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FREE OBJECTS IN SOME VARIETIES OF GROUPOIDS

G. Cupona* and N. Celakoski **

Abstract

We give a canonical description of free objects in the variety
Vi n of groupoids which satisfy the law ™ y" = 2122 ... zm, where
z; = z if ¢ is odd, z; = y if j is even, and m, n are integers such

that m > n > 2. We also consider a derived quasivariety V,c,‘,,,, of
groupoids in which only trivial identities hold.

0. Introduction

A groupoidis an algebra G = (G, -) with one binary operation (z, y) —
z -y. As usual, the symbol of the operation and some brackets will be

omited. Namely, if a, a1, ag, ..., @k, ax+1 € G, then:
a = a, a**1 = ¢*a, (0.1)
a1ag -+ akarp1 = (@102« - ak)Br41 - (0.2)

If k is a positive integer and a, b, c € G,z, = a, zj =bfor1 < ¢, j < k,
where 7 is odd and j is even, then:

abk = z1 232, abl = a,
(0.3)
cabk = cxy---zp, cabl=ca, cabl=c.
Note thatifa, b, a,, b, € G, k>0, ky, kg, ... 2> 0, then
Malblkl cee Gy bj kj (04)

is an element of G which is defined by:
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abk ayb;0 = abk, abka;byl = (abk)- a1,
abk a1b:2 = ((abk)ay)by, - .-
It should be pointed out that, in (0.4), abk is an element of G, and
each of the triples a;b;k; takes part as a sequence of elements where the

multiplication is "from left to the right” according to the definition (0.2).
For example: ab3, cd2 € G, but ab3 cd2 # (ab3) - (cd2). Namely,

ab3 cd2 = (((ab)a)c)d = abacd,

(ab3) - (cd2) = ((ab)a)(cd) -
Recall that V,, , is the variety of groupoids which satisfy the identity
™ y" = zym, (0.5)

where m, n are positive integers. Further on we will assume that m>n2>2,
if it is not stated otherwise.

For every p > 0, we define transformations = ~ z<?> and z > z(P)
of G in the following way:

2<0> = 50 — g G<PHI> (<) ) o (z(p))" . (0.6)
Clearly: 7
(e<r>) <> = g<rron, (s0) = g0+, (0.7)
for all p, ¢ > 0.

Let Q=(Q,0) and G = (G, -) be groupoids such that @ CG. @ is
said to be an (m, n)—subgroupoid of G iff acb = a™b" for all a, b € Q. The
class of groupoids which are (m, n)-subgroupoids of groupoids in Vi, will
be denoted by V:L’n. So V;,n is derived from Vj, . ([3], 1I1.7.)

A free groupoid (in the variety of all groupoids) with a given basis B
will be denoted by F = (F, -).

We denote by Ry, . the least subset of F such that B C F and
Y€ Rpn &[T, y€ Ry and (Va, S € F)(z #a™ or y#p™)]. (0.8)
(Further on we will write B instead of Ry n.)
Below we define a mapping *: R? — F.
Let z,y € R be such that 2y € R and [y]l, = 1), y = 2(7. Then,

we define z+y, <> %y and z<PH1>« y(®*+1) where p > 1, as follows.

THY=2Y. - (0.9




(42, if z=9y%* n=2 m=3

‘ 42V 3. D) gy 3,
<> 4 (D) = (0.10)

ifz=9y", n>3, m=n+1

| zym, ifzZy" orm>n+1.

p<PH> 4 o (p 1) — <x<1> N y(l)) ey Wm_2...g<P>yPpm_2  (0.11)

The following theorems are the main results in the paper.

THEOREM 1. u*v € R, for all u, v € R and the groupoid R = (R, *)
is free in  Vy, n with the (unique ° basis B.

THEOREM 2. V:'n,n is a proper quasi—variety of groupoids, and only

trivial identities hold in Vi, .

REMARK. (m, n)-subgroupoids are special kinds of t-subgroupoids,
where t = t(z, y) is a groupoid term in which two variables z, y appear.
(Q = (@, o) is a t-subgroupoid of a groupoid G = (G, )iff @ C G and

aob=1tg(a,b), (0.12)

for all a,b € Q; the right-hand side of (0.12) is the value of the term
t(z,y)in G for ¢ = a, y =b.) If V is a variety of groupoids, then the
class of t-subgroupoids in V will be denoted by V*. ,

The paper [7] consider a question which can be ”translated” in the
language of groupoids in the following way: ”Is the condition «Only trivial
identities hold in V!» sufficient for the class V* to coincide with the variety
of all groupoids?” The answer (which follows by Th. 2) is negative. The
question: whether the same is true for generalized subalgebras of algebras
of any type (2, remains open.

Th. 1, Th. 2 are proved in §1, §2 respectively. The obtained canonical
description of free groupoids in V (in Th. 1) is due to the fact that the
rewriting system on F induced by elementary transformations

1) [y]n is the largest non-negative integer T such that ¥ = 2(") for some z € F,.
(See also below, after (1.4.2).)
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u™v™ — ywym is a terminating Church—Rose system. This conclusion does
not he'd in the case 2 < m < n or m > n = 1, which is shown in §3.

1. A canonical description of free groupoids in V,, ,

In this section we will prove Th. 1 in the case m > n > 2; first we state
some properties of F.

- The following two properties are characteristic for a free groupoid F
7ith the basis B ([1], I.1).

a)ab=cd=a=c, b=d.

(Any groupoid with this property is said to be injective.)

b) B is the set of primes in F and it generates F.

(10 element ¢ € G is prime in a groupoid G = (G, -) iff ¢ # zy, for
all z,y €G.)

The normin F is the homomorphism z +— |z| from F into the additive
groupoid of positive integers which is an extension od the mapping B —
{1}. Thus:

Bl =1, fusl=lul + o], (11)

forbe B, u, v € F. ,
The statements below are direct consequences of (1.1) and the injec-
tivity of F. Here: z,, y,, ¢, ¥y, ¢« € F, 1,5, k> 1, p,q, 7 > 0.

o' =ilz], [z<P7|=mPla|, [P)]=nPl|a|. (1.2)

=y =y, i=j; (1.3.1)

zlxg...xiyl..l.yj:zzl...zj:> (132)
SZ=T1..-T4y 21 =Yy -4y %5 = Y53

g<P> = y<PTI> o g = y<I> 2P) = 4P+ o g — (@ (1.33)

2<k<m, zy #z; forsome ¢ >1=>zy25...25, # a™; (1.4.1)

2<k<m, y;#y; forsome t #j=>z1...2p0 ... 0k Fa™; (1.4.2)

According to (1.2), for any u € F, there exists the largest non-negative
integer k such that v = z<*> for some z € F. This integer k& will
be denoted by [u],,. One defines [u], in the same way. Next, [u, v] is
defined by:

[, v] = min {[u]m, [u].}- (1.5)
By (1.5), it follows: |
[u<P>, v(”)] =p+[u, v]. (1.6)




The definition (0.8) can obtain now the following form:
w0 € Ry & (4, v € Ry, [4, 9] =0). (1.7)

(As above, we will write R instead of Ry n.)
The following properties are also consequences of (1.7) and (1.2)-(1.6).

1<k<m,zcR=>z*€cR, P>, 2P ¢ R. (1.8)
2> c¢RorzP e R=>z€R. (1.9)
z€R=> (z™'eR& [z],=0) . (1.10)
p>1, z,y€ R=>zy<*> € R. (1.11)

p>1, z,ye R= (a:y(”)ER@[:c]m=0). (1.12)

myGR#(zyzER@(x#y"orm>n+1)). (1.13)

Assume now that uw*v € F is defined by (0.9), (0.10) and (0.11),
where u, v € R are such that [u,v] = p, u = 2<P>, y = @, [yln = 7,
y = 2("). We have to show that u * v € R.

If p=0,then u*v = uv € R, and thus we can assume that p > 1.
Consider first the case z # y™ or m > n+ 1. Then z<!> xy(1) = zym.
. By (1.13) we have zyz = zy3 € R, and thus we can assume that m > 4.
Then from (1.4.1) it follows: zyzy € R. In the same way one can obtain:
2<1> x y() = gym € R. Assume now that p > 1. Then: '

e<PHI> 4 (D) = gy 2<1>y M — 2 z<P>y(Ply — 9, (1.14)

We will consider only the case m = 4 (and n =2 or n = 3). Then:
g<PH1> 4 (P = pypy <>y | g <Py (P (1.14")

From (1.11) we obtain zyzyz<!> € R, and then (1.4.2) implies:
zyzyz<1>y(V) ¢ R. Continuing in this way we would get
1;<p+1> *y(p+1) € R.

It remains the case ¢ = y", m =n+ 1.

If n =2, then z<!> +y(D =4 € R, and therefore z<P+1> 5 y(P+1) =
y32<1> . .z<P> ¢ R, by (1.11). Thus we can assume that n > 3. In the
case n = 3, we have <!> xy(1) = 2% € R, by (1.10), and then (in the same
way as in the case m = 4,z # ) one can show that <P+ yy(rt]) ¢ R in
the case m = n+1 = 4, = = y3, as well. It remains the case n+1 =m > 5,
y = ™. Then, we obtain z<!> « y() ¢ R, by applications of (0.10), (1.10)
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and (1.4.2). Finally, in the same way as in the first considered case (z # y"
or m > n+1) one can obtain that z<P+1> 4 y(r+1) ¢ R,
Thus we have the following:

PROPOSITION 1.1. R = (R, *) is a groupoid . $
Below we will show that (R, *) € Vpn. First, denote by uf
(u € R, k > 1) the corresponding k-th power of u in R, i.e.

=, bl = uf 4w,

By (0.9) and (1.8): k < m = uk = u¥, and- thus:

:‘n m n n ufp> — u<p>’ ug(p) = 'u,(p), (1-15)

for all « € R, p > 0. This implies:

g <PHL> y(”""l), (1.16)

ul' x vy = u" k0" =
where u, v € R, [u, v] = p, u = 2<P> v = y(®.
If u,v € R, then xuym will be an abbreviation for the product
21 %29 %+ +* 2y, where z; = u when 7 is odd, and z; = v when j is even.
(Note that wvm € F, xuvm € R and it is possible xuvm # uom.)
From (0.9), (0.10) and (0.11) we obtain

szym = <> % y(D,

% z<P>y Py = <x<1> . y(l)) 2y 9. g <P>y By 9. (1.17)

(For example, if (m =4, n=2) or (m=4,n=23, z # y?), then:

xzyd = ((z*y)*w)*y:zymy:m<l> *y(l).

If p> 1, then

xz<P>y(Plg = ((z<P> « y(p)) *2<P>) & yP
— xya:ya:<1>y<1> . ‘z<P>y(p)
= (z<1> « y(l)):c<1>y(1) L g<P>yP)

Inthe case n+1=m=4,z =y [y, =7, y = 2("), we have:

xzyd = ((z*y)*z)*y=z5:z<1>*y(1),
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* a:<”>y(”) 4 = ((m<”> * y(P)) * x<p>) ¥ y(P
= z5x<1>y(1) .. .z<”>y(”)
= (21> « y D) z<1>41) L g<P>y(P) )
So, the following equation holds:
u™ % v" = xuom, (1.18)

and therefore we obtain:
PROPOSITION 1.2. R€ V. €

The following statement ”inspired” the definition of R and *, and it
will be used in the proof of Pr. 1.4, as well.

PROPOSITION 1.3. If G = (G, *) € Vi n, then the following impli-
cations hold:
a) p > 1= z<pH1>y(P+) = gym z<1>yWm — 2. . 2<P>y(Pm — 2.

bym=3=n+1= ¢’y =4
)m=4=n+1,r>0=> (2r+D)* o 41) = 55,
dym=n+1>5,r>0= _

(A o 4) = gt W am—2. .. A0 Dm 2.

PROPOSITION 1.4. If G = (G,*) € Vpon and o:F — G s a
homomorphism from F into G then the restriction ¢ of ¢ on R is a
homomorphism from R into G.

Proof. By using Pr. 1.3 and the definition of *. ¢
As a consequence we obtain Th. 1, i.e. the following
PROPOSITION 1.5. R is free in V,, , with the (unique) basis B.

Proof. First, by the definition of R and %, B is the set of primes
in R and B generates R. Let G = (G, :) € Vi n and \: B — G be a
mapping. If ¢ is the homomorphism from F into G which extends A,
then by Pr. 1.4, the restriction ¥ of ¢ on R is a homomorphism from R
into G. ¢

Below we show a variant of Th. 1 concerning the variety Vi n.
PROPOSITION 1.68. V; 1 is the variety of left-zero groupoids. &

PROPOSITION 1.7. If m = 1, n > 2, then [u], < 1 for every
u € R(= Ri1,). If an operation * is defined by:

w, if [v],=0,
ukV = . (1.19)
u, if [v],=1,
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then R = (R, *) is a groupoid which is free in Vi, with the basis B.
Proof. Tt is clear by (0.8) that [v], > 2 implies v ¢ R. Therefore, by

(1.19), we obtain:
n v, if [v], =0,
*T o, if [pla=1,
and so:

u* vy

{u*v":u, if [v], =0,

uxv=u, if [v],=1

Thus, R€ Vy,. ¢

2. Some properties of the class V:n,n

Given a groupoid H = (H, ), by H® will be denoted the groupoid
(H, O) defined by
a0b=a™b" (2.1)

(The right-hand side of (2.1) has the usual meaning in H.)
In Pr. 2.1-Pr. 2.5, m, n are (arbitrary) positive integers.

PROPOSITION 2.1. G E.anyn iff there exists a groupoid H € V,, ,,
such that G is a subgroupoid of H. ¢

Propositions 2.2 and 2.3 are special cases of more general results. (For
example: [3], IV.5 and IV.6; [8], V.11.2.)

PROPOSITION 2.2. Let G = (G, o) be a groupoid and R = (R, *)
be a free groupoid in Vy, , with the basis G. Let ~ be the least congruence
on R with the property

aocb=c=> amxb"=xc. . (2.2)
Then: G € V:m iff the following condition is satisfied:

(Va,beG)larb=>a=0b. ¢

PROPOSITION 2.3. V:L’n 18 a quasi—variety, i.e. there exists a system
of azioms of V;,,n each of which is a quasi-identity.?) .

3) Py. 2.2 is almost obvious and Pr. 2.3 is a corollary of it. Moreover, we can
use Pr. 2.2 to obtain a convenient axiom system for V:,'n. Such a procedure is expesed
in [2], where it is found an axiom system of quasi—identities for the quasi-variety of
algebras A = (A, 2) which can be embedded in semigroups S = (S, -) in such a way
that f(ai, ..., @n) = a1 ...Gn, for each n-ary operator f € (1, (n >2).




13

PROPOSITION 2.4. The quasi-identity
TOoT=yYoy=>cTo0z=Yyoz (2.3)

is true in each groupoid G = (G, o) € anm .0
PROPOSITION 2.5. V;,n is a proper subclass of the class of groupoids.

Proof. Let G = ({a, b}, ) be a two—element groupoid such that
ba = b, and zy = a in every other case. Then (2.3) is not satisfied
inG. ¢ '

Below we will establish some properties of the groupoid R’ = (R, D),
assuming that m > n > 2. First recall that

uOv=u"*v", ' (2.1

for all u, v € R.
In the Pr. 2.6-2.11 we assume that m > n > 2. They are corolaries of
the definitions of R and R", and the injectivity of F.

PROPOSITION 2.6. z" is a prime in Ru, foreachz e R. ¢
PROPOSITION 2.7. If (m,n)¢{(3,2),&,3)}, thenR" is injective. ¢
PROPOSITION 2.8. Let u, v,v, 8 € R and (u, v) # (7, 6)-
1) If (m, n) = (3,2), then:

u O v =706 iff {(u, 0), (v, 8)} = {(¥*, 9), (3, )}, for some y € .
2) If (m, n) = (4, 3), then: w Qv =70 6 iff

{(u’ v)’ (7, 6)} = {(Z(T'H), z(T)), (z("'H), z(s) )}’
for some z€ Rand 0 <r<s. ¢

PROPOSITION 2.9. The subgroupoid Q of R° generated by the
basis B of R is injective. 4

Proof. If (m, n) € {(3,2), (4,4)}, the assertion is a corollary from
Pr. 2.6 and Pr. 2.8; in the case m > n+ 1 or m > 5 we can apply
Pr.2.7. ¢

PROPOSITION 2.10. Only trivial identities hold in V:L’n. ¢
Finally:

PROPOSITION 2.11. V,, , is not a variety.

1) We note (see, for example: [3], IV.4.4) that Q is free in V:,,n with basis B.
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Proof. If V:w were a variety, then by Pr. 2.10, it would be defined by
a trivial identity, for example z = z. This would imply that V:w,n is the
class of all groupoids, which contradicts Pr. 2.5. ¢

Thus the proof of Th. 2 is completed.

The following two propositions are corollaries of Pr. 1.6-1.7 and the
a . .
definitions of V; , and V, ,,. We see from them that the condition m > 3 is
essential for Th. 2.

PROPOSITION 2.12. For everyn > 1, Vf,n is the variety of left-zero
groupoids.  {.

PROPOSITION 2.13. Foreveryn>1, V; . =V ¢

3. Vp n—reduced sets

Assume that V is a (non—trivial) variety of groupoids, and F = (F, -)
a free groupoid with the basis B. Let =y (furter on: =) be the least
congruence on F such that F/y € V. If u € F, then we denote by u/~
the ~—class containing u. We say that a subset S of F' is V-reduced iff the
.mapping u — u/ is a bijection from S onto F/. Thus:

PROPOSITION 3.1. Let § be a V-reduced set of F and the operation
o is defined on S as follows:

u, v, WES=> (uev=w& uw = w). (3.1)
Then u +— u/~ 1s an isomorphism from S = (S, o) ofto F/, and S is free
in V with the basis B. ¢

PROPOSITION 3.2. R, , i Vp, n-reduced set iff: m=1 orm > n2>2.

Proof. If m > n > 2 or m = 1, then from Th. 1 and Pr. 1.6-1.7
follows that R, n is a V, n—reduced set. Namely, the rewriting system (on
F) induced by elementary transformations: v™v"™ — uvm is a terminating
Church-Rose system ([5], 2.9), and R,, , consists of the normal forms in

this system.
Let m>2, n=1 and a € B.
If m = 2, then:
(a?)’a —» d*a—aa=a’€ Ry,
(a?)’a = (a*a®)a — (aa®)a € R .
I m > 3, then:

(a™)"a — a™am =a™aa"am—-2 — a™a™ @aa"m—-3 —

—aa™maa"m-3€ R, 1,
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(a™)"a=amamama"m—2a — ag™ma"a"m—2a € Ry, 1.
Ifm=n>2, then:

(an)n+1 — (an)nan N a_"_we Rn,n ,

(a™)"t! = a"a" a"a"n—1—a" @"a"n—1=
' =(@)" = (@) 1> > a"€Rnn-
Finally, if 2 < m < n, then:
(a™)™(a™)" — a"a"m = (a")™ € Rmpn,
(a®)™(a™)" =(a™)™((a™)™a") a"a"n—m—1 —

- (a™)™(a*ama”a"n—m—1) € Ry n .

Therefore, if m > n = 1 or 2 < m < n, then there exist u, v € R .n
such that u # v, u = v, i.e. Ry 5 is not Vi n-teduced. $

From Pr. 3.2 follows that the definition of R,, , is "unsuccessful” if
m>n=1lor2<m<n.
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