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POLYNOMIAL SOLUTIONS OF ALGEBRAIC ORDINARY
DIFFERENTIAL EQUATIONS. II

V.N. Gorbuzov

Abstract. Bordered method of définition of degrees of polyno-
mial solutions of algebraic differential equations and entire so-
lutions of irreducible Painleve’s equations are considered. The
coefficients of highest term of polynomial solutions and the quan-
tity of polynomial solutions of different degrees of algebraic
differential equations are found.

§2. BORDERED METHOD OF DEFINITION OF DEGREES
OF POLYNOMIAL SOLUTIONS

By the sources of bordered method of the definition of degrees
of polynomial solutions there is a method with the help of which
the author and its pupils proved the theorem about the absence of
entire transcendent solutions of algebraic differential equation
[59,63] and so generalized known G.Wittich’s theorem [82] and
later spreaded this method for the establishing of the borders in
which the growthis characteristics (an order and a type) of entire
transcendent solutions both algebraic and non-algebraic differen-
tial equations are included [77,79].

These are following theorems in algebraic case

Theorem 2.1. Let following correlations are fulfiled:

1) x,=...=x_=4d, x_<d, 0<p<N, e=p+l,N;

o]

2) m°=...=m m, m. <m, 0shs P, J = h+l,P;

J

=

3) b°=...=bA = b, br <b, 0£x<h, t=73+Lh;
4) bj - mj £b-m, j= h+l,p;

A
5) I 8, #0.

=0
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Then algebraic differential eguation (1) have not entire
transcendent solutions.

From theorem 2.1 for p = 1 it’s follows

G.Wittich’s theorem. Algebraic differential equation (1) with
one dominant term have not entire transcendent solutions.

Theorem 2.2. Let following correlations are fulfiled:

1) x°=...==xp d, 4 > X 0 <p SN, ¢ =p+l,N;

2) my=...=my =m, m>my, 0<h<p, 3 = h¥L,p;
TR

W
>
-
~

3) bO:"’=bk b, b > bt' 0<x<h, 1
A
z

4) B, # 0;
g=o *
5) there is j€{h+l,...,p} such that b-m < bj-mj.

Then algebraic differential equation (1) can have entire
transcendent solutions of orders

Q< max{Moj: j = h+l,p}.
Theorem 2.3. Let following correlations are fulfiled:

1) xo=.-..=xp =4, 4 > X s 0 <p <N, e =Dp+l,N;

2) m6=...=mh =m, m < mj, 0 sh<p, 3 =h+tl,p;

I
>
j
A

3) b°="'=bk =Db, b > br’ 0<x<h, 1=

A
4) t g, # 0.
=0 L
Then algebraic differential equation (1) can have entire

transcendent solutions of orders

Q 2 min{M j = h+l,pl.

oj°

These theorems 2.1-2.3 are proved by indirect method with
using of asymptotic formula of derivative’s representation of
entire transcendent function by means of this function itself and
its Viman-vValiron’s central index [82,84].

Completely analogously theorems 2.4 and 2.5 forming the
essence of bordered method of definition of degrees of polynomial
solutions asymptotic are proved by indirect method and in the base
of proofs there is formula of derivative’s representation of poly-
nomial’s derivative by means of this polynomial itself



W™ (2) = (1P (m) 2Pw(z) 1+ e (), (2.1)

where so(z)=0, for n 2 1 for z - » rational function en(z) - 0;
(a)n is Pochhammer’s symbol.

Substituting polynomial w(z) of degree deg w=m in equation
(1) taking into consideration (2.1) we get some identity on z.
Then from this identity by indirect method we get all those state-
ments, which are formulated in theorems 2.4 and 2.5 [63,68].

Theorem 2.4. Let following conditions are fulfiled:

Xp+1 = L., = xp+s =d > Xpp T = 0,p-1,

0 <p<N, 0 £s < N-p, n= pts+1,N;
2) b -m_>b
) p P

1) x> x_ =
T P

p+h - mp+h, h=1,s.

Then following statements are right:

a) for p =0, s = N equation (1) can have polynomial
solutions (3) of degrees m < L;

b) for p =0, 0 < s <N the number m = L;

c) for 0 < p <N, p+ s =N the number m

d) for 0 <p <N, p +

[\

L;
8 < N the number m 2 L, such that

m < Uy
e) for 0 < p < N, p + s <N the number m 2 L, such that
B can be the degree of polynomial solution (3) of

ps’
eguation (1) if, accordingly,

b) m < B q) m 2 Up; d) m < Bps; e) mz2 Up'

Theorem 2.5. Let following conditions are fulfiled:

os’

1) x> xp = xP+1 = sl = xp+s =d4_ > Xor T = 0,p-1,
0 <p <N, 0 <s £N-p, n = p+s+l,N;
2) bp - mp = bp+1 -mo . =...= bp+A - mp+x > bp+j - mp+j,

1 <A s, j=i+1,s.

Then following statements are right:

a) for p
b) for p

0, s = N the number m 2 L;

0, 0 < s <N the number m 2 L and m > Bos;

c) for 0 <p <N, p+ s =N the number m 2 L and m < Up;

d) for 0 < p <N, p+ s <Nthe number m 2L, m < |J_,

 m > Bps’ can be the degree of polynomial solutions (3)
of equation (1), if it is the root of equation
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The peculiarity of bordered method formulated in theorems 2.4

(m) = 0.

and 2.5 as distinct from giving in §l1, is that only one term (with
number p) or the block of terms (with numbers p,p+l,...,p+s), but
not all the terms of equation (1) at the same time are took in to
the base of reasonings. The borders in which the degrees of poly-
nomial solutions (3) change, depend on that in which correlation
there .is considering term (block of terms). Consequantly looking
over all terms of equation (1) every time we define more precisely
or confirm the borders of changing of the degrees of polynomial
solutions. )

From theorem 2.4 two statements that it is conveniently used,
saying, in case of the equations of Riccati-Abel’s type, follow.

Consequence 2.1l. If equation (1) contain only one dominant
term with number k, then the degrees m 2 L of its polynomial
solutions (3) satisfy to inequality

m < max{M i=0,N, k #1i}.

kit
Consequence 2.2. If equation (1) contain only one minorant

term with number k, then the degrees m =2 L of its polynomial
solutions (3) satisfy to inequality

m > min{M i=0,N, k # i}.

kit
For linear differential equation
(£.)

1

n
b Bi(z)w =0, nz21, (2.2)

1=0
where 0 < 2, < £, <... < Lo bi - bj = li - %&., i=0,n, j=0,n,
j#i, the partial case of which is well-known Euler’s equation [85]

n
b azzzw(l) =0, a, = const.,
=0 L

on the base of theorem 2.5 we get

Consequence 2.3. The degrees m of polynomial solutions of

linear differential equation (2.2) are the roots of equation
8 (m

L 21 Bs(2,) =0

joo 1t F1thi '



where § = n for m 2 Lar 8§ =1 for L. sSms e, r€{0,1,...,n-1}.

Analogous result for m 2 2, was got in [491.
§3. THE COEFFICIENTS OF HIGHEST TERM OF POLYNOMIAL SOLUTION

By method ahalogous to the method of proof of theorem 2.4 and
2.5 following theorem, with the help of which the coefficients en
of highest term of polynomial solution (3) of degree m of differen-
tial equation (1) are found, is proved (63,72,74].

Theorem 3.1. Let following correlations take a place:

1) X < xP = xp+1 = L. = xp+s = dp > xn, =0,p-1, 0 <p <N,
0 £ s < N-p, n=p+s+1,N;

2) bp - mp = bp+1 - mp+1 = L., = bp+x - mp+A > bp+j - mp+j’
0 £ <8, Jj=a+l,s.

Then following statements are right:

a) for p=0, 0 £ s <N, M°,S+1=M°'S+3=...=M°r=M°, s+l <r <N;

b) for O«<psN, s=N-p, MP°=MPF="'=MP2=MP' 0 £ % £ p-1;

c) for O<p<N, 0 < s < N-p, Mp°=Mp1=...=Mp£= o’ 0 < & < p-1;

d) for O<p<N, 0 < s < N-p, Mp,p+s+1-Mp,p+s+z_'"-Mpr—Mp’
pts+l < r < N;

e) for O<p<N, 0 < s < N-p, Mp°=Mp1=...=Mp£=Mp,
Mp’p+s+1=Mp'p+s+z=...=Mpr=Mp, 0 <2 < p-1, ptstl < r < N.

The coefficient ap, for highest term of polynomial solution
(3) of differential equation (1) of the degree:

a) m= B z L;

[:3:3
b) m = Up > L;
c) m= Up 2L, m >-Bps;
d) m= Bps 2L, m< Up;
e)m= Up = Bps 2L
is accordingly the root of equation
d A r

o .
a) o z K (m) + I K (mya ) =0
M h=o h n=s+1 n m
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2 A .
b) and ¢) I K_(m,a ) + o« P I K__. (m) = 0;
=0 | "Tm M h=y pth '
dp AL r
I K (m) + b3 K (m,a_) = 0;
h=o p+h n=p+s+1 T m !
L d A r
e) I K (mo ) + o I K (m)} + K (m,a_) = O.
=0 " m m h=o pth n=pts+1 n m

d). ay

§4. ENTIRE SOLUTIONS OF IRREDUCIBLE PAINLEVE’S EQUATIONS

Theorems 2.1-2.3 in totality with theorems 2.4, 2.5 and 3.1
permit to establish the presence of entire solutions both trans-
cendent and algebraic (polynomial). We show this on the example
of the equations of Painleve’s type, which are investigated many-
sidely in last decades, including by Belorussian mathematicians
N.A.Lukashevich and by this pupil V.I.Gromak [86,87], by I.A.Jab-
lonskij and by his pupil I.P.Martynov [88,89,99] and others of
N.P.Erugine’s school [83,90-92] too. '

The first irreducible Painleve’s equation
w" - 6w?2 - 2z =0 (p-1)
has one dominated term and so among there is no either polynomial
or enitre transcendent solutions. It is conformed with known fact

that all solutions of equation (P-1) have infinite number of poles

condensating to z = « [83, p. 56; 93].
The second irreducible Painleve’s equation
w" - 2w® - 2w - o = 0, o = const., (p-2)

has not entire transcendent solutions and has only one polynomial

solution w = 0 for o = 0.

It was the simplest cases of Painleve’s equations is resolving
the problem of entire solutions. The matter of the rest equations
of the second and the third orders of Painleve’s type with polyno-
mial and entire transcendent solutions stand in following way.

Theorem 4.1. The third Painleve’s equation
zww" - z(w')2? + ww’' - yzw-aw3-Bw+sz = 0, (p-3)

where a,8,y,8 are some constants, can have only following polyno-
mial solutions:



a)
b)
c)

d)

e)
£)
q)

w =0 for § = 0;

w=C and w = Cz, C=const., for a = 8 =y = § = 0;
w = +/B/a for ay§ # 0, a36 + B2y = 0 or for y = § =
aB # 0;

W= ay, where a; are the roots of equation ya“* + § =
for a = g = 0, ys # 0;

w
w

-(s/8)z for a = y = 0, g8 # 0, & + 2 # 0;
gz + C, C=const., for ¢ = y = 0, 8§ # 0, & + g2

has polynomial solution of degreem > 2 for o = y =

Theorem 4.2. Only

a)
b)
c)

w

w

w

-2z for ¢« = 0, B = -2;
-(2/3)z for ¢ = 0, B = =-2/9;
0 for g = 0

are polynomial solutions of the fourth Painleve’s equat

P

2ww " - (w')2 - 3w* - 8zw?® - 4(z2-q)w?2 - 28 = 0,

where o« and g are constants.

Egnation (P-4) has not entire transcendent solutions i.

contains one dominated term -3w®., Therefore all possible ent

solutions of equation (P-4) are pointed in theorem 4.2.

Theorem 4.3. The fifth Painleve’s equation

223y32yw"

- 222%ww’ - 3z2w(w’')? + z2(w')? + 2zwiw’' - 2zww’

- 2aw® + 6aw® - 2(8z2+y2+30+B)W3 - 2(822-yz-a-38)w2 -

- 68w + 28 = 0,

where o,

a)
b)
c)
d)
e)
£)

9)

B,
nomial solutions:

o £ £ £ £ ¥ %

]

vy, & are some constants, can have only following

0 for 8 = 0;

C, C=const., for a = g =y = 8§ = 0;

1 for 6 = 0, [af + |8] + [v] # 0;

-1 for y =0, a + 8 =0, &§ # 0;

-2(8/y)z + 1 for ays # 0, B = =-1/2, 408 + y2 =0
az + b, where a® + 26 = 0, b® + 28 = 0, for o =
0, v* + 6482 + 168262 - 8BSEy2 + 64852 + 16vy2s

of degree m 2 1 such that m2 + 28 = 0 for a = y = §

11

ion

(P-4)

e. it
ire

(P-5)

poly~

3

1/2,

0;

=0, # 0.
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Theorem 4.4. The fifth Painleve’s equation (P~5) can have
entire transcendent solutions only @ = 1 (for a« = 0, § # 0) or
Q = 1/2 (for « = § = 0, y # 0) orders; if o # O or a =y = 6§ = 0,
then (P-5) has not entire transcendent solutions.

The example of entire transcendent solution of Q= 1 order
was built for (P-5) by N.A.Lukashevich [86, p. 119]: if o« = 8 = 0,
v2 + 25 =0, § # 0 then equation (P-5) has one-parametric famility
of solutions w = C exp yz, C=const. Entire transcendent solution
2 = 1/2 order for (P-5) is not built on today.

Theorem 4.Z5. The sixth Painleve’s equation
2z2(z-1)2w3w" - 222 (z-1)2(z+1)ww" + 2z2(z-1)2ww"
- 322(2-1)3w? (W) 2 + 222 (z-1)2(z+1)w(w')? - 22 (z=1)2(w’)? +
+ 2z(z-1) (2z-1)w3w’ - 2z(z-1) (z3+2z~1)wiw’ + 2z3(z-1)ww’' -
- 2aw® + 4q(2+1)wS - 2[(a+B)22 + (4a+B+y+8)z + a - ylw* +
+ 4[ (a+g+y+8)2 + a + B = vy - §Jzw? - 2z[(B+y)z® + (P-6)
+ (atdB-y+8)z + B - §]w? + 48z2(z+1)w - 2822 = 0,
where o, 8, vy, § are constaﬁts, can have polynomial solutions:

a) of degreem 2 2 for o = 0, such that m® - 2m + § = 0;
1;
c) of degree m = 0 for 8 = 0 or for 8 + vy = 0, o + 6§ # 0, or

b) of degree m

for a # 0, B =y =0, o« + § = 0, moreover for

a =8 =y =§ =0 there is one-parametric famility of
solutions w = C, C=const., and for B = 0 there is the
solution w = 0.

‘Theorem 4.6, The sixth Painleve's equation (P-6) has not
entire transcendent solutions.

The absence of entire transcendent solutions for (P-6) point
on two following peculiarity:

1) all entire solutions of equation (P-6) are polynomials and
possible cases of its existence are pointed in theorem 4.5;

2) it is known [94] that solutions on the fifth Painleve’s
equation (P-5) can be got from the solutions of the sixth Painleve'’s
equation (P-6) but in doing so the fifth Painleve’s equation has
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entire transcendent solutions and the sixth Pairlave’s equation has
not them.

As for the absence of movable critical singular points of so-
lutions (Painleve’s type) I.P.Martynov considered differential
equation of the third order [89,95]

-
wAWW T+ whtW YT - (v=1)v wE (w")2 - a,wiw’)3w" +

+la =~a+ 4(v=-Dv "I1wPw'w" + awSw" - b_(w')* +
1 1 (4.1)
+ (b,-D)w? (W) + [b - c = 4(v-D)v "lw* (w")? -

- {c-d)wew’ + dw® = 0,

where v is the integer number different from zero; a, b, c, a ., b1
are constants.

Theorem 4.7. Equation (4.1) can have only following polynomial
solutions (3):

a) of degree m = 2 fora=c=d =0, b = a, + 2b1,
b=4(v-1)v"", a, +b #0or fora#0, c=4=0,
a+ 2b=8(v-1)v"";

b) of degree m > 3 for fulfilment even though of conditions:

1

a=c=d=0, b=4(v-1)v ', (b+ta,)(b-b,) # 0; (4.2)
a=c=d=0, b=4(v-1)v ", b=0b, #-a,; (4.3)
a=c=d=0,b=4(-1v", b=-a, #Db,; (4.4)
c=d=20,b#4(v-1)v "', a#0 (4.5)

moreover for conditions (4.2)-(4.4) the number m must be the root
of equation

(a, + b, - 1)m2 - (b + a, ~3m-2-=0,
and for condition (4.5) m must be the root of equation
[(a +b)v - 4(v=-1)Im - av = 0.

Besides there are trivial polynomial solutions: w = 0; for

d = 0 there isw =C,; for b=Db, = c =4 =0, v =1 there is
w=2=Cz+ Ca’ for a = a, = b = b1 =c=d=0, v =1 there is
w = C1z2 + C,z + C , where C,, C,, C, are constants.

If even though one of conditions: 1) d # 0; 2) d =0, c # 0;
3y d=c=0, 4v# 4 - (a+Db); 4) a=b=c=d4d=0, v=1,
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a, + b, # 1 are fulfiled, then equation (4.1) has not entire trans-

cendent solutions.

Oon the base of theorem 4.7 the existence of entire solutions
for the equations of the third order (4.1), when it is Painleve’s
type, is established [89].

§5. THE QUANTITY OF POLYNOMIAL SOLUTIONS OF DIFFERENT DEGREES

A.Z.Samujlov [Bé] pointed interesting regularity for algebraic

differential equation of type
A(x)y(m) = ? Bv(x)yvi,
i=o

which was that the quantity of different degrees, that have polyno-
mial solutions, depend on the quantity of the terms in this equati-
on. The generalizations was given by him [34], by L.G.Oreshchenko
[35), by S.I.Kishel [62] for special types of equations, and for
algebraic equation of general type (1) they was given in [73,74].

In given paragraph polynomial solutions of differential equa-
tion (1) we’ll find in the form

Ty mk-l
Wy = b o Z P # 0, k=0,p, (5.1)
=0 k2 k,

counting m,<m, < ... < mp.

Following statement contain main sum.

Theorem 5.1. If in algebraic differential equation (1) the
terms are the situated such that

L =L =L= ... L <L = = ... =
o "1 2 h, h,t1 Lh°+z

= < = = ... = ’ < ess < (5.,2)
Ih +h, < Ih +h +4 = Ih +h +a Dho+h, +h, <
<L ., =L ., =...=L., ,
1+ L h 2+ T h f h.
j=o J j=o 3 j=o J
t €
where .E hj =N, 0 < h, =N, 0 < h€+1 < N- E hy, e=0,t~-1, and for
j=o : y=o
X, 1=0, $ h,, 1=0,€, such that °

[>]
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h
X =X =00 =X o, §=0,%, 0 <1 < _E hj’ (5.3)
| [T H j=o
o LY.
for any natural numbers HW' w=0,n5,
[ § [ AT
L6 fsn,<n_ s ...xg nnd, §=0,X, (5.4)
where L6 = max{L ¢ ¢=U,n5}, inequantities
K* uv(‘n‘s) k*_(n®) k*_ (n%)
§ o [ 1 e [ o
° Wy By
it [ 5 % [ ! > % 8 [
*
K 5(n1) K 6(n1) ... K 5 (n1) # 0 (5.5)
Mg 4 u“s
k* %) k%) ... kK %)
uG nG ué n5 uG n5
L] 1 n(s

‘are fulfil for 6=0,1, then for all 1=0,t algebraic differential
equation (1) can have non-trivial polynomial solution (5.1) of
different degrees m, , k=0,p, such that

L <m L 5.6
o < ( )

-

T
where L < = +o» for I hj = N, no more then ¢} hj‘
14 I h, 3= 3=o
j=o
More obvious theorems are true as the consequences.

Theorem 5.2. For conditions (5.2)-(5.5) algebraic differential
equation (1) has no more then N non-trivial polynomial solutions
of different degrees.

Theorem 5.3. If in algebraic differential equation (1) the
terms are situated such that the correlation (5.2) takes a place

and Xy # xj, i=0,N, j=0,N, j # i, then for all 1=0,t equation (1)
T
has no more : h. non-trivial polynomial solutions (5.1) of diffe-
j=o
rent degrees my, satisfying to the condition (5.6).

For example, algebraic differential equation
n n Y (r 9Pri%i  m e
b Ai(z) n m {w Iy = I B  (2)w

i=o j=o t=0 k=o Pk by

nax
€
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for which h Mj h Mj

z L p_.a < I Ip

s s L0
j=o 1=0 T3 j=° T1=0 T3 Jert

has no more then n + m + 1 non-trivial polynomial solutions of
different degrees if under the existence in this equation the terms
such that

oMy M
L z ijaji = Yk + I
j=o0 1=o0 =0

s,, i€{0,1,...,n}, j€{0,1,...,m},

2’

inequality
max{rTj: j=0,h, T=0,Mj} > max{rx: A=0,M} = r

is fulfiled and M
h 3
z L 8§ _.p

joo tho' T > Por

s TP
) 31

where Grj =1 if i 2r

j Gt OF 6Tj =0 if rTj <r

o
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NOJNMHOMHHU PEHIEHMJA HA AJI'EBAPCKH OBHYHH
JIUOEPEHIUJAJIHU PABEHKH. II

B.H. Top6y30B
Pesume

Bo 0oBOJ Tpyn e pasrijledyBaH rpaHUUYeH MeTOn 3a neduHHpawe Ha
CTEeNneHHTe Ha NOJIMHOMHHUTE pemeHHja Ha anrebapcku audepeHUHnjasiHU
pPaBeHKH U llend pelleHHja Ha paBeHKHTe Ha Peinleve. HajmneHu ce koe-
PHUHEHTHTE HAa HAJBUCOKHOT H3pa3 Ha NONUHOMHHTE pemeHMja ¥ KBAHTH-
TeTOT Ha TOJUHOMHHTE pemeHHja O pas3IHuHA CTENeHH Ha anrebapCKUTe
nDudepeHnjanHl paBEHKH.

*
Note of the editor: The reference in this paper is the
same as in the paper [1]



