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TESTING ALZER’S INEQUALITY FOR MATHIEU SERIES S(r)

BISERKA DRASCIC AND TIBOR K. POGANY

Abstract. Consider the Mathieu series S(r) = 370, 2n(n? +r?)72. We
interpolate the Alzer’s bilateral bounding inequality in the following manner.

We find intervals I, Is such that
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Here k1 = 1/(2¢(3)),xa = 1/6.
1. INTRODUCTION

The long history and preliminaries of Mathieu and aligned inequalities we can
follow by reading [1], [5]. In [3] Mathieu is defined
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such that we call Mathieu series. In their article Alzer et al. proved that the
following bilateral inequality is sharp:
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In [2],[6],[7, Open Problem 4.3] the generalized Mathieu series is introduced:
na/2
Sp(r,a) = Z (na+r2 Sa(r,2) = S(r), rp+1,a>0.
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In [4] the second author gives the following inequality:
4(p+ 1) /oo [tl/a]a/2+1 / [tl/a]a/Z
<8, - dt <2(p+1 ————dt, (2
0_._ P(Taa) a+2 ; (T2+t)p+2 p+ ) T2+t p+2 ( )

which is sharp in sense of sharpness of 0 < {z} < 1. (Here [z],{z} denotes the
integer and the fractional part of z € R.)

Putting p =1, = 2 in (2) we get

L. <S8(r) < Ly + Dy, (3)
where
> VAP > Vi
Ly:=2 ——— dt; D, =4 —————dt. 4
L &5 [ wei )
Comparing (1) and (3) it is obvious that for certain values of r has to be
<L, <8(r), 5
r24+Kk - T (r) (5)

since (3) allows < in lower bound *. So we are looking for those I; € R which
confirms (5) for all » € I;. Similar question arises immediately for the case of
upper bounds, namely we will ask for certain I such that

1
T2 + Ko

Both results will be synthetized into Theorem in the next chapter.

S(ry< L, + D, <

; r € Io. (())

2. MAIN RESULTS

Consider the function

1
ry= Ly, — ——, 2
(P(T') 7"2 + K1 . (7)
When ¢(r) > 0, then for those r the bound L, is better than Alzer’s one.

Theorem 1. The inequality
—g—— & Lp X8 (8)

holds for all.r € I, = [r1, 2], where r1, 1o are the real positive roots of the equation

r’+3 8 . 4r R |
(r2+1)2 3(r+1)3  (r+1)* 5(r+1)° 124k’
where (11) we consider according to footnote 1. Moreover, the inequality
1
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S(r) < L, + D, <

'Remark 1. At this point we note that in (5) both equalities cannot happen simultaneously.
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holds for all v € Iy = (0, 73] U [r4, 00), where rs,r4 are the positive real roots of the
equation
7r1"4+2(4+7r)r2+7r—4_ o
4r2(1 +r2)2 r2 4+ Ky
In (8),(9) for re, £ = 1,4 we have equalities.

Proof. As L, is not easily handable, we will minorize L,. Because [\/5]2 > (vt -
1)2, it follows
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Finally, we arrive at
2+3 8 4 8r? 1
olr) > o THiL NN W T
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To find I, it is enough to solve
r?+3 8 N |
(r2+1)2 3(r+1) (r+1)* 5(r+1)® 24k

Using Mathematica 5.0 we get two real roots of (11):

ri & 0.394443, 1y~ 5.04572.

(10)

=0. (11)

By the same tool we test all other characteristics of the function

r2 43 - 8 . 4r B 8r2 B 1
(r2+1)2 3(r+1)2 (r+1)* 5(r+1)5 r24k

flr) = (12)

As f(r) attains its maximum at r ~ 0.716248 and it is minimal at r ~ 6.80008.
According to this, we can see that between the roots r; and ry function is positive,
i.e.

p(r) > f(r) >0, rel, =ry,mr).

It only remains to show that f(r) < 0 for all 7 > ry. Namely, it is not enough to
show that no other real zeros are there in f(r) =0, as r — co. So in this purpose
let us transform f(r)

Ky —1 4r2 — 100r — 80

f(r) < (r2+1)(r2+ K1)  15(r+1)5

The right side of inequality is negative when 4r? — 1007 — 80 > 0, and this is true
for r > rs5 = 25.75. So f(r) < 0 for all » > rs. The critical interval is (rq,rs).
Because f(r) has it’s minimal value for r¢ ~ 6.80008 € (rq,rs), we split (ra, rs)
into two subintervals (ra,76) and (rg,75) , say. As f’(r) < 0 in the first interval,
f'(r) > 0 on the second interval and f(25.75) < 0, we finish the prof of the left
hand inequality (8) for all r € I;.
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Now, we prove the inequality (9). It follows
© 142Vt art 424+ m)r2 + -4
g L.+D,.<2 dt =
Blr) Lot De & 1 (2 +)3 4r2(1 + r?)?
We define
art 424+ mr? +m—4 1
(pl (T) = 2 2\2 - B .
4r2(1 4+ r2?) 72+ Ko

Using Mathematica 5.0 we find that ¢1(r) < 0 holds for r € (0,73) U (ry4, 00),
where

ry ~ 0.660463, 14~ 2.74663.

It is obvious that

(pl(r)'\' (—:‘—1)7‘_2, T — 00,

therefore p1(r) <0, r € Ip.
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This finishes the proof of theorem. Od
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