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In the present paper multiquasigroups and their relations to orthogonal
systems of operations and codes are studied. In the first part of the paper the
notion of an [n, m]-quasigroup of order g is defined and it is shown that for
n, m, g2 it follows that m< g — 1, in the second part, as a corollary of the pre-
ceding result, an upper bound for the maximal number of m-ary operations in
an orthogonal system of operations on a set with g elements is obtained. In
the third part the existence of a class of multiquasigroups is shown, and in the
fourth part a connection between multiquasigroups and a special kind of code
is pointed out.

In the paper some results from [4] are used, but it is possible to read
it independently. _

1. Let Q be a finite, nonempty set with ¢ elements, n, m positive inte-
gers and f a mapping of Q" into Q™. The structure Q (f) is said to be an
[n, m}-quasigroup, or simply multiquasigroup, iff the following condition is
satisfied:

(A) For every injection ¢ from N,={l,...,n} into N,,,, and every sequ-
ence a,, ..., 4,0, there exists a unique sequence b,, ..., b,,,, &0 such that:
FBroeisb)=Brars s byum) a0d byy=a,, ... by =3y

q is called the order of Q (f).

One of the tasks of the paper is to discuss triples of natural numbers
(n, m, q) for which [n, m]-quasigroups of order g exist. It is clear that: (i) Q (f)
is an [n, 1]-quasigroup iff Q (f) is an n-quasigroup; (ii) @ (f) is an [1, m]-qu-
asigroup iff there exist permutations f,,...,f, of Q such that f(x)=
=(f1()s ..., frn(); (iii) for each pair of natural numbers n, m there exists
an [n, m]-quasigroup of order 1. Therefore, in the sequel we shall assume that
n,m,q=2.

First, we shall prove the following proposition:
1°. If m, n, =2 and if there exists an [n, m]-quasigroup of order g, then
m<qg-1. (1)
Proof. First, we note that if Q (f) is a [2, m}-quasigroup and if we put
P={(x), oo s Xme )| s %) = (X34 oo s X))
bx‘={(x1’ “eey M+1)EPIX¢=JC},
B,={b,"|xEQ}, Bl=B1 - B.m.z-
we get a m+2-net (where P is the set of points, B is the set of blocks i.e.

lines, and the incidence is the ordinary belonging) of order g ([4]). It is well
known that from here it follows (see [I], p. 9) that m+2<q+ 1, i.e. (1).

Now, we shall assume that Q (f) is an [n, m]-quasigroup of order g,
where n=p+2, p>1. If a,, ..., a, is an arbitrary sequence of elements from
0, and if we put

I xn=fa...,a,xy),

we get a [2, m]-quasigroup Q (f’). From here, considering the preceding result,
it follows that m<gq-—1.

As a corollary of the preceding we get:



1.1, If m, n>2, then there does not exist an [n, m]-quasigroup of order 2.

2. Let ¥ =(f,,...,f;) be a sequence of n-ary operations dcfined on
the same set Q, where k>n. ¥ is said to be an orthogonal system of n-ary
operations on Q (OSnO) iff the following condition is satisfied:

(B) For every injectinon ¢:N,~— N, the maping

(X5 e s XD (Foiays « o+ s Vo)
is a permutation of Q" where y,=f,(x,, ..., X,).

A sequence ¥ =(f,,...,f;) of n-ary operations on a set Q is said to
be a strongly orthogonal system, iff the sequence ¥, =(g, ..., 8sf1s - J)
is an orthogonal system, where g,, ..., g, are defined by:

(VIEN,,)& (xl’ O xu)_xi‘

It can be easily proved that in a stongly orthogonal system all n-ary
operations are n-quasigroups.

A system of binary quasigroups is orthogonal iff it is strongly orthogo-
nal, but for n>2 a system of n-quasigroups which is orthogonal need not be
strongly orthogonal*).

We shall show that:

2°. If n,9>2 and if (f}....,f;) is an OSnO on a set Q with g ele-
ments, then k<niq-1l. @)

Proof. For k=n and k=n+1 there is nothing to prove. So, we shall
assume that k=n+m, where m>2. If a mapping f:Q"—Q™ is defined by

TGy e s X)) =(Fpsgs oo s XD &

Gty BLED X =Sty o)y x =[G s ),
we get an [n, m]-quasigroup Q (f), and from 1° it follows that m=k-—n<
=q-—1, ie. (2).

As a corollary of 2° we get the following:

2.1. If n, ¢g>2, then the number of n-ary operations in an OSnO defined
on a set with ¢ elements is bounded, and if ,(g) is the maximal number of
elements in such a system, then

: o,(g<n+qg-—1. 2.1)

From 2° it follows also that the maximal number of m-ary operations in
a strongly orthogonal system on a set with g eclements is not greater than g — 1.

We note that in [3] (the same result is quoted in [2]) the following the-
orem is proved:

22. If n=2, g=3 and if =, (¢) denotes the maximal number of n-quasi-
groups which make an orthogonal system of n-quasigroups on a sct with Q
il m, (@< 1)@ 1). 2.2)

Since every orthogonal system of n-quasigroups is also an OSnO, we have
7, (g)<w,(g), so (2.1) improves (2.2).

It is easy to see that the upper bound for =,(g) is:

(i) better in (2.2) for n=g=3 and for n=2, g arbitrary;

(ii) the same in (2.1) and (2.2) for n=3, g=4 and forn=4, g=2;

(iii) better in (2.1) in all other cases.

Using the corresponding result on the nomexistence of of an OSnO, we
get that:

*) An example for this are four ternary quasgroups given in [2] on pages 181 and 182.



23, If n,m>=2 then there does not exist an [n, m]-quasigroup of
order 6.
Proof. If Q(f) is an [n, m]-quasigroup and if f,...,[f, are defi-

ned b

Y JGpoos )= oo s P S0 =F(%5 ..., %)

a system of m-quasigroups is obtained. For m=n this system is orthogonal.
So, if we define a [2, m]-quasigroup Q (f’) as in the proof of 1° then we
obtain an orthogonal system of binary quasigroups f’,...,f, and such a
system, as it is well known, for m>2, ¢g=6 does not exist.

3. All the results of the two preceding have ,,negative character®, i.e.
they consider the cases in which there do not exist multiquasigroups. Here, we
shall show the existence of a class of multiquasigroups which we shall call
linear multiquasigroups.

3°% Let F be a field and A=[ag,] an n x (m+n) matrix over F such that
every minor of A of order n is nonsingular. If a mapping f: F"—>F™ is

defined b,
Y TG s XD =(pars oo s Xpum) © QUEF) x=1 4, 3)
where x=(x,, ..., X,,»), then we get an [n, m]-guasigroup F(f).

Proof. Let e=(c), ..., ¢,)EF" be a sequence of elements from F,
and ¢ an mjectlon from N, into N,,,. The matrix B=[b,] of order n, where
by=a,4p, is nonsmgular which means that the equation ¢=tB has a unique
solution t=c B!, and from here we get that there exists a unique sequence
b=(b,, ..., b, )EF*"™ such that b, =c, and b=t4, ie. f(b,,...,5,)=
2(b):+1' D00 bnﬂr)'

Putting in 3° t=(x,, ..., x,) the following proposition is obtained:

3.1. Let A=[a;] be an nxm matrix over a field F, sush that every
minor*) of A4 is nonsingular. If a mapping f: F"—F™ is defined by

S e X)=(Vs oo s V) © Y=XA4, 3.1)
where x=(x,,..., x,), Y=, ..., Vn) then an [n, m]-quasigroup F(f) is
obtained.

It is clear that, if an n x m matrix 4 defines an [n, m]-quasigroup, then the
transpose AT of the matrix 4 defines an [m, n]-quasigroup. Also, every pxg
submatrix of 4 defines a [p, g]-quasigroup.

From 3.1. it follows that if a matrix 4 with nonsingular minors can be
defined over a Galois field F=GF(p*), then the corresponding linear multi-
quasigroup is obtained. We give some examples. 1

3.1) F=GF(3)={0, 1, -1}, n=m=2, A=[ | —1 ],

fx )=y u=x+y, v=x-y.
3.2) F=GF(5)={0, 1, 2, —1, -2}

I 1 11 1 211
Alg 1 2 ’ Azz[ 12 —1 ]1 A3= 121
1 ~1 112

[ix, 3, 2)=( V) & zmx+y+z, v=x+2y-2z,
L& )= w)Su=x+y, v=x+2y, w=x—y
Ly 2)=wvnw)Su=2x+y+z, v=x+2y+z, w=x+y+2z
It is natural to ask when a matrix A4 with nonsingular minors can be

constructed over a field F. A sufficient condition gives the follow:ng pro-
position.

*) Of order k, k=1, ..., min (1, m).



3.2. If F is a finite field with g elements and if m and n are positive

integers such that n—1\ fm—1
(7))o
i i ]
then there exists an nxm matrix A=[a;] such that every minor of 4 is
nonsingular.
Proof. It is clear that the proposition is true for n=1 or m=1, hence,
we shall assume that n, m>2. If (3.2) is true then the inequality

k—1\[s—1 ,
i 1 I
is also true for every k<n, s<<m. We shall suppose that k<n, s<m and that

we have constructed the matrices a. a a
1n %2 g,
a a CECIEY/ |
a“ au__‘am { Gy Gy * 'y |=C,
21 “22 2m =B, ceaae e v
......... TR lakl akZ ...a’“
iy Gyt Gy a a, ---a

L]
with nonsingular minors. The proof will be completed if we show that there
exists an element b F such that all minors of the matrix
Ay Ayl Gy
Ay Qyp - v 2y Gy, = ),

Gy rpr c Oy g 54y
a a, ---a, b
are nonsingular. It is clear that D has

o) (o) ()G )(5)
+ + o
( 0 ( 0 1 )( 1 ( 2 2
minors in which & appears, and every such minor is singular only for one va-

lue of b, i.e. there exist at most Z(k)(s) values of b for which a minor of
il

T \i
D in which b appears is singular. From (3.2) it follows that we can find &
such that all minors of D are nonsingular, which completes the proof.

The matrix A4, from the example 3.2) shows that, in general, the condi-
tion (3.2) is not necessary for the existence of a matrix with the given property.

A corollary of 3.2. is the following:

3.3. For every pair of natural numbers m, n>>2 and every prime p, there
exist an infinite number of natural numbers o such that ther exist an [n, m]-qu-
asigroup of order g=p*.

It is clear that the propositions 3° and 3.1. can be formulated in a2 more
general form, where instead of a field we use a commutative and associative
ring with identity, and the term ,,nonsingular minor* we replace by ,,invertible
square submatrix®. As a consequence of such more general proposition, we get:

3.4. If there exists an integer nx m matrix A=[a;], such that every mi-
nor of A is relatively prime with ¢, then there exists an [n, m]-quasigroup of
order q.

Proof. If we consider 4 as a matrix over the ring Z,=Z/gZ (of rcsi-
due classes modulo ¢g) we get that every minor of A4 is invertible.

We give some examples.



3.3) Using the matrix [ } 21) ] we can construct a [2, 2]-quasigroup of
any odd oder.

The matrix -2 1 -1
-1 2 -1
1 -1 2

defines a [3, 3]-quasigroup of order g, where ¢ is any natural number relati-
vely prime with 6.

4. Multiquasigroups can be interpreted as a special kind of relations, ie.
codes. First, every subset K of QF is called a k-code over Q. Two elements
a,---a, and b,- - -b, form Q% are said to be on a distance d iff they differ in
exactly d components. If d is the minimal distance between different sequences
from K, then we say that K has the code distance 4. It is easy to see that
the following proposition is valid:

4° If Q(f) is an [n, m]-quasigroup of order g and if a code K is defi-

ned by a,l"'am-rnEK(:'J’f(al"“ ’au)=(all+l’ sec an+m)’ (4)
then a m+n-code with ¢" elements and of the code distance m+ 1 is obtained.
And conversely, if K is a m+n-code with g" elements and of the code dista-
nce m+ 1 over a set Q with g elements, then by (4) an [n, m]-quasigroup of
order g is defined.

From the above proposition it follows that there exists an equivalence
between multiquasigroups and a special kind of codes.

It is natural to ask what structure Q(f) is defined by (4) if it is given
only that K is a m+n-code of the code distance d=m+ 1. In this case, a
partial [n, m]-quasigroup Q (f) is obtained (the definition of which we shall
not give here). In [4] it is shown that every partial [n, m}-quasigroup can be
completed to an [r, m]-quasigroup, but then the carrier of the multiquasigroup
is essentially enlarged, and this is not of interest in the case when the car-
rier is finite.
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