into (S (B); +; ).

Assume that a~ = b~ . Then we have @, = b, in B. But it is not diffi-

cult to show that if ) X
a,=ayap ... a5 in B

= ' =f"=.,.=i®m=0 and a=a + ...+ a® in S.

Thus, a, = by in B = a = b in S, and therefore the mapping a + a~ is an
injective homomorphism.

This completes the proof of the Theorem.

2. MULTIPLICATIVELY NORMED SEMIGROUPS

By a multiplicatively normed semigroup (m.n.s.) we mean a struc-
ture (S; *; |) such that (S; *)is a semigroup and x+— | x| is a homomor-
phism from (S;*) into the multiplicative semigroup of positive integers.

Example 2.1. If a binary operation * is defined on O (A4) by:
frg(xy - -5 X, =f(g(x-.-5Xm) 8(Xmsrs.-->Xem)s--->80C - .5 X))
where A %0, |f| = n, |g| = m,then a m.n.s. (0(4) ;* ;| is obtained.

Example 2.2. Let (B,.) be a semigroup and let an operation * be de-
fined on S (B) as follows:

(@g, @35 - .. 5 Gy) * (Bos by, . .. 5 bm) =

=(aobosbrs- - - sbm_1:0m a1 bobys - . s bm_ys . bma, bosbys . .. sbm_ 3. bmay,).
Then (S (B);* ;) is an m.n.s.

The meanings of ”m.n.s.0” and ”m.n.s.s.* are clear.

THEOREM 2. Every m.n.s. is an m.n.s.o. and an m.n.s.s. as well.

Proof. First we will show the second part of Theorem.

Let (S;*;|) be an m.ns. and let S be defined as in the proof of
the second part of Theorem 1.

Define by [a, b; c] the following set of semigroup defining relations:
{@obp=Co,01="C1see . s0m_1=Cm_y1;bmabo=c . 0,=Cm 15---:0m 1=Com_,,
bmayb o=Cam, -« -sbmﬂn—lbe= CppmsD1=Clnpymi15-- s bm_3= Cum—lsbﬂ a”=£‘"m},
where a* b= ¢, |al = n, |b| = m. Consider the semigroup (C;-) deter-
mined by the followmg presentation:

<S'J{[a,b cl:a*b=rc}>.

It can be shown in the same way as in the proof of the second part of Theo-
rem 1, that if a, = b, in ¢ then a = b in S, and this implies that the mapping
a(ag, @y, --.,an) (ja@al=n
is an injective homomorphism from (S;*; [[) into (S(C);*; |). This

proves that (S;*; |) is an m.n.s.s.

Now we will find an injective homomorphism from (S; *; |) into
(0(C); *; ), and thus the proof of Theorem will be complete.

Let a € S, |al= n, and let a € 0, (C) be defined by:

@(Xyy X35« - o3 Xp) = Ao X1 Ay Xz . . . Ay_1 Xy Ay -

Clearly a+» a is a homomorphism from (S;*; ||) into (0 (C); *; .
Assume that a, b ¢ S are such that @ =_b. Then we have:

Qo181+ Gpy @1 Bn=a(1,...,0) =0 (@y,...,a,)=boarby ... by _,a, by,
in C. But, it can easily be seen that if aga,u = bga,v in C, then ag = b,,
and therefore a = b.

This completes the proof.

3. POSITION ALGEBRAS
The class of position algebras is introduced in [1], and position al-



gebras of operations are considered first in [4]. (See also [3] and [5].) Namely,
(S; {{:i>1};l) is a position algebra (p.a.) if {{ :i>1} is a set of
partial binary operations on S, and x+~ |x| is a mapping from S into the
set of positive integers, such that the following statements are satisfied:
(D ab¢€ Siz21=@ib€ Sei< lal);
(D 1<i<|al=>laibl=\al+|bl—1;
Imn 1<i<|aLbl<j<|bl>ali@Gic) =@ip' e
(V) I1<j<i<lal=>@ Blc=@ia)™""s.
Example 3.1. Let A %8, f€ 0,(A4), g € Om(A),and 1<i << n.
Then h —f{ g € Omin—y(4) is defined by:
A(xpy - s Xmin—) =S (X5 - . -5 X158 (Xes - - -5 Xmii1ds .« . s Xman_a)
Thus we obtain a p.a. (0 (4); {{ :2=>1}1)-
Example 3.2. Let (B,-) be a semigroup. A p.a. (S(B); {{ :i =1};I])
can be defined as follows:
a -I‘— b=(ay...,01 9,83 1 b0, by,..., bm__y, bmay, @iy . . .5 ay);
a=(ag a1 . .58y, 0 =(bgby,...,bp), and 1 < i< n.
The meanings of "position algebras of operations® and of "position
algebras of sequences” are clear.

THEOREM 3. Every position algebra is a position algebra of operationss
and the class of position algebras of sequences is a proper subclass of the clas,
of position algebras.

Proof. The first part of Theorem is shown in [5; p.p. 18, 23). The se.
cond part of Theorem is a consequence of the fact that in the position alge-
bras of sequences there hold some implications ("quasiidentities*) which
ure not true in the class of all position algebras. For example, if (S; { :§ =

> 1};l) is a position algebra of sequences, and if @, 6, ¢', ", d',d” € §
are such that 3 < |a|=|b] and al¢ =blc¢’,ald'=b] d”’ then a= b.
But, if 4 has at least two elements, this implication does not hold in
0(4); £;i 213D

This completes the proof of Theorem 3.

Remark. It is clear that if (S: {{ :i>1};|) is a position algebra,
then (S; + ;) is an an.s. and (5;* ;1)) is an m.n.s., where:

a*b=(.. (@i®"L'8).. )", Jal =n, bi=m.
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NMONYrpepyn HA OMNEPALIHH
Pezume
[Ta3nary c¢ No3eke ANCTPIKTHA KAPAKTEPHCTMRH Ha anrebpure Ha onepammd, Obxe
<€ paIrACAYBAAT ZBE KIacl ROPMI(PARH MOMYTPYITH H e MOKAXYBA JeKa CCKOja TAKBA NOJy-
Tpyna MoXe Ha ¢e CMECTi BO COONBETHA WONYTPyna oi ONMEPaIMu.



