Математички Билтен 20 (XX) 1996 (61-68) Скопје, Македонија

THE CENTER CONDITIONS FOR A CLASS OF CUBIC SYSTEMS

Ć. Dolichanin*, V. G. Romanovsky** and M. Stefanović*

Abstract

One of famous problems of the theory of Differential equations, namely, center-focus problem, are considered. For the cubic vector field

$$i \frac{dw}{dt} = w \left(1 - a_{10}w - a_{01}\overline{w} - a_{11}w \,\overline{w} - a_{-13}w^{-1} \,\overline{w}^3 \right) ,$$

in the case when $a_{11} \neq -a_{10}a_{01}$ the necessary and some sufficient center conditions are obtained.

We consider the cubic system of the form

$$i\frac{dw}{dt} = w\left(1 - a_{10}w - a_{01}\overline{w} - a_{11}w\overline{w} - a_{-13}w^{-1}\overline{w}^{3}\right), \qquad (1)$$

where w = x + iy, $a_{ij} \in \mathbb{C}$.

To solve the problem of distinguishing between a center and focus it is necessary to obtain Lyapunov focus quantities, which are polynomials of coefficients a_{ij} , \overline{a}_{ij} of the system (1). There are many algorithms for its calculation (see, for example, [1], [3], [6], [7]), but we use the algorithm described in [4, 5]. Let us denote $x = (x_1, x_2, \ldots, x_8)$, $b_{ij} = \overline{a}_{ji}$,

Mathematics subject classification: 34C

$$[x] = a_{10}^{x_1} \, a_{01}^{x_2} \, a_{11}^{x_3} \, a_{-13}^{x_4} \, b_{3-1}^{x_5} \, b_{11}^{x_6} \, b_{10}^{x_7} \, a_{01}^{x_8} \, .$$

Computing the function

$$V(x) = \sum_{x_1, ..., x_8 > 0} V_{(x_1, ..., x_8)}[x],$$

by the recurrent formula obtained in [4] we get Lyapunov focus quantities $g_{11}, g_{22}, g_{33}, \ldots$. We denote by I the ideal generated by whole focus quantities, and by I_k the ideal generated bi k first quantities, i.e. $I = (g_{11}, g_{22}, \ldots), I_k = (g_{11}, \ldots, g_{kk})$. After factoring every calculated quantity g_{kk} modulo the ideal I_{k-1} we obtain:

$$\begin{split} g_{11} = & 2i(Im[0010\ 0000] + Im[1100\ 0000])\,, \\ g_{22} = & Im[1100\ 0100]\ \mathrm{mod}(g_{11})\,, \\ g_{33} = & -\frac{9}{4}\,Im[0300\ 1001] - \frac{5}{4}\,Im[0001\ 1011] + \frac{1}{4}\,Im[0100\ 1003] - \frac{1}{4}\,Im[0100\ 1000] - \frac{1}{4}\,$$

where Im a is the imaginary part of complex number a.

Theorem 1. If the system (1), where $a_{11} \neq -a_{10}a_{01}$ has a center in the origin, then one of conditions holds:

(i)
$$a_{11} = Im \ a_{10}a_{01} = Im \ a_{01}^4 \ \overline{a}_{-13} = Im \ a_{10}^4a_{-13} = 0;$$

 $-\frac{9}{8}Im[0001\ 0040] - \frac{1}{8}Im[0200\ 1002] \mod I_2$

(ii)
$$a_{10} = Im a_{11} = 0$$
;

(iii)
$$a_{01} = Im \ a_{11} = Im \ a_{10}^4 \ a_{-13} = 0;$$

(iv)
$$Im \ a_{10}a_{01}\overline{a}_{11} = Im \ a_{10}a_{01} = Im \ a_{01}^4 \overline{a}_{-13} = 0$$

 $a_{10} \neq 0, \ a_{01} \neq 0, \ a_{11} \neq 0;$

(v)
$$Im a_{11} = a_{10} - \frac{1}{2} \overline{a}_{01} = 0;$$

(vi)
$$a_{10} - 3a_{01} = |a_{-13}| - 2|a_{01}|^2 = 0.$$

Proof. From the second center condition $g_{22} = 0$ obtain

$$a_{10}a_{01}b_{11} = h, (2)$$

where $h \in \mathbb{R}$. Therefore we can consider three cases:

- (a) $a_{10}=0$;
- (b) $a_{01} = 0$;
- (c) $a_{10} \neq 0$, $a_{01} \neq 0$.

- (a) In this case from the condition $g_{11=0}$ we have $Im a_{11} = 0$ and, hence, the condition (ii) is fulfilled.
- (b) The condition $g_{11} = 0$ yields $Im a_{11} = 0$. Computing the next polynomials g_{ii} under the condition $a_{01} = 0$ we obtain

$$g_{22} \equiv \mod I_1$$
, $g_{33} \equiv 0 \mod I_1$, $g_{44} \equiv Im[0010 \ 1004] \mod I_1$.

Hence, from the equation $q_{44} = 0$ we get either

$$a_{11} = 0$$

or

$$Im a_{10}^4 a_{-13} = 0$$
.

Thus we have either the condition (iii) or

$$a_{01}=a_{11}=0$$
.

In the last case, computing focus quantity we get

$$g_{55} = Im[0001\ 2004],$$

i.e. the equation $g_{55} = 0$ yields

$$|a_{-13}|^2 Im a_{10}^4 a_{-13} = 0$$

and therefore the conditions (i), (iii) holds.

(c) In this case from (2) we obtain

$$a_{11} = g \, a_{10} \, a_{01} \,, \tag{3}$$

where $g \in \mathbb{R}$, and then from the equation $g_{11} = 0$

$$Im[1100,0000](1+g) = 0.$$
 (4)

In this paper we consider only the case $g \neq -1$ (i.e. $a_{11} \neq -a_{10}a_{01}$) and therefore, taking into account that $a_{01} \neq 0$, from eq. (4) we obtain

$$a_{10} = s \, \overline{a}_{01} \tag{5}$$

where $s \in \mathbf{R}$.

Substituting this expression to the equation $g_{33} = 0$ we get

$$Im[0400\ 1000]\left(\frac{1}{4}s^3 - \frac{1}{8}s^2 - \frac{9}{4}s + \frac{9}{8}\right) = 0.$$

Therefore we have either the condition (iv) or one of the next three conditions:

$$(\alpha)$$
 $s=3$,

$$(\beta) \quad s = -3,$$

$$(\gamma) \quad s = \frac{1}{2} \, .$$

It was mentioned above that the calculation of Lyapunov focus quantities is very difficult computational problem. To simplify calculations we recalculate polynomials g_{ii} for every from cases $(\alpha) - (\gamma)$ analogously as we had done in [5].

Computing we obtain in the corresponding cases.

(α) In this case from $g_{11}=0$ we have $a_{11}=\alpha$, where $\alpha\in\mathbb{R}$, and

$$g_{22} = 0 \mod I_1$$
, $g_{33} = 0 \mod I_1$,

$$g_{44} = -\frac{70}{3} Im[0101\ 0050] - \frac{35}{3} Im[0011\ 0040] \bmod I_1.$$

Hence, using the correlation $g_{44} = 0$ we have

$$Im[0001\ 0040]\left(-\frac{70}{3}\ |a_{01}|^2-\frac{35}{3}\ \alpha\right)=0.$$

Thus we get either the condition (iv) or

$$a_{11} = -2a_{01}b_{10} = -2|a_{01}|^2$$
.

In the last case computing fifth Lyapunov focus quantity we obtain

$$g_{55} = -\frac{25}{9} Im[0002\ 1040] + \frac{100}{9} Im[0201\ 0060].$$

Equation this polynomial to zero we have

$$Im[0001\ 0040]\left(-\frac{25}{9}\ |a_{-13}|^2 + \frac{100}{9}\ |a_{01}|^4\right) = 0$$

Thus either the condition (iv) or (vi) takes place.

 (β) In this case computing sixth focus quantity we have

$$g_{66} \equiv Im[0031\ 0040] \bmod I_5$$
.

Therefore the conditions $g_{66} = 0$ yields

$$\alpha^3 Im[0001\ 0040] = 0$$
.

and we get either (iv) or $a_{11} = 0$.

The case $a_{11} = 0$ we will consider below.

 (γ) In this case, obviously, we have the condition (v).

There remains to consider the case when $a_{11} = 0$. Then the equation $g_{11} = 0$ implies

$$Im a_{10}a_{01}=0$$
,

and, therefore, it is necessary to consider two cases:

$$(\alpha\alpha)$$
 $a_{01}=0$,

$$(\beta\beta)$$
 $a_{01} \neq 0$.

- $(\alpha\alpha)$ This case we have considered above.
- $(\beta\beta)$ In case the correlation (5) is fulfilled, and, computing g_{44} and equaling it to zero we get

$$s^3 \, \left(-\frac{28}{27} \, s + \frac{14}{27} \right) \, Im[0001 \; 0040] \; [0100 \; 0010] = 0 \, .$$

Therefore one of conditions is realized:

$$s = \frac{1}{2}$$
 (i.e. (v)).

or

$$Im[0001\ 0040] = 0$$
.

In the last case we obtain

$$Im[4001\ 0000] = s^4 Im[0001\ 0040] = 0.$$
 (6)

Thus the condition (i) is fulfilled.

Remark 1. The fact that (i)-(iii) are the necessary center conditions has been established in [2], by we have obtained it by the independent method.

Theorem 2. The conditions (i)-(iv) are the sufficient center conditions for the system (1).

Proof. The sufficiency of the conditions (i)-(iii) are proved in [2]. In the case (iv) using the correlations (3), (5) and $a_{-13} = ta_{01}^4$ ($t \in \mathbb{R}$), which is the corollary of the equation

$$Im[0001\ 0040] = 0$$
,

we can conclude that polynomials g_{ii} are polynomials only on partitions of vectors (0, 1), (1, 0), and therefore from the structure of polynomials g_{kk} [4, 5] we obtain that $g_{kk} \equiv 0 \,\forall i$, i.e. the corresponding system (1) has a center.

Remark 2. It seems the conditions (v), (vi) also are the sufficient center conditions, because according to our calculations, in the case (vi) $g_{ii} \equiv 0 \quad \forall i = \overline{1,12}$ and in the case (v) $g_{ii} = 0 \quad \forall i = \overline{1,10}$. But to prove this fact it is necessary to find a holomorphic integral.

Remark 3. In the case $a_{11} = -a_{10}a_{01}$ we have computed seven polynomials $g_{11} \ldots, g_{77}$, but the polynomials g_{55}, \ldots, g_{77} contain about 20-30 terms and the problem is to obtain a more simple description of the zero set of the ideal $I = (g_{11}, \ldots, g_{77})$.

References

- [1] Amel'kin, V.V.: Lukashevich, N.A., Sadovsky, A.P.: Non-linear oscillations in second order systems, Minsk, (in Russian) (1982).
- [2] Danilyuk, V.I., Shube, A.S.: Distinguishing the cases of the center and focus for cubic systems with six parameters, Izv. Akad. Nauk Mold. SSR, (in Russian), Mat., 3, 18-21 (1990).
- [3] Malkin, K. E.: Center conditions for a class of differential equations, Izv. Mat. vuzov., (in Russian), 1, 104-114 (1966).

- [4] Romanovskii, V.G.: On the calculation of Lyapunov focus quantities in the case of two imaginary roots, Differentsial'nye Uravneniya, 29 5, 910-912 (1993) (in Russian, English translation: Differential Equations, 29, 5, 782-784(1993)).
- [5] Romanovski, V. G.: On center conditions for some cubic systems depend on four complex parameters, Differential'nye Uravneniya, V. 31 (1995) (in Russian, to appear).
- [6] Sibirsky, K.S.: Introduction to the algebraic theory of invariants of differential equations, Manchester University Press, New York, (1988).
- [7] Zoladek H. J: Quadratic sistem with center and their perturbations, J Differential equations, v. 109, No. 2, 223-273 (1994).

УСЛОВИ ЗА ЦЕНТАР ЗА ЕДНА КЛАСА СИСТЕМИ

К. Доличанин *, В. Г. Романовски ** и М. Стефановик *

Резиме

Се посматра еден од познатите проблеми на теоријата на диференцијалните равенки, имено проблемот на центар-фокус. За кубното векторско поле

$$i\frac{dw}{dt} = w\left(1 - a_{10}w - a_{01}\overline{w} - a_{11}w\overline{w} - a_{-13}w^{-1}\overline{w}^{3}\right)$$

во случајот кога $a_{11} \neq -a_{10}a_{01}$ се добиени потребните, и некои доволни услови за центар.

* Univerzitet u Prištini Elektrotehnički fakultet Priština Jugoslavija

** Belaruski državni univerzitet Informatika i radioelektronika, Minsk Belarus