Математички Билтен 17 (XLIII) 1993 (45-50) Скопје, Македонија ISSN 0351-336X

UNITARY EQUIVALENCE OF UNILATERAL OPERATOR VALUED WEIGHTED SHIFTS WITH OUASI-INVERTIBLE WEIGHTS

Marija Orovčanec

Abstract. In this paper we consider the problem of unitary equivalence of unilateral operator valued weighted shifts with quasi-invertible weights.

Let H be a complex Hilbert space, let (x,y) be the scalar product of vectors x and y in H and let B(H) be the algebra of all (bound linear) operators from H to H.

Let $(A_n)_{n=0}^{\infty}$ be an uniformly bounded sequence of bounded and linear operators on H.

 $\begin{array}{ll} \ell^2(\mbox{\mathbb{H}}) = \sum\limits_{n=0}^\infty \mbox{\mathbb{H}}_n, \ \mbox{\mathbb{H}}_n = \mbox{\mathbb{H}}, \ \mbox{for all n is a notation for the} \\ \mbox{space of infinite sequences of vectors } (\mbox{\mathbb{f}}_k)_{k=0}^\infty, \ \mbox{\mathbb{f}}_k \in \mbox{\mathbb{H}} \ \mbox{such that} \\ |\mbox{\mathbb{H}}|\mbox{\mathbb{I}}|^2 = \sum\limits_{k=0}^\infty |\mbox{\mathbb{H}}_k \mbox{\mathbb{H}}|^2 < \infty \ \mbox{with a scalar product defined by} \\ (\mbox{\mathbb{f}},\mbox{\mathbb{g}}) = \sum\limits_{k=0}^\infty (\mbox{\mathbb{f}}_k,\mbox{\mathbb{g}}_k) \,. \end{array}$

The operator on $l^2(H)$ given by

$$A(f_0, f_1, f_2, ...) = (0, A_0 f_0, A_1 f_1, A_2 f_2, ...)$$

is called the unilateral operator valued weighted shift with weights $(A_n)_{n=0}^{\infty}$.

Two operators A and B are called unitary equivalence if there exists an unitary operator U on H such that AU = UB.

A bounded operator A is quasi-invertible if A is injective and has a dense range (i.e. KerA=KerA* = {0}).

Throughout this paper we consider operator valued weighted shifts with quasi-invertible weights and we shall call them operator valued weighted shifts.

Lemma. Let A and B be unilateral operator valued weighted shifts with weights $(A_k)_{k=0}^{\infty}$ and $(B_k)_{k=0}^{\infty}$ respectively and

 $X \in \mathbb{B}(\ell^2(\mathbb{H}))$ with matrix $(X_{ij})_{i,j=0}^{\infty}$, then AX=XB if and only if $X_{ij}^{=0}$, $j \ge i+1$ and $A_i X_{ij} = X_{i+1}^{-1}$, j+1, B_j , i,j=0,1,2,...

Proof. Let

$$A = \begin{bmatrix} 0 & 0 & \cdot \\ A_0 & 0 & \cdot \\ 0 & A_1 & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 0 & \cdot \\ B_0 & 0 & \cdot \\ 0 & B_1 & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} \qquad X = \begin{bmatrix} X_{00} & X_{01} & X_{02} & \cdot \\ X_{10} & X_{11} & X_{12} & \cdot \\ X_{20} & X_{21} & X_{22} & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{bmatrix}$$

If AX=XB, then $X_{0j}B_{j-1}=0$ for $j \ge 1$.

Since B_j has a dense range in H for all j then $X_{oj}=0$, $j \ge 1$. Also, $A_i X_{ij}=X_{i+1}$, j+1, B_j for all i and j. If we suppose that $X_{nj}=0$ for $j \ge n+1$, then X_{n+1} , j+1, $B_j=0$. Since B_j has dense range in H it follows that X_{n+1} , j+1 for $j \ge n+1$. Conversly, let

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_{00} & 0 & 0 & \cdot \\ \mathbf{X}_{10} & \mathbf{X}_{11} & 0 & \cdot \\ \mathbf{X}_{20} & \mathbf{X}_{21} & \mathbf{X}_{22} & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{bmatrix}$$

and $A_{i}X_{ij} = X_{i+1,j+1}B_{j}$ for every i and j. Then

$$AX = \begin{bmatrix} 0 & 0 & 0 & \cdot \\ A_0 X_{00} & 0 & 0 & \cdot \\ A_1 X_{10} & A_1 X_{11} & 0 & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & \cdot \\ X_{11} B_0 & 0 & 0 & \cdot \\ X_{21} B_1 & X_{22} B_2 & 0 & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{bmatrix} = XB \quad \Box$$

Theorem 1. The unilateral operator valued weighted shifts A and B are unitarly equivalent if and only if there is an unitary operator $\rm U_{0}$ on $\rm H$ such that

$$|A_{k-1}...A_0U_0x| = |A_{k-1}...B_0x|$$
 for all $k \in \mathbb{N}$ and $x \in \mathbb{N}$

<u>Proof.</u> Let us assume that the operators A and B are unitary equivalence. Then there exists an unitary operator U on $\ell^2(H)$ such that AU=UB. According to the Lemma and the fact that U*A=BU* we have that the operator U is diagonal, $U = \Sigma \oplus U_n$ and each U_n is unitary on H. Also, $A_i U_i = U_{i+1} B_i$ for all $i \geq 0$. Let k > 0 and $x \in H$, then

$$||A_{k-1}...A_oU_ox|| = ||A_{k-1}...U_1B_ox|| =$$

$$= ||U_kB_{k-1}...B_ox|| = ||B_{k-1}...B_ox||$$

Conversly, suppose U_0 is unitary on H and (*) is hold. Now, we are going to define the operators U_i .

Let U_1 : $B_0 H \to A_0 H$ is such that $U_1 y = A_0 U_0 x$ for all $y \in B_0 H$, and $x \in H$ is such that $B_0 x = y$. We shall prove that U_1 is an isometry and that $U_1(B_0 H) = A_0 H$.

 $||U_{1}y|| = ||A_{0}U_{0}x|| \stackrel{(*)}{=} ||B_{0}x|| = ||y||, \text{ for all } y \in B_{0}H.$

Let $x \in A_o H$ and $x_1 \in H$ is such that $A_o U_o x_1 = x$, and let $y = B_o x_1$. Then $y \in B_o H$ and $U_1 y = A_o U_o x_1 = x$.

Let U_1 is the minimal unitary extension of U_1 on H ($H=B_0H$). So U_1 is unitary operator on H, and $U_1B_0=A_0U_0$.

Let $U_2, U_3, \ldots, U_{n-1}$ are unitary operators on || such that $U_1B_{i-1} = A_{i-1}U_{i-1}$, $i \in \{1, 2, \ldots, n-1\}$. We shall define the operator U_n in the following way:

Let U_n : $B_{n-1}...B_oH \rightarrow A_{n-1}...A_oH$ is such that $U_n y = A_{n-1}...A_oU_o x$ for all $y \in B_{n-1}...B_oH$, and $x \in H$ is such that $B_{n-1}...B_o x = y$. We shall prove that U_n is an isometry, $U_n(B_{n-1}...B_oH) = A_{n-1}...A_oH$ and $U_n B_{n-1} = A_{n-1}U_{n-1}$.

(i) U_n is an isometry: Let $y \in B_{n-1} \dots B_0 H$ then

$$||U_{n}y|| = ||A_{n-1}...A_{o}U_{o}x|| \stackrel{(*)}{=} ||B_{n-1}...B_{o}x|| = ||y||$$

(ii)
$$U_n(B_{n-1}...B_oH) = A_{n-1}...A_oH$$

Let $x \in A_{n-1} ... A_0 H$, $x_1 \in H$ is such that $x = A_{n-1} ... A_0 U_0 x_1$ and $y = B_{n-1} ... B_0 x_1$. Then $y \in B_{n-1} ... B_0 H$ and $A_n y = A_{n-1} ... A_0 U_0 x_1 = x$.

(iii)
$$(U_n B_{n-1} - A_{n-1} U_{n-1}) B_{n-2}$$
 ... $B_0 =$

$$U_{n}^{B}_{n-1}^{B}_{n-2}...B_{o}^{-A}_{n-1}^{U}_{n-1}^{B}_{n-2}...B_{o} =$$

$${}^{U}{}_{n}{}^{B}{}_{n-1}{}^{B}{}_{n-2}\cdots{}^{B}{}_{o}{}^{-A}{}_{n-1}{}^{A}{}_{n-2}{}^{U}{}_{n-2}{}^{B}{}_{n-3}\cdots{}^{B}{}_{o}$$

$$U_{n}B_{n-1}B_{n-2}...B_{o}A_{n-1}A_{n-2}...A_{o}U_{o} = 0$$

Since $B_{n-2}...B_0$ has a dense range in H, then $U_nB_{n-1}=A_{n-1}U_{n-1}$.

Using (i) and (ii) U_n can be extended to unitary operator on H (we shall call it U_n).

In that way we get a sequence $(U_n)_{n=0}^{\infty}$ of unitary operators on H such that $U_nB_{n-1}=A_{n-1}U_{n-1}$ for all $n\in N$.

Let $U=\Sigma\Theta U_n$ and $f\in L^2(H)$. Then

$$||Uf||^2 = \Sigma||U_nf_n||^2 = \Sigma||f_n||^2 = ||f||^2$$
 also $UU^* = \Sigma \oplus U_n^*U_n = I$.

So U is an unitary operator from

$$\ell^2(H)$$
 to $\ell^2(H)$ and AU=UB. \Box

Corollary. Two unilateral operator valued weighted shifts
A and B are unitarily equivalent if and only if the operators

$$(A_k \dots A_o) * (A_k \dots A_o)$$
 and $(B_k \dots B_o) * (B_k \dots B_o)$

are unitarily equivalent for all keN.

<u>Proof.</u> Using Theorem 1 it is easy to see that A and B are unitarily equivalent if and only if there exists an unitary operator $\mathbf{U}_{\mathbf{0}}$ on \mathbf{H} such that

$$(x, U_0^*(A_k...A_0) = (A_k...A_0)U_0x) = (x, (B_k...B_0)*(B_k...B_0)x)$$

for all xeH and keN. o

Theorem 2. The unilateral operator valued weighted shift A with quasi-invertible weights is unitarily equivalent to an unilateral operator valued weighted shift with quasi-invertible and positive weights.

 $\underline{\text{Proof.}}$ Let $\mathbf{A_k} = \mathbf{U_k} \mathbf{P_k}$ be the polar decomposition of $\mathbf{A_k}.$ Then $\mathbf{U_k}$ is unitary operator

$$(U_k \text{ is an isometry on } (\text{KerU}_k) \bot = (\text{KerP}_k) \bot = (\text{KerA}_k) \bot = H \text{ and } \overline{U_k H} = H) \text{ and } P_k \text{ is positive}$$

Let $P=\Sigma \Phi P_k$, $U=\Sigma \Phi U_k$ and S is an unilateral shift operator of multiplicity $\dim(H)$. $P\in B(L^2(H))$ since

$$||P|| = \sup_{k} ||P_{k}|| = \sup_{k} ||A_{k}|| = ||A||$$

Then the operators A and SUP are unitarily equivalent. Also the operators S and SU are unitarily equivalent. (Let $V=\Sigma \Phi V_k$ such that $V_n=I$,

$$V_k = S_{k-1}U_{k-1}S_{k-2}U_{k-2}...S_0U_0S_0^*S_1^*...S_{k-1}^*$$

Then A=SUP=VSV*P=V(SV*PV)V*. Thus the operators A and SV*PV are unitarily equivalent. Now V*PV is a diagonal operator with positive quasi-invertible operators on its diagonal and so SV*PV is an unilateral operator valued weighted shift with positive quasi-invertible weights. D

Theorem 3. If A and B are unilateral operator valued weighted shifts with quasi-invertible weights on H and if there exists a quasi-invertible operator S on $\ell^2(H)$ such that AS=SB and A*S=SB* then A and B are unitarily equivalent.

<u>Proof.</u> According to the Lemma we have that operator S has lower triangular matrix. From A*S=SB* we have that $A_1^*S_{1+1,o}=0$, $i=0,1,2,\ldots$. This means that $S_{1+1,o}=0$ for all i>0. Also $A_1^*S_{1+1,j+1}=S_{1,j}A_j^*=0$ for $j\neq i$, so we have that $S_{1,j}=0$ for $i\neq j$, i.e. S is diagonal operator. Let S=UP be the polar decomposition of S. U is unitary operator and $P=(S*S)^{1/2}$. Then, $BP^2=B(S*S)=(SB*)*S=(A*S)*S=S*AS=S*SB=P^2B$. Since P is uniform limit of the sequence $(P_k(P^2))$ where (P_k) is a sequence of polynomials it follows that BP=PB. Thus by AUP=UPB=UBP we have

H=PHcKer(AU-UB) i.e. AU=UB. □

<u>Corollary</u>. If the unilateral operator valued weighted shifts A and B are quasisimilar (there exist quasi-invertible operation on $\ell^2(H)$ S and T such that AS=SB and BT=TA) and if S*=T then A and B are unitarily equivalent.

REFERENCES

- [1] Lambert, A.: Unitary equivalence and reducibility of invertibility weighted shifts, Bull. Austral. Math. Soc. 5 (1971), 157-173
- [2] Halmos, P.R.: A Hilbert space problem book, Van Nostrand, Princenton, New Jersey, Toronto, 1967
- [3] Ivanovski, N., Orovčanec, M.: On similarity and quasisimilariti of unilateral operator valued weighted shifts, Matem. bilten, kn. 9-10, 1985-1986, Skopje, Yugoslavia

УНИТАРНА ЕКВИВАЛЕНЦИЈА НА УНИЛАТЕРАЛНИ ОПЕРАТОРСКО ТЕЖИНСКИ ШИФТОВИ СО КВАЗИ-ИНВЕРЗИБИЛНИ ТЕЖИНИ

Марија Оровчанец

Резиме

Во овој труд се разгледува проблемот на унитарна еквиваленција на едностраните операторско тежински шифтовни чии тежини се квази-инверзибилни (еден-еден и со густ ранг) оператори.

Prirodno-matematički fakultet Institut za matematika p.f. 162 91000 Skopje, Macedonia