ON SEMIGROUPS OF OPERATIONS

Прилози, мат.-техн. науки, МАНУ, Скопје, IV 1 (1983), 43-47

Dedicated to Prof. Blagoi S. Popov

Several abstract characterizations of algebras of operations can be found in [1]—[5] and many other papers. Here we consider two kinds of normed semigroups, and we show that every such semigroup is a subsemigroup of a corresponding semigroup of operations, and of a semigroup of sequences as well.

1. ADDITIVELY NORMED SEMIGROUPS

We say that (S; +; ||) is an additively normed semigroup (a.n.s.) iff (S; +) is a semigroup (not necessarily commutative), and $x \mapsto |x|$ is a mapping from S into the set of positive integers, such that |x + y| = |x| + |y| - 1, for any $x, y \in S$.

Example 1.1. Let A be a non-empty set, and let $O_n(A)$ be the set of all n-ary operations on A, and $O(A) = \bigcup \{O_n(A) : n \ge 1\}$. If $f \in O_n(A)$, then we write |f| = n. Define a binary operation n + 0 on O(A) by:

$$f+g(x_1,\dots,x_{m+n-1})=f(g(x_1,\dots,x_m),x_{m+1},\dots,x_{m+n-1}),$$

where |f| = n, |g| = m. Then, (O(A); +; ||) is an a.n.s. An arbitrary a.n.s. (S; +; ||) called an additively normed semigroup of operations (a.n.s.o.) if it is isomorphic to a subsemigroup of (O(A); +; ||), for some $A \neq \emptyset$,

Example 1.2. Let (B; ·) be a semigroup and $S(B) = \{(b_0, b_1, \dots, b_n): b_n \in B, n \ge 1\}$ be the set of sequences on B with lengths ≥ 2 . Then, (S(B); +; ||) is an a.n.s., where:

$$a = (a_0, a_1, \ldots, a_n), b = (b_0, b_1, \ldots, b_m),$$

implies that |a| = n, |b| = m, and:

$$a + b = (a_0 b_0, b_1, \ldots, b_{m-1}, b_m a_1, a_2, \ldots, a_n).$$

The notion of an "additively normed semigroup of sequences" (a.n.s.s.) is clear.

THEOREM 1. Every a.n.s. is an a.n.s.o. and an a.n.s.s. as well.

Proof. Let (S; +; ||) be an a.n.s., and $a \in S$, |a| = n. Define an *n*-ary operation \bar{a} on S in the following way:

$$(\forall x_1,\ldots,x_n \in S) a(x_1,\ldots,x_n) = a + x_1 + x_2 + \ldots + x_n$$

It is clear that $a \mapsto \bar{a}$ is a homomorphism from $(S; +; \parallel)$ into $(O(S); +; \parallel)$. This homomorphism is injective iff the following implication is satisfied:

$$a, b \in S, |a| = |b| = n$$
 and

$$[(\forall x_1,\ldots,x_n\in S)\,a+x_1+\ldots+x_n=b+x_1+\ldots+x_n]\Rightarrow a=b.$$

If this condition is not satisfied, then we can extend the given a.n.s. to an a.n.s. which does satisfy it. Namely, we can add a new element e as an identity and put |e| = 1. Thus, we obtain an a.n.s. $(S^e; +; ||)$ which satisfies the above implication, and contains (S; +; ||) as a subsemigroup.

This shows that every a.n.s. is an a.n.s.o.

(Certainly, the given proof is an obvious generalization of the well-known proof of the statement that every semigroup can be embedded into a semigroup of transformations.)

It remains to be shown that $(S; +; \parallel)$ is an a.n.s.s.

First we consider a subset \hat{S} of $S \times N$ (N is the set of nonnegative integers) defined by: $\hat{S} = \{(a, i) \mid 0 \le i \le |a|\}.$

(Instead of (a, i) we will write a_i .) Denote by (a, b; c) the following set of "semigroup defining relations":

$$\{a_0b_0=c_0,b_1=c_1,\ldots,b_{m-1}=c_{m-1},b_ma_1=c_m,a_2=c_{m+1},\ldots,a_n=c_{m+n-1}\},$$

where |a| = n, |b| = m, and a + b = c. Let (B, \cdot) be the semigroup with the following presentation: $\langle \hat{S}; \cup \{(a, b; c) : a + b = c\} \rangle$

The mapping:

$$a \mapsto a^{\sim} = (a_0, a_1, \ldots, a_n), \text{ with } |a| = n,$$

is a homomorphism from (S; +; ||) into (S(B); +; ||).

Assume that $a^{\sim} = b^{\sim}$. Then we have $a_0 = b_0$ in B. But it is not difficult to show that if $a_0 = a_0^{\sim} a_1^{\sim} \dots a_{A-(D)}^{(D)}$ in B

then

$$i' = i'' = \ldots = i^{(p)} = 0$$
 and $a = a' + \ldots + a^{(p)}$ in S.

Thus, $a_0 = b_0$ in $B \Rightarrow a = b$ in S, and therefore the mapping $a \mapsto a^-$ is an injective homomorphism.

This completes the proof of the Theorem.

2. MULTIPLICATIVELY NORMED SEMIGROUPS

By a multiplicatively normed semigroup (m.n.s.) we mean a structure (S; *; ||) such that (S; *) is a semigroup and $x \mapsto |x|$ is a homomorphism from (S; *) into the multiplicative semigroup of positive integers.

Example 2.1. If a binary operation * is defined on O(A) by: $f*g(x_1, \ldots, x_{mn}) = f(g(x_1, \ldots, x_m), g(x_{m+1}, \ldots, x_{2m}), \ldots, g(\ldots, x_{mn})),$ where $A \neq \emptyset$, |f| = n, |g| = m, then a m.n.s. (O(A); *; ||) is obtained.

Example 2.2. Let (B, \cdot) be a semigroup and let an operation * be defined on S(B) as follows:

$$(a_0, a_1, \ldots, a_n) * (b_0, b_1, \ldots, b_m) =$$

 $=(a_0b_0,b_1,\ldots,b_{m-1},b_m\,a_1\,b_0,b_1,\ldots,b_{m-1},\ldots,b_ma_{n-1}\,b_0,b_1,\ldots,b_{m-1},b_ma_n).$ Then (S(B); *; ||) is an m.n.s.

The meanings of "m.n.s.o" and "m.n.s.s." are clear.

THEOREM 2. Every m.n.s. is an m.n.s.o. and an m.n.s.s. as well. **Proof.** First we will show the second part of Theorem.

Let $(S; *; \parallel)$ be an m.n.s. and let \hat{S} be defined as in the proof of the second part of Theorem 1.

Define by [a, b; c] the following set of semigroup defining relations: $\{a_0b_0=c_0, b_1=c_1, \dots, b_{m-1}=c_{m-1}, b_m a_1b_0=c_m, b_1=c_{m+1}, \dots, b_{m-1}=c_{2m-1}, b_{m-1}=c_{m-1}, \dots, b_{m-1}=c_{m-1}, \dots,$

 $b_m a_2 b_0 = c_{2m}, \dots, b_m a_{n-1} b_0 = c_{(n-1)m}, b_1 = c_{(n-1)m+1}, \dots, b_{m-1} = c_{nm-1}, b_m a_n = c_{nm}\},$ where a * b = c, |a| = n, |b| = m. Consider the semigroup $(C; \cdot)$ determined by the following presentation:

$$<\hat{S}; \cup \{[a,b;c]: a*b=c\}>.$$

It can be shown in the same way as in the proof of the second part of Theorem 1, that if $a_0 = b_0$ in c then a = b in S, and this implies that the mapping $a \mapsto (a_0, a_1, \dots, a_n)$ (|a| = n)

 $a\mapsto (a_0,a_1,\ldots,a_n)$ (|a|=n) is an injective homomorphism from (S;*;||) into (S(C);*;||). This proves that (S;*;||) is an m.n.s.s.

Now we will find an injective homomorphism from (S; *; ||) into (O(C); *; ||), and thus the proof of Theorem will be complete.

Let
$$a \in S$$
, $|a| = n$, and let $\overline{a} \in O_n(C)$ be defined by: $\overline{a}(x_1, x_2, \ldots, x_n) = a_0 x_1 a_1 x_2 \ldots a_{n-1} x_n a_n$.

Clearly $a \mapsto \overline{a}$ is a homomorphism from $(S; *; \parallel)$ into $(O(C); *; \parallel)$.

Assume that $a, b \in S$ are such that $\overline{a} = \overline{b}$. Then we have:

 $a_0a_1a_1\dots a_{n-1}$ a_1 $a_n=\overline{a}$ $(a_1,\dots,a_1)=\overline{b}$ $(a_1,\dots,a_1)=b_0a_1b_1\dots b_{n-1}$ a_1 b_n in C. But, it can easily be seen that if $a_0a_1u=b_0$ a_1v in C, then $a_0=b_0$, and therefore a=b.

This completes the proof.

3. POSITION ALGEBRAS

The class of position algebras is introduced in [1], and position al-

gebras of operations are considered first in [4]. (See also [3] and [5].) Namely, $(S; \{ i : i \ge 1 \}; ||)$ is a position algebra (p.a.) if $\{ i : i \ge 1 \}$ is a set of partial binary operations on S, and $x \mapsto |x|$ is a mapping from S into the set of positive integers, such that the following statements are satisfied:

- (I) $a, b \in S, i \ge 1 \Rightarrow (a + b \in S \Leftrightarrow i \le |a|);$
- (II) $1 \le i \le |a| \Rightarrow |a| \stackrel{i}{=} b| = |a| + |b| 1$;
- (III) $1 \le i \le |a|, 1 \le j \le |b| \Rightarrow a_+^i(b_+^j c) = (a_+^i b)_+^{i+j-1} c;$
- (IV) $1 \le j < i \le |a| \Rightarrow (a_+^i b)_+^j c = (a_+^j c)_+^{i+|c|-1} b$.

Example 3.1. Let $A \neq \emptyset$, $f \in O_n(A)$, $g \in O_m(A)$, and $1 \leq i \leq n$. Then $h = f_+^i g \in O_{m+n-1}(A)$ is defined by:

 $h(x_1,\ldots,x_{m+n-1})=f(x_1,\ldots,x_{i-1},g(x_i,\ldots,x_{m+i-1}),\ldots,x_{m+n-1}).$ Thus we obtain a p.a. $(0 (A); \{ i : i \ge 1 \}; ||)$.

Example 3.2. Let (B, \cdot) be a semigroup. A p.a. $(S(B); \{i : i \ge 1\}; ||)$ can be defined as follows:

The meanings of "position algebras of operations" and of "position algebras of sequences" are clear.

THEOREM 3. Every position algebra is a position algebra of operationss and the class of position algebras of sequences is a proper subclass of the clas, of position algebras.

Proof. The first part of Theorem is shown in [5; p.p. 18, 23]. The se. cond part of Theorem is a consequence of the fact that in the position algebras of sequences there hold some implications ("quasiidentities") which are not true in the class of all position algebras. For example, if $(S; \frac{i}{+} : i \ge i)$ ≥ 1 ; ||) is a position algebra of sequences, and if $a, b, c', c'', d', d'' \in S$ are such that $3 \le |a| = |b|$ and a + c' = b + c'', a + d' = b + d'', then a = b. But, if A has at least two elements, this implication does not hold in $0(A); \stackrel{i}{+}; i \ge 1\}; ||).$

This completes the proof of Theorem 3.

Remark. It is clear that if $(S; \{\frac{1}{+} : i \ge 1\}; \parallel)$ is a position algebra, then (S; +; ||) is an a.n.s. and (S; *; ||) is an m.n.s., where: $a*b = (\dots ((a + b) (m + b) \dots)^{(n-1)m+1} b, |a| = n, |b| = m.$

$$a * b = (\dots ((a + b) (m + 1b) \dots)^{(n-1)m+1} b, |a| = n, |b| = m$$

REFERENCES

- [1] Bolousov V. D.: Balanced identities in algebras of quasigroups, Acq-Math. 8 (1972), 1-73.
- [2] Schein, B. M. and Trohimenko V. S.: Algebras of Multiplace Functions, Semigroup Forum 17 (1979), 1-63.
 - [3] Белоусов В. Д.: п-арные квазирунны, Кюшинев 1972.
- [4] Чупона Г.: За финишарнийе ойерации, Год. зб. Филозоф. фак. Прир мат. оддел, Скопје, 12 (1959), 7-49.
- [5] Чупона Г.: За аліебрийе на смесйувања, Год. зб. Прир. мат. фак., Скопје, 20 (1970), 15-24.

ПОЛУГРУПИ НА ОПЕРАЦИИ Резиме

Познати се позеќе апстрактни карактеристики на алгебрите на операции. Овде се разгледуваат две класи нормирани полугрупи и се покажува дека секоја таква полугрупа може да се смести во соодветна полугрупа од операции.