Математички Билтен **22** (XLVIII) 1998 (19-30) Скопје, Македонија

ON THE QUASI-INNER PRODUCT SPACES

Pavle M. Miličić

Abstract

A quasi-inner product space X $(q.\ i.\ p.\ \text{space})$ is strictly convex. If a sequence (x_n) converges weakly to x_0 $(x_n,x_0\in X,x_n\to x_0)$ and $\|x_n\|\to \|x_0\|$, then $\|x_n-x_0\|\to 0$. The orthogonality relation \mathbb{F}^g defined by (7), is uniquely resolvable, i.e. there exists a unique $a\in\mathbb{R}$ such that $x\perp^g(ax+y)$ $(\|x\|\cdot\|y\|\neq 0)$. Under certain conditions the vector -ax is the best approximation of the vector y with the vectors from $[x]:=\operatorname{span}\{x\}$. In regard to the relation \mathbb{F}^g in a q.i.p. space, the lengths of the diagonals of the parallelogram are equal and the diagonals are perpendicular iff this parallelogram is a rectangle. A q.i.p. space i an inner product space iff (27) holds.

O. Introduction and definitions

Let X be a real normed space, S(X) the unit sphere in X, and X^* the dual space of X. On X^2 always exist the functionals

$$\tau_{\pm}(x,y) := \lim_{t \to \pm 0} t^{-1}(\|x + ty\| - \|x\|)$$

$$g(x,y) := \frac{1}{2} ||x|| (\tau_{-}(x,y) + \tau_{+}(x,y)).$$

The functional g is natural generalization of the inner product and reduces to it in the inner product space (cf. [6]). In any normed space, it has following properties:

$$g(x,x) = ||x||^2, (1)$$

$$g(\alpha x, \beta y) = \alpha \beta g(x, y), \qquad (2)$$

$$g(x, x + y) = ||x||^2 + g(x, y),$$
(3)

$$|g(x,y) \le ||x|| \cdot ||y||,$$
 (4)

$$||x|| \frac{||x + \lambda y|| - ||x||}{\lambda} \le g(x, y) \le$$

$$\le ||x|| \frac{||x + ty|| - ||x||}{t} \qquad (\lambda < 0, \ t > 0) \quad (\text{cf. [3], [6]}).$$
(5)

If X is smooth, then g is linear in the second argument, and in this case

$$[y,x] := g(x,y)$$

defines a semi-inner product in the sense of Lumer.

The orthogonality of the vector $x \neq 0$ to vector $y \neq 0$ in X may be defined in several ways. We mention some kinds of orthogonality and their denotations:

 $x \perp_B y \Leftrightarrow (\forall \lambda \in \mathbf{R}) ||x|| \leq ||x + \lambda y||$ (x is orthogonal to y in the sense of Birkhoff), $x \perp_J y \Leftrightarrow ||x - y|| = ||x + y||$ (James isosceles orthogonality),

$$x \perp_{s} y \Leftrightarrow \left\| \frac{x}{\|x\|} - \frac{y}{\|x\|} \right\| = \left\| \frac{x}{\|x\|} + \frac{y}{\|x\|} \right\|$$
 (Singer orthogonality).

By use of the functional g, the orthogonality relations $\stackrel{g}{\perp}$ and \perp^g are defined in the paper [8] as follows:

$$x \perp^g y \Leftrightarrow g(x,y) + g(y,x) = 0, \qquad (6)$$

$$x \perp^{g} y \Leftrightarrow ||x||^{2} g(x, y) + ||y||^{2} g(y, x) = 0.$$
 (7)

Alongside these relations we shall use the orthogonality relation \perp_{g} defined by

$$x \perp_{\underline{a}} y \Leftrightarrow g(x,y) = g(y,x). \tag{8}$$

We shall also use the angle between the vectors x and y defined as

$$\cos(x,y) := \frac{g(x,y) + g(y,x)}{2||x|| \cdot ||y||} \qquad (x \neq 0 \ y \neq 0) \quad (\text{cf. [7]}). \tag{9}$$

If X is an inner product space with inner product (\cdot, \cdot) , then the conditions (6), (7) and (8) are reduced to (x,y)=0. Additionally, we remark that $\frac{1}{4} \subset \stackrel{g}{\perp} \cap \perp^g$.

According to the definition of the functional g, in the space l^p $(p \ge 1)$, we get

$$g(x,y) = ||x||^{2-p} \sum_{k} |x_k|^{p-1} (\operatorname{sgn} x_k) y_k \qquad (x = (x_1, x_2, \ldots) \in l^p \setminus \{0\}).$$

Consequently, the equality

$$||x + y||^4 - ||x - y||^4 = 8(||y||^2 g(y, x) + ||x||^2 g(x, y))$$
(10)

holds in l^4 , but doesn't hold in l^1 .

The equality (10) is a generalization of the parallelogram equality ([9]). According to this, we say that a space X is a quasi-inner product space if the equality (10) holds for all $x, y \in X$ ([9]).

1. Strictly convexity of quasi-inner product spaces

It is proved in [9] that a q.i.p. space X is smooth, very smooth, uniformly smooth and, in the case of a Banach space, reflexive. The convexity is not considered.

Theorem 1.1. Let X is smooth. Then X is strictly convex if and only if

whenever
$$\cos(x,y)=1, x\neq 0, y\neq 0, \text{ then } y=\lambda x \text{ for some } \lambda>0.$$
 (11)

Proof. Suppose that X is smooth and strictly convex. Then by (11) it follows

$$\frac{g(x,y) + g(y,x)}{2||x|| \cdot ||y||} = 1 \Leftrightarrow g(x,y) + g(x,y) = 2||x|| \cdot ||y|| \Leftrightarrow$$
$$\Leftrightarrow g(x,y) = g(y,x) = ||x|| \cdot ||y||$$

 $(|g(x,y)| \le ||x|| \cdot ||y|| \text{ and } |g(y,x)| \le ||x|| \cdot ||y||).$

Since X is smooth, g(x,y) is a semi-inner product. Hence, from $g(x,y) = ||x|| \cdot ||y||$ we have $y = \lambda x$ for some $\lambda > 0$ (cf. Lemma 5, [3]).

Conversely, assume X is smoth and

$$\cos(x, y) = 1 \Rightarrow y = \lambda x \qquad (\lambda > 0). \tag{12}$$

Let us suppose

$$g(x,y) = ||x|| \cdot ||y|| \qquad (x \neq 0, \ y \neq 0). \tag{13}$$

Then from Theorem 3, p.25 [1], we get

$$y \perp_B g(x, \cdot)$$
.

It follows from Theorem 2 [5] g(y,h)=0 for all $h\in g(x,\cdot).$ Suppose that

$$y = \lambda x + h \quad (\lambda \in \mathbb{R}, h \in g(x, \cdot)).$$

Then

$$g(y,y) = ||y||^2 = \lambda g(y,x) + g(y,h)$$

i.e.

$$||y||^2 = \lambda g(y, x). \tag{14}$$

But also $g(x,y) = \lambda ||x||^2$. By (13) we obtain $||y|| = \lambda ||x||$ ($\lambda > 0$). Thus, from (14) we get $g(y,x) = ||x|| \cdot ||y||$. So, $\cos(x,y) = 1$ and hence $y = \lambda x$ ($\lambda > 0$) by (12).

We conclude that the assumption $g(x,y) = ||x|| \cdot ||y|| \ (x \neq 0, y \neq 0)$ implies $y = \lambda x$ for some $\lambda > 0$. By Lemma 5 [3] it follows that X is strictly convex.

Corollary 1.1. A q.i.p. space X is strictly convex.

Proof. In q.i.p. space X, for all $x, y \in X \setminus \{0\}$ we have

$$16 - \left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\|^4 \ge \left\| \frac{x}{\|x\|} + \frac{y}{\|y\|} \right\|^4 - \left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\|^4 = 16 \cos(x, y). \tag{15}$$

If $\cos(x,y)=1$ then from (15) we get $\left\|\frac{x}{\|x\|}-\frac{y}{\|y\|}\right\|^4\leq 0$. Hence $y=\frac{\|y\|}{\|x\|}x$. Since X is smoth, from Theorem 1.1 we obtain that X is strictly convex.

2. Weak convergence in quasi inner product spaces

It is well known that in an inner-product space $x_n \to x_0$ and $||x_n|| \to ||x_0||$ implies $||x_n - x_0|| \to 0$. This is not true in every normed space.

Theorem 2.1. Let X is smooth and $x_n \in X \ (n \in \mathbb{N}), \ x_0 \in X \ such that$

- (i) $x_n \to x_0 \ (n \to \infty)$
- (ii) $||x_n|| \to ||x_0|| (n \to \infty)$.

Then $g(x_n, x_0) \to ||x_0||^2 \quad (n \to \infty).$

Proof. Since X is smooth, $g(x,\cdot) \in X^*$ for all $x \in X$. (ii) implies that

$$(\forall \varepsilon > 0)(\exists n_1 \in \mathbb{N}) n \ge n_1 \Rightarrow \left| g(x_n, x_n) - \|x_0\|^2 \right| < \frac{\varepsilon}{2}. \tag{16}$$

(i) implies that

$$(\forall n \ge n_1)(\forall \varepsilon > 0)(\exists n_2 \in \mathbb{N})m \ge n_2 \Rightarrow |g(x_n, x_m) - g(x_n, x_0)| < \frac{\varepsilon}{2}.$$
 (17)

Thus, for $n_0 = \max\{n_1, n_2\}$ and $m = n \ge n_0$, (17) implies $|g(x_n, x_n) - g(x_n, x_0)| < \frac{\varepsilon}{2}$.

It follows, for $n \geq n_0$

$$|g(x_n, x_0) - ||x_0||^2 | - |g(x_n, x_n) - ||x_0||^2 | \le |g(x_n, x_n) - g(x_n, x_0)| < \frac{\varepsilon}{2}.$$

Using (16) it follows, for $n \ge n_0$

$$|g(x_nx_0)-||x_0||^2|<\varepsilon.$$

So, $\lim_{n \to \infty} g(x_n x_0) = ||x_0||^2$.

Corollary 2.1. Let X a q.i.p. space and $x_n \in X$ $(n \in \mathbb{N})$, $x_0 \in X$ such that

- (i) $x_n \to x_0 \ (n \to \infty)$.
- (ii) $||x_n|| \to ||x_0|| (n \to \infty)$.

Then $||x_n - x_0|| \to 0 \ (n \to \infty)$.

Proof. By (10) we have

$$||x_n + x_0||^4 - ||x_n - x_0||^4 = 8(||x_n||^2 g(x_n, x_0) + ||x_0||^2 g(x_0, x_n)).$$
 (18) Using this, we obtain

$$8(||x_n||^2g(x_n,x_0)+||x_0||^2g(x_0,x_n)) \le (||x_n||+||x_0||)^4-||x_n-x_0||^4. (19)$$

Since X is smooth, (i) implies $g(x_0, x_n) \to ||x_0||^2$ $(n \to \infty)$ and Theorem 2.1 implies $g(x_n, x_0) \to ||x_0||^2$ $(n \to \infty)$. Hence (19) and (ii) implies

$$16||x_0||^4 \le 16||x_0||^4 - \lim_{n \to \infty} ||x_n - x_0||^4,$$

so

$$\lim_{n\to\infty}||x_n-x_0||=0.$$

3. Orthogonalities in quasi-inner product spaces

From now on we assume that points 0, x, y, x + y are the vertices of a parallelogram, and ||x - y||, ||x + y|| are the lengths of its diagonals. If ||x|| = ||y||, we say that this parallelogram is a rhomb, and if $x \perp y$ we say that the parallelogram is a rectangle with respect to orthogonality \bot , $(\bot \in \{ \bot, \bot^g, \bot_q \})$.

From the next theorem we see the similarity of q.i.p. spaces with inner-product spaces.

Theorem 3.1.

- 1° The lengths of the diagonals of the parallelogram in a q.i.p. space are equal if and only if this parallelogram is a \perp^g -rectangle, i.e. $x \perp^g y$;
- 2° The diagonals of the rhomb in a q.i.p. space are \bot^g -orthogonal, i.e. $(x-y) \bot^g (x+y)$;
 - 3° The parallelogram is a \perp^g -quadrangle if and only if its lengths of the diagonals are equal and the diagonals are perpendicular;

$$4^{\circ} \ \ For \ x,y \in X \setminus \{0\} \ \ we \ have \ \ x + \frac{||x||}{||y||} y \perp^g \left(x - \frac{||x||}{||y||} y \right).$$

Proof.

- 1° The assertion we immediately get from (10).
- 2° Replacing x and y respectively by x + y and x y in (10), we have

$$||2x||^4 - ||2y||^4 = 8(||x+y||^2g(x+y, x-y) + ||x-y||^2g(x-y, x+y)).$$

If
$$||x|| = ||y||$$
, then $(x + y) \perp^g (x - y)$.

- 3° If (0, x, y, x+y) is a \bot^g -quadrangle, then $x \bot^g y$. From (10) we then get ||x+y|| = ||x-y||. Moreover, by 2°, ||x|| = ||y|| implies $(x-y) \bot^g (x+y)$. Conversely, from (10) and ||x+y|| = ||x-y|| it follows $x \bot^g y$, and from (10) and $(x+y) \bot^g (x-y)$ we get ||x|| = ||y||.
- 4° Replacing x and y respectively by $x + \frac{||x||}{||y||}y$ and $x \frac{||x||}{||y||}y$ in (10), we get

$$0 = \left\| x + \frac{\|x\|}{\|y\|} y \right\|^2 g \left(x + \frac{\|x\|}{\|y\|} y, x - \frac{|\vec{x}|}{\|y\|} y \right) +$$

$$+ \left\| x - \frac{\|x\|}{\|y\|} y \right\|^2 g \left(x - \frac{\|x\|}{\|y\|} y, x + \frac{\|x\|}{\|y\|} y \right). \qquad \Box$$

Observe that in a q.i.p. space the following relations are always true

$$x \perp y \Leftrightarrow \left\| \frac{x}{\|x\|} + \frac{y}{\|y\|} \right\| = \left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\|, \tag{20}$$

$$x \perp^g y \Leftrightarrow ||x+y|| = ||x-y||, \tag{21}$$

i.e. the \perp -orthogonality is equivalent with Singer orthogonality and the \perp^g -orthogonality is equivalent with James isosceles orthogonality. Since in the case of Singer orthogonality a cathet may be greater than the hypotenuse (cf. [4]) (if $x \perp_s y$ then ||x|| > ||x + y|| is possible), then a cathet in the \perp -orthogonality may be greater than the hypotenuse. So the following assertion is an interesting one.

Theorem 3.2. Let X be a normed space and $x, y \in X$. If $x \perp y$, then:

- 1° $\min\{||x||, ||y||\} \le ||x+y||$;
- $2^{\circ} \max\{||x||, ||y||\} \le 2||x+y||;$

3°
$$||y|| > ||x + y|| \Rightarrow g(x, y) > 0 \land ||x + ty|| \ge ||x|| + \frac{t}{||x||}g(x, y)$$
 $(t > 0)$.

Proof.

1°
$$x \perp y \Leftrightarrow g(x,y) + ||x||^2 + ||y||^2 + g(y,x) =$$

$$= ||x||^2 + ||y||^2 (3)g(x,x+y) + g(g(y,x+y)) = ||x||^2 + ||y||^2 (4)$$

$$||x||^2 + ||y||^2 < ||x+y|| (||x|| + ||y||). \tag{22}$$

Let $||x|| \le ||y||$ and $||x + y|| \le ||x||$. Then. by (22),

$$||x||^2 + ||y||^2 < ||x||^2 + ||x|| \cdot ||y||$$
 i.e. $||y|| < ||x||$,

and we obtain a contradiction.

2° Suppose $||x|| \le ||y||$. Then, by (22) we have

$$||y||^2 \le ||x||^2 + ||y||^2 \le ||x + y||(||x|| + ||y||) \le 2||y|| \cdot ||x + y||$$
.

Hence we get $||y|| \le 2||x+y||$.

3° $||y|| > ||x + y|| \Rightarrow \frac{||x + y|| - ||y||}{1} < 0(5)g(x, y) < 0(6)g(x, y) > 0.$ Besides this, from (5) we get

$$||x + ty|| \ge ||x|| + \frac{t}{||x||}g(x, y)$$

with t > 0.

Theorem 3.3. Let X be a q.i.p. space and $x, y \in X$. Then $x \perp^g y$ implies $\max\{\|x\|, \|y\| \leq \|x \pm y\|$ i.e. a cathet is not greater than the hypotenuse with respect to \perp^g -orthogonality.

Proof. The function f(t) = ||x+ty|| is convex on \mathbb{R} with fixed $x, y \in X$. Assume $x \perp^g y$ and ||x+y|| < ||x||. Now, f(-1) = f(1) < f(0) follows from (21). So we get a contradiction, because the function f is a convex one.

It is proved in [8] that \perp^g -orthogonality is uniquely resolvable in smooth spaces, i.e. there exists $a \in \mathbb{R}$ such that $x \perp^g (ax + y)$ for all $x \neq 0$ and $y \in X$. Now we resolve the problem in connection with \perp^g -orthogonality and \perp^g -ortogonality.

Theorem 3.4. Let X be a q.i.p. space and $x \neq 0$, $y \in X$. Then \bot^g -orthogonality is uniquely resolvable, i.e. there exists a unique $a \in \mathbb{R}$ such that $x \bot^g (ax + y)$.

Proof. If $x \perp^g y$ then a = 0. Assume that not $x \perp^g y$. For fixed $x, y \in X \setminus \{0\}$ we consider the function $f: \mathbb{R} \mapsto \mathbb{R}$ defined by

$$f(t) = ||tx + y||^2 g(tx + y, x) + ||x||^2 g(x, tx + y).$$

By (10) we have

$$f(t) = \frac{1}{8}(\|(t+1)x\|^4 - \|(t-1)x + y\|^4).$$

Hence, the function f is continuous on \mathbb{R} . Since

$$g\left(x+\frac{y}{t},x\right)=g\left(x+\frac{y}{t},x+\frac{y}{t}-\frac{y}{t}\right)=\left\|x+\frac{y}{t}\right\|^2-\frac{1}{t}g\left(x+\frac{y}{t},y\right),(t\neq0)$$

from (2) and (3) we then have

$$f(t) = t^{3} \left\| x + \frac{y}{t} \right\|^{4} - t^{2} \|x + \frac{y}{t}\|^{2} g\left(x + \frac{y}{t}, y\right) + t \|x\|^{4} + \|x\|^{2} g(x, y) \quad (t \neq 0).$$
(23)

Since X is smooth space we have

$$\lim_{t\to\pm\infty}g\left(x+\frac{y}{t},y\right)=g(x,y)\quad\left(cf.\ [3]\right).$$

Hence by (23) we have

$$\lim_{t \to \pm \infty} f(t) = \pm \infty .$$

So there exists $a \in \mathbb{R}$ such that f(a) = 0 or $x \perp^g (ax + y)$. If $x \perp^g (a'x + y)$ for some $a' \neq a$, in view of (10) we have

$$||(a+1)x + y|| = ||(a-1)x + y|| \wedge ||ax + y||^2 g(ax + y, x) + + ||x||^2 g(x, ax + y) = 0,$$
(24)

$$||(a'+1)x + y|| = ||(a'-1)x + y|| \wedge ||a'x + y||^2 g(a'x + y, x) + + ||x||^2 g(x, a'x + y) = 0.$$
(25)

Redarding a and a' we may have one of the possibilities

$$[a'-1, a'+1] \subset [a-1, a+1] ([a-1, a+1] \subset [a'-1, a'+1]).$$

In this case a = a' because (a + 1) - (a - 1) = 2. If these possibilities do not hold, denote by

$$\alpha = \min\{a'-1, a-1\}, \qquad \beta = \max\{a'+1, a+1\}.$$

Then, from the convexity of the function $t \mapsto f(t) = ||y+tx||$ it follows that the function f is constant on the interval $[\alpha, \beta]$, and therefore f achieves its minimum at every $t \in [\alpha, \beta]$. Since the space X is smooth, there exists f'(t) for all $t \in \mathbb{R}$ and f'(t) = 0 with $t \in (\alpha, \beta)$. Besides this, $(tx+y) \perp_B x$ for all $t \in (\alpha, \beta)$, and hence g(tx+y, x) = 0 with $t \in (\alpha, \beta)$. Since $a, a' \in (\alpha, \beta)$ from (24) and (25) we obtain

$$\alpha = a' = -\frac{g(x,y)}{\|x\|}.$$

Now, denote by $P_{[x]}y$ the set of the best approximations of y with vectors from [x]. Besides this, if $x \perp (ax + y)$ we say that -ax is a projection of vector y on vector x in the sense of the \perp -orthogonality. In the next theorem it is given the relation between this projection and the best approximation of the vector y with vectors from [x].

Theorem 3.5. Let the space X be smooth and $x \perp (ax + y)$, where $\perp \in \{ \stackrel{g}{\perp}, \perp^g, \stackrel{\downarrow}{\perp} \}$. Then $-ax \in P_{[x]}y$ if and only if

$$a = -\frac{g(x,y)}{\|x\|^2}. (26)$$

Proof. Suppose $x \perp^g (ax + y)$ and $-ax \in P_{[x]}y$. Then we get $||y + ax|| \leq ||y - \lambda x||$ for all $\lambda \in \mathbb{R}$ and therefore $||y + ax|| \leq ||y + ax + tx||$ for every $t \in \mathbb{R}$, i.e. $(y + ax) \perp_B x$. Hence g(ax + y, x) = 0. Using $x \perp^g (ax + y)$, i.e.

$$||ax + y||^2 g(ax + y, x) + ||x||^2 g(x, ax + y) = 0,$$

we get (26).

Conversely, assume non $x \perp^g (ax+y)$ and (26). Then from (26) we get g(x, ax+y), and therefore in view of $x \perp^g (ax+y)$, we obtain

$$g(ax+y,x) = 0 \Leftrightarrow (ax+y) \perp_{B} x \Leftrightarrow ||ax+y|| \leq ||ax+y+tx|| \quad (\forall t \in \mathbb{R}) \Leftrightarrow$$
$$\Leftrightarrow ||y-(-ax)|| \leq ||y-\lambda x|| \quad (\forall \lambda \in \mathbb{R}).$$

But this signifies that $-ax \in P_{[x]}y$.

The proof of the \perp -orthogonality is as above (in the case of the \perp^g -orthogonality). Besides this we have $\perp_q \subset \perp^g$.

Corollary 3.1. If $y_x := -ax$, then in a q.i.p. space holds

$$y_x \in P_{[x]}y \Leftrightarrow ||y - y_x + x|| = ||y - y_x - x||.$$

4. Quasi-inner product spaces and inner product spaces

Finally, we give the answer of the question when a q.i.p. space is an inner-product space.

Theorem 4.1. A q.i.p. space X is an inner-product space if and only if the equivalence

$$||x + y|| = ||x - y|| \Leftrightarrow g(x, y) = 0$$
 (27)

holds on X.

Proof. If the space X is an inner-product space with the inner-product (\cdot,\cdot) , then g(x,y)=g(y,x)=(x,y) for all $x,y\in X$. Therefore we have (10) and (27).

Assume that (10) and (27) are true. Then from (10) we get

$$\|x + ty\|^4 - \|x - ty\|^4 = 8t(\|x\|^2 g(x, y) + t^2 \|y\|^2 g(x, y)) \quad (x, y \in X; \ t \in \mathbb{R}). \tag{28}$$

Now assume ||x + y|| = ||x - y||. Then, from (27) and (28) we obtain g(y,x) = 0, and so g(x,y) = g(y,x) = 0. Hence, by (28), ||x+ty|| = ||x-ty||, for all $t \in \mathbb{R}$. That is, a q.i.p. space X

$$||x + y|| = ||x - y|| \Rightarrow ||x + ty|| = ||x - ty|| \quad (t \in \mathbb{R})$$

is valid. But this is necessary and sufficient Ficken's condition for X to be an inner-product space (cf. [2], p. 193).

References

- [1] Diestel J.: Geometry of Banach space Selected Topics, Springer-Verlag Berlin, Heidelberg, New York, 1975.
- [2] Dej M. M.: Normirovanie Linejnie Prostranstva, Izdatelstvo Inostranoj Literaturi, Moskva, 1961.
- [3] Giles R. J.: Classes of semi-inner product space, Trans. Amer. Math. Soc. V. 129, 436-446, 1967.
- [4] Lin Zhen and Zhuang Yadong: Singer orthogonality and chasacterization of inner-product spaces, Arch. Math., V. 55, 588-594, 1990.
- [5] Miličić M. P.: Sur la g-orthogonalité danns un espace normé, Mat. Vesnik 39, 325-334, 1987.
- [6] Miličić M. P.: Une géneéralization naturelle du product scalaire dans des espace normé et son utilisation, Publ. Inst. Math. Beograd, 42(56), 63-70, 1987.
- [7] Miličić M. P.: Sur la g-angle dans un espace normé, Mat. Vesnik 45, 43-48, 1993.
- [8] Miličić M. P.: Resolvability of g-orthogonality in normed spaces, Mathematica Balkanica, New Series V. 12, 1998.
- [9] Miličić M. P.: A generalization of the parallelogram equality in normed spaces, Jour. of Math. Kyoto University, V. 38 N°1, 1997.

ЗА ПРОСТОРИ СО ПОЛУСКАЛАРЕН ПРОИЗВОД

Павле М. Миличиќ

Резиме

Простор X со полускаларен производ е стриктно конвексен. Ако низата (x_n) конвергира слабо кон (x_0) $(x_n,x_0\in X,\,x_n\to x_0)$ и $\|x_n\|\to \|x_0\|$, тогаш $\|x_n-x_0\|\to 0$. Релацијата за ортогоналност \mathbb{I}^g , дефинирана со (7) е единствено решлива, т.е. постои единствено $a\in \mathbb{R}$ така што x \mathbb{I}^g (ax+y) $(\|x\|\cdot \|y\|\neq 0)$. Под некои услови, векторот -ax е најдобрата апроксимација на векторот y со вектори од [x]:=span $\{x\}$. Поради релацијата \mathbb{I}^g во простор со полускаларен производ должините на дијагоналите на паралелограм се еднакви и дијагоналите се нормални ако и само ако паралелограмот е правоаголник. Простор со полускаларен производ е простор со скаларен производ ако и само ако важи (27).

Faculty of Mathematics, University of Belgrade, YU - 11000, Yugoslavia