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ON THE QUASI-INNER PRODUCT SPACES

Pavle M. Mili¢ié¢

Abstfact

A quasi-inner product space X (g. 1. p. space) is strictly con-
vex. If a sequence (z,) converges weakly to zo (zn,z0 € X,
zp — zo) and ||zal] — ||zo]|, then {|zn — zo|| — 0. The orthogo-
nality relation 19 defined by (7), is uniquely resolvable, i.e. there
exists a unique a €R such that £ 1¢ (az +y) (2|l - |yl # 9)-
Under certain conditions the vector —az is the best approximation
of the vector y with the vectors from [z]}:=span{z}. In regard to
the relation 19 in a q.i.p. space, the lengths of the diagonals of
the parallelogram are equal and the diagonals are perpendicular iff
this parallelogram is a rectangle. A q.i.p. space i an inner product
space iff (27) holds.

0. Introduction and definitions

Let X be a real normed space, S(X) the unit sphere in X, and X* the
dual space of X. On X? always exist the functionals

i

ra(a, )= Jim 7 (e + ty] = [Jel])

92,9 = llall (- (2,) + 74(2,9))

The functional g is natural generalization of the inner product and reduces
to it in the inner product space (cf. [6]). In any normed space, it has
following properties:

g(z,2) = ||z1*, (1)

19
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g9(az,By) = afy(z,y), (2)
g(z,e+y) = llzl® + 9(z,9), 3)
lg(z,y) < =l - ll9ll ¢
g Bz 2=l g ) <
|z +ty|| Ed ®

<) ! (A<0, t>0) (cf. [3],[6]).

If X is smooth, then g is linear in the second argument, and in this case

[y,z]: = g(z,y)

defines a semi-inner product in the sense of Lumer.

The orthogonality of the vector  # 0 to vector y # 0 in X may be
defined in several ways. We mention some kinds of orthogonality and their
denotations:

z Ly e (VA eR)|z|l € ||+ Ay|| (z is orthogonal to ¥ in the sense of Birkhoff),

ri,ye ||w - ” = ||:I: + y“ {James isosceles orthogonality),
Y z Y
zlsye — — 4 (Singer orthogonality).
’ lel ] Nzl [l

By use of the functional g, the orthogonality relations i and 19 are
defined in the paper [8] as follows:

g
z1ly<g(z,y)+9(y,2)=0, (6)
z L9y & |zl Pg(z,9) + llvl*g(y,2) = 0. (7)

Alongside these relations we shall use the orthogonality relation '}; defined
by

z Ly e g(z,y)=9(y2). (8)
We shall also use the angle between the vectors z and y defined as

9(z,y) + 9(y,2)
2||2| - Hyll

If X is an inner product space with inner product (-, +), then the conditions
(6), (7) and (8) are reduced to (z,y) = 0. Additionally, we remark that

Jg_ CJ_ﬂ 19,

cos(z,y): =

(z#0y#0) (L7 (9)
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According to the definition of the functional g, in the space {¥ (p > 1),
we get

g(a,y) = e’ > JaklPsgnak)ye (2= (@1,2,..) € 1P\ {0}).
k

Consequently, the equality
llz + ylI* = lle = yll* = 8(llyII*g(y, =) + 2l *g (2, ) (10)

holds in [4, but doesn’t hold in {!.

The equality (10) is a generalization of the parallelogram equality ([9}).
According to this, we say that a space X is a quasi-inner product space if
the equality (10) holds for all z,y € X ([9]).

1. Strictly convexity of quasi-inner product spaces

It is proved in [9] that a q.i.p. space X is smooth, very smooth, uni-
formly smooth and, in the case of a Banach space, reflexive. The convexity
is not considered.

Theorem 1.1. Let X is smooth. Then X is strictly conver if and
only if

whenever cos(z,y)=1, z#0, y#0, then y=Az for some A>0. (11)
Proof. Suppose that X is smooth and strictly convex. Then by (11)
it follows

g(z,y)+ 9(y,z)
2||]| - llyll

=1 g(z,y)+ g(z,y) = 2ljz|| - lyl| &

& g(z,y) = g(y,z) = ||| - |}yl
(lg(z )l < llzll - llyll and gy, @) < fl2(| - [ly[D)-

Since X is smooth, g(z,y) is a semi-inner product. - Hence, from
g(z,y) = ||| - ||y|| we have y = Az for some A > 0 (cf. Lemma 5, [3]).
Conversely, assume X is smoth and

cos(z,y)=1=>y= Az (A>0). (12)
Let us suppose

g(z,y) = llzli - lyll (2 #0, y#0). (13)
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Then from Theorem 3, p.25 [1], we get

yLs g(z, ).
It follows from Theorem 2 [5] g(y,k) = 0 for all h € g(z, -). Suppose
that
y=Az+h (M€R, h € g(z,-)).
Then
9(v,9) = lyl* = Ag(y,2) + 9(y, k)
ie.
l91* = Ag(y, ). (14)
But also g(z,y) = Al|z||?>. By (13) we obtain ||y|| = Al|z|| (A > 0). Thus,
from (14) we get g(y,z) = ||z|| - ||y]|- So, cos(z,y) = 1 and hence y = Az
(A>0) by (12). ‘
We conclude that the assumption g(z,y) = ||z|| - ly|| (z # 0, ¥ # 0)

implies y = Az for some A > 0. By Lemma 5 [3] it follows that X is strictly
convex. ’ O

Corollary 1.1. A q.i.p. space X is strictly convez.
Proof. In q.i.p. space X, for all z,y € X \ {0} we have

z vyt z vt z y |
ol I+ il gl - 9 0
=il lyll =l 1yl =l Nyl ’

4

If cos(z,y) = 1 then from (15) we get an—” - ”—'Zﬂ“ < 0. Hence

y = %—y—llllx Since X is smoth, from Theorem 1.1 we obtain that X is
x

strictly convex. o

2. Weak convergence in quasi inner product spaces

It is well known that in an inner-product space ¢, — zo and ||z,]] —
|lzol| implies ||z — 2o|| — 0. This is not true in every normed space.

Theorem 2.1. Let X is smooth and z,, € X (n € N), 2o € X such
that

(i) zp = 20 (n — )

(i) lzall = llzoll (n — o0).

Then g(zn,z0) — ||o]|*> (n — 00).
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Proof. Since X is smooth, g(z, ) € X* for all £ € X. (ii) implies
that

€
(Ve > 0)(3ny €N)n 2 ny = |g(wn,xn) - ||z0||2| < 7" (16)

(i) implies that
(¥n > 11)(Ve > 0)(3ny € N)m > ng = |9(2n, Tm) = §(2n, T0)| < % (17)

Thus, for ng = max{n;,ny} and m = n > no, (17) implies
€
lg(znv$n) - g(mn,$0)| < 5 .
It follows, for n > ng
3
19(2n,20) = |zol|*] = 19(2ns 22) = 120l*] < 19(2n, En) = g(@n, Z0)| < 5 -
Using (16) it follows, for n > ng
|g(znzo) — llzoll* < €.
So, lim g(enza) =l

Corollary 2.1. Let X a q.i.p. space and z, € X (n € N), 20 € X
such that

(i) 2, — 2o (n— ) .
(i) [leall = llzoll (n — o0).
Then ||z, — 2ol = 0 (n — 00).

Proof. By (10) we have

2 + 2oll* = [lzn — oll* = 8(l|zal*9(2n, 20) + llzol’g(z0,20)) - (18)

Using this, we obtain

8(I[zall>9(2n, z0) + [120l2g (0, @n)) < (llzall + Nzoll)* = ll2a — zo]* - (19)
Since X is smooth, (i) implies g(zo,») — ||Zol|> (n — c0) and Theorem
2.1 implies g(n,%0) — ||zol|? (n — oo). Hence (19) and (ii) implies

16lJaoll* < 16llz0l* — lim_[la — aoll*,
$0
lim ||z, — zol| = 0.
n—00
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3. Orthogonalities in quasi-inner product spaces

From now on we assume that points 0,z,y,z + y are the vertices of
a parallelogram, and ||z — y||, ||z + y|| are the lengths of its diagonals. If
[lz]] = llyll, we say that this parallelogram is a rhomb, and if z L y we
say that the parallelogram is a rectangle with respect to orthogonality L,

(Le{L, ¥, L))

From the next theorem we see the similarity of q.i.p. spaces with
inner-product spaces.

Theorem 3.1.

1° The lengths of the diagonals of the parallelogram in a q.i.p. space are
equal if and only if this parallelogram is a 19-rectangle, i.e. @ 19 y;

+2° The diagonals of the thomb in a g.i.p. space are 19-orthogonal, i.e.
(z—y) L (= +y)

3° The parallelogram is a 19-quadrangle if and only if its lengths of the
diagonals are equal and the diagonals are perpendicular;

4° Forz,y € X \ {0} we have z + :ll ”y_l_g (x—l|||—§:—: )

Proof.
1° The assertion we immediately get from (10).

2° Replacing z and y respectively by  + y and z — y in (10), we have
1221 = [129]1* = 8(llz + yl*g9(e + 9, 2 —y) + |z - yll’g(e -y, z+)) .

If ||z|| = |ly]l, then (z +y) 19 (z - y).

3° If (0,z,y,2+y) is a 19-quadrangle, then z 19 y. From (10) we then get
lz+yll = [|z—yl||. Moreover, by 2°, [|z|| = [|y|| implies (z—y) 1 (z+y).
Conversely, from (10) and ||z + y|| = ||z — y| it follows = 1¢ y, and
from (10) and (= + y) 19 (& — y) we get ]| = lyl.

i
19l

e
vl

[EINE ( & IE )
T Y I\t e Y )t
” ks ” 9]l 9l

4° Replacing = and y respectively by z + i—y and z — +—:y in (10),

we get
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Observe that in a q.i.p. space the following relations are always true

zly s H (20)
|z

| IIyH“ ”|le| IIyIIH

cyelz+yl|=1llz-yl, (21)

i.e. the Jg_-orthogonality is equivalent with Singer orthogonality and the 19-
orthogonality is equivalent with James isosceles orthogonality. Since in the
case of Singer orthogonality a cathet may be greater than the hypotenuse
(cf. [4]) (if @ Ls y then [jz|]| > ||l + y|| is possible), then a cathet in

g
the | -orthogonality may be greater than the hypotenuse. So the following
assertion is an interesting one.

Theorem 3.2. Let X be a normed space and z,y € X. If « iy, then:

1° min{{lefi, lyll} < iz + yll;
2° max{l|z], [lyll} < 2[l= + yll;
3° |yl > lle + yll = g(z,9) > OA flz + tyll > [J2l| + pEpalz,y) (2> 0).

Proof.

g .
1° 21y e g(z,y)+ |l=l® + full* + 9(y,2) =

= [l2[” + l9l*(3)g(z,x + y) + 9(g(y,z + y) = l|lzl}* + llyl|*(4)

el + llyl® < lla -+ gzl + llyll) - (22)

Let [|z]| <[yl and [z + y|| < [Jz||. Then. by (22),

[

Nzl + Hyl® < el + el - lloll e (lyll < =,
and we obtain a contradiction.

2° Suppose ||z|| < ||y||- Then, by (22) we have

(o]

Iyl < 2l + 11gll® < llz + gl + fiyl) < 20yl -l + 9l

Hence we get ||y|| < 2|z + y||.
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3 Joll > lle +yll = UL o

Besides this, from (5) we get

t
lz +tyll = ll=l] + Tepd(®y)

5)g(z,y) < 0(6)g(z,y) > 0.

with ¢ > 0.

Theorem 3.3. Let X be a q.i.p. space and z,y € X. Then x 19
y implies max{||z||,||y|]| < ||z £ y|| i.e. a cathet is not greater than the
hypotenuse with respect to 19-orthogonality.

Proof. The function f(t) = ||z+ty|| is convex on R with fixed z,y € X.
Assume z 19 y and ||z + y|| < [|z||. Now, f(—1) = f(1) < f(0) follows from
(21). So we get a contradiction, because the function f is a convex one.

g
It is proved in 8] that 1 -orthogonality is uniquely resolvable in smooth

g
spaces, i.e. there exists a € R such that z 1(az + y) for all = # 0 and
y € X. Now we resolve the problem in connection with 19-orthogonality

and Ji-ortogonality.
Theorem 3.4. Let X be a q.i.p. space.and z # 0, y € X. Then 19-

orthogonality is uniquely resolvable, i.e. there erists a unique ¢ € R such
that z 19 (az + y).

Proof. If v 19 y then @ = 0. Assume that not z 19 y. For fixed
z,y € X \ {0} we consider the function f: R — R defined by
F@©) = Ntz + ylPg(te + y,2) + ll2f*9(z,tz + 9) -

By (10) we have 1

F@) = g+ Dell* = (It - Dz + 9l
Hence, the function f is continuous on R. Since

(o 3o (o Bors T2 = fen 2 oo L) 0

from (2) and (3) we then have

4
F0=P |43 = e + Llg (o + L y) + 2ol + NalPo(z.9) (2 #0).
(23)

Since X is smooth space we have

Jim g (z + %y) =g(z,y) (cf. [3]).
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Hence by (23) we have
tligl f(t) = £0.

So there exists a € R such that f(a) =0 or z 19 (az + y).
If z 19 (a'z + y) for some a’ # a, in view of (10) we have

(e + Dz + 9l = [I(a = L)z + yll A llaz + yl*g(az + y, z)+

+||z]|*g(z, a2 + y) = 0, (24)

I(a" + 1)z +yll = (e = Dz + ¢l Alle'z + yl*g(a’z + y,2)+
+ ||lz||*g(z,a'z + y) = 0. (25)
Redarding @ and a’ we may have one of the possibilities
[ —1,d +1]Cla-1,a+1] ([a-1,a+1]Ca' - 1,d +1]).

In this case a = a' because (a + 1) — (a — 1) = 2. If these possibilities do
not hold, denote by

a=min{a' —1, a -1}, B=max{a'+1, a+1}.

Then, from the convexity of the function ¢t — f(t) = ||y+tz|| it follows that
the function f is constant on the interval [a, 8], and therefore f achieves its
minimum at every t € [a, B]. Since the space X is smooth, there exists f'(?)
forallt € Rand f'(t) = 0 with ¢ € (e, 8). Besides this, (tz+y) Lp z for all
t € (a,B), and hence g(tz + y,z) = 0 with ¢ € (o, ). Since a,a’ € (a,0)
from (24) and (25) we obtain

Ca=d = g(:c,y)‘ 0

]

Now, denote by Plgjy the set of the best approximations of y with vectors
from [z]. Besides this, if © L (a2 4+ y) we say that —az is a projection of
vector y on vector z in the sense of the L-orthogonality. In the next theorem
it is given the relation between this projection and the best approximation
of the vector y with vectors from [z].

Theorem 3.5. Let the space X be smooth and x L (az + y), where
le {Jg_, 19, Jg_ }. Then —ax € Py if and only if

_ _g(x’y)

llell®

(26)
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T

Proof. Suppose z ¢ (az + y) and —az € Pgy. Then we get
lly + az]| < ||y — Az} for all A € R and therefore ||y + az|| < ||y + az + tz||
for every t € R, i.e. (y+ az) Ly z. Hence g(az + y,z) = 0. Using
z 19 (ax + y), i.e.

laz + yl*g(az + y,2) + ||z[*g(z, a2 + y) = 0,

we get (26).
Conversely, assume non z 19 (az +y) and (26). Then from (26) we get
g(z,az + y), and therefore in view of z 19 (az + y), we obtain

g(az+9,2)=0 & (az+y) Ly 2 [laz+y]| < oz +y + tal| (v € R)&
& lly - (=a2)]| < ly — Aell (VA €R).

* But this signifies that —az € Bay- |
g
The proof of the 1-orthogonality is as above (in the case of the
19-orthogonality). Besides this we have L cls. 0

Corollary 3.1. If y,: = —az, then in a ¢.i.p. space holds

Yo € Py & ly — vz + 2l = ly — vz — 2| .

4. Quasi-inner product spaces and inner product spaces

Finally, we give the answer of the question when a q.i.p. space is an
inner-product space.

Theorem 4.1. A q.i.p. space X is an inner-product space if and only
if the equivalence

e+ o)l = llz — yll © g(2,9) =0 (27)
holds on X.

Proof. If the space X is an inner-product space with the inner-product
(+,), then g(z,y) = ¢(y,z) = (z,y) for all z,y € X. Therefore we have
(10) and (27).

Assume that (10) and (27) are true. Then from (10) we get

e+ tyll*~ll—tyll* =8¢ (1229 2, 9)+ IWlPg(z,9)) (z,9€X; t €R). (28)
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Now assume ||z + y|| = ||z — y]|. Then, from (27) and (28) we obtain
9(y,z) = 0,and so g(z,y) = g(y,) = 0. Hence, by (28), |lz+tyl| = ||lz—tyl,
for all t € R. That is, a q.1.p. space X

lz+yll=lle—yll=lls+ll=lle -ty (t€R)

is valid. But this is necessary and sufficient Ficken’s condition for X to be
an inner-product space (cf. {2], p. 193). a
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3A ITPOCTOPHN CO IIOJIYCKAJIAPEH
ITPOM3BO.I

IIaBnie M. Mununauk

Peszunwme

IIpoctop X co moayckaliapeH OpPOM3BOI € CTPUKTHO KOHBEKCEH.
Axo Hu3aTa (2,) KOHBeprupa ci1abo KoH (2g) (Zn,Zo € X, T, — 29) U
lzxll — llzol], Toram ||z, — 2¢|| — 0. Pemammjara 3a oproromammoct
19, nedunupana co (7) e eOVHCTBEHO peULINBa, T.€. I[IOCTOM €IUH-
crBeso ¢ €R Taka mro z 9 (az + y) (||z] - ||yl # 0). Iom mekom
yCIIOBM, BEKTOPOT —aZ € HajnoOpaTa ampoKCHMMalWja Ha BEKTODPOT ¥
co Bekropu of [z]: =span{z}. Ilopamm penaunujata 19 Bo mpocrTop co
NOJIyCKajlapeH MPOU3BOM NOJDKUHMATE Ha OWjaroHajIATe Ha MHapaJielsio-
rpaM ce eIHAKBU M [MjarOHAJHUTE Ce HOPMAaJHM aKO M CaMO aKo Ilapa-
NeNOrpaMoT € MPaBOaroiHuK. [IpocTop co moMycKallapeH NMPOU3BOL €
IIPOCTOP €O CKaJlapeH IPOU3BOXI aKO U caMoO ako Baxu (27).
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