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A SHIFT OPERATOR APPLICATION ON INEQUALITIES IN %2 SPACE

M. Borogovac

Abstract. In this note some inequalities in the complex
space £2 are proved. It is done by means of the shift and diffe-
rential operators in 2%. The results are generalisations and
improvements of results from [1). These inequalities from [1]
are repeated in the Introduction.

INTRODUCTION

Theorem 1. [1]. Let {an}be a sequence of real numbers such

that .
a © 2 2 ©
_fan < and _E(A an) < =,
Then
o« -] ]
a12 2 2 2
{-E(Aan) } s_:.n:an _:Z(A a2, (1)

Equality occurs if anmd only if a =0 for all neN:={1,2,...}.

Here and in the sequel the following motation is used:

aka :=AAk"an, vn€Z:={0,+1,+2,...}, VkEN.

da_: n’ n

nf "%+

Theorem 2. [1]. Let {a,} be a sequence of real numbers such
that

2 © 2 3
;:an < and t:;(A an) < o,

Then

212 2 2 2
{E(Aan) 1% < 4:"&1n E(A a))®. (2)
Equality occurs if and only if a =0 for all n€ENU{0}.

The inequalities (1) amd (2) are analogous to integral ine-
qualities from [2].
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THE PROOFS AND FORMULATIONS OF THE MAIN STATEMENTS

1. Let (23,(.,.)) denote the Hilbert space of complex se-
quences. Let us remind the reader that x:={xn}:w belongs to 2? if
and only if % Ixnl2 < =, The Scalar product is defined by

nez
(x,y): = ¥x yn (x,y€22).
ne€z
Let e” denote a sequence which satisfies en = Gj (n,j€Z), where

5? is Kronecker symbol. Obviously {e Ney2 |n€z} is a topological

base of 2%. Let us introduce the operator V: %2 - 32 by
vizxe": = Ix e,
nez nez ™!
The adjoint operator of V is denoted by V*. This means (Vx,y)=

=(x,V*y) holds for all x,y€t?. This implies V*( L x eM)= I x
n€z ®  nez
Hence, V*V = VV* = I, where I denotes the identity operator.

This means that V and V*X are unitary operators. All these defi-
nitions and statements can be seen in many books of functional

n
n+1® °

analysis, for example in [3]. In order to prove the Theorem 1.2
below we need to introduce the operator A:=vV*-I. Obviously

AX= I Axne . It is not difficult to prove: A(2?)ce?® and a~'(23)¢s2.
nez
Indeed,

X€EL2 » I IxX |3 <o mw T |x -x_|% < T Ix 12+ lel’<-m
nez ° nez °t'n nez T+ n€z

- AXELZ,

The converse implication: Ax€22 = x€%2 does not hold. Ixideed,
for the sequence
x= (...,0,1,-L, L, .., L .
V2 /3 /n
it holds aAx€:1? and x¢332.

Obviously, it holds: x€3® = aXx€g?, vken.
We shall need the following lemma.
Lemma 1.1. a) For the point spectrum of A and A* it holds
= § * = .
Gp(A) p(A ) ¢

k »k
b) OKGP(A ), Oﬂdp(A ), VKEN.
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2 -
Proof. a) AEGP(A) o (3IxX€L?) (Ax=rX) = Xntr~Xp = AX, Vn€z

® Xp4,=(1#A)x, Vn€z. Obviously, x_ = (1+x)Px_ , Vn€z. This
implies

lx 1?2 = D Mx1? + £ e ?Px

neEzZ n=o ne~-1 °

]
= qx_1* L 11+ 12%1x 12 £ 1142172® = =, vaeC.
[+] [+
=0 n=1

Hence, x¢g22, i.e. § (A) = @. By the same arguments & (A*) is
proved.

b) 0€s_(aK) = (3x€22)aKx = 0 » 3m€(1,2,...,k} such that
o™x = 0 and A™ 'x # 0. This means that o™ 'x is an eigenvector
of the operator 4 in A=0, which is according to a) impossible.
Hence, 0¢€s§ (A ). On the same way one proves 0¢§ (A*k), VKEN.

Theorem 1.2. Let {xn}_“ and {yn} be sequences from 13,
Then the following inequalities hold
a) | £ AkanEan’ s Cz ™Az 107y 12 (kew).
ne€z nEz nez
The equality holds if and only if x=0 or y=0 or x=\y for some
A€C.

b ([T 16%(x DY 12 s ek 12 g2 s Kynl?  (keN).
nez n€z n€z

The equality holds if and only if x=0 or y=0 or x=Ay for some
A€C.

Proof.
a) 1z (%% ) (%7 )17 = 1%, 08012 = 1 (x, 0k Ry 12 s
nez k* ko k% k
< (x,x) (a7 a7y,a" ATy)

*
Besides, as Vk is unitary operator we have

(aK* aky, K%Ky o (vakaskaky yakyakyko)

Wk -n) X wr-1) Ky, vk vor) X vr-1)ky) =

(I-vo X wr-n) Ky, (z-ve) K (ve-1)ky) =

(a Zky,A y).
Hence

L x (%) (% )12 < (x,x)0%Ky, 8%Ky) =
ne€z n n
=z x 1% (5 18Ky 42,
nez ne€z
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According.to a well known property of Cauchy inequality, the equa-
lity in the first line of the proof holds if and only if 2Xx=0 or

k k k

A"y=0 or A"x=AA"y for some AE€EC. As (according to Lemma 1.1)

0¢6P(Ak) this is equivalent to x=0 or y=0 or x=\y for the A€C.

b) This inequality follows from the Minskowsky’s inequality

V(Ak(x+y),Ak(x+Y)) < \[(Akx,A"xH Viaky,s*y) and Lemma 1.1.

Remarks 1.3. The inequality (1) follows from a) for k=1 and
xn=yn=an€R, vn€Z, which means that our Theorem 1.2 is improvement
of Theorem 1 [1]. As we did not assume I (A’an)2 < o it is also

a generalisation. nez

2. Let us now consider the Hilbert space (£2,(.,.)), where

LN I x 12 < =),
n
n=o

22: = {{xn}n=

The elements of %2 will be denoted by letters x,y,... . The sca-
lar product (.,.) is defined by the relation
(x,y):= Zx?.

. n=o DM

Let S denote the unilateral shift, i.e. S({x ,x,,...)):=

=(0,x,,X ,...). Then for the adjoint operators S* it holds
S*((XgrX, sere))={(x,,%,,...), S*S=I and SS*=P, where P((xo,x1,...))=
=(0,x,,%X,,...). One easily verifies P?=P and P*=P, i.e. P is a

projection. For the operator A:=S*-I it hold:
AR )X, paee)) = (Xy=Xg X=Xy p0e0) = (BXg,8%,,...).

Remark 2.1. As before we Have

-] oo k
2 2
z lxnl <Ko= I |A xnl

: n=o n=o
From this implication for k=2, it follows that Theorem 2. [1]

‘égndition T (A’an)z < = is omitted.
/ n=o

< =, VkEN..

remains val: if the
// .
Remark 2.2. The constant on the right hand side (number 4)

in the inequality (2) can not be improved in general (see {1}).
In the sequel we shall see that for the sequences {an}:=°€£z
which satisfy a,~a,=0 the number 4 can be replaced with 1.
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Lemma 2.3. Under the notation of the section 2 it holds:
a) GP(A) = {)X€C: |1l+xr] < 1},
b) & _(a*) = @.

) p( ) g

Proocf. a) AGGP(A) if and only if 3x€2?, x#0, such that
Ax=ix, i.e. Xnta~Xp=Ax ., Vn€{0,1,2,.;.}. This means xn=(1+x)nx°,
vne{0,1,...} i.e. £ Ixnlz = Ix 1% 1 11+213%", As the last series
n=o n=o
converges if and only if |1+a| < 1, the first statement is proved.
b) AEGP(A*) if and only if it exists x€22?, x#0, such that
A*x=)x, i.e. xk_1=(1+A)xk, k=0,1,2,...,x_1=0. Suppose X is the
first nonzero element in the sequence x. Then A=-1 follows for
k=m and xm=0 follows for k=m+l. Hence, x=0. This proves b).

Theorem 2.4. Let x={xn}: and y={yn}: be sequences in 22,
Then it holds

I £ ax AY 12 < (2 Ix_12)( £ 1a%y_13+1ay_13). (3)
n=o n n n=o n n=o n. °

The equality holds if and only if x=0 or y=0 or ix=A*ay, for
some A€C.

Proof. (I-s*) (P~S) = I-S*+P-S (4)

«©

oz Aan§n|’ = [(ax,8y) 1% = |(x,a*ay) |2
n=o

According to Cauchy inequality we have

| (ax,Ay) | 22(x,X) (A*Ay, A*Ay)={x,x) ((S-I) (S*-I)y, (S~I) (S*-I)y)=
=(x,%) ((P-5*-5+1)y, (P-s*-5+1)y) ‘&) (x,x) ((1-5*) (P-5)y, (I-5*) (-8)y)=
=(x,x) (8(I-S*) (P-S)y,S(I-8*) (P-8S)y)=(x,x) ((S-P) (P~S)y, (S-P) (P-S)y)=
=(x,X) ((S=P) (0,Y =Y ,+¥ =Y r+++) 1 (S=P) (0,¥o=Y1+¥Y4=Yas--.))=
=(X,%) ((0,¥1=Y0rYo=2Y 4 +¥ o1 ¥3=2Y o 4Y 1 s+« - ) 1 (0,Y 1Y 0 ¥2m2Y, t¥0r¥a=2¥ ¥V g1+ - - )=

=(x,%) {1y,-y, 12+ £ 1a%y 12},
n=o

Hence, |(ax,Ay)1? < (x,x){lay I* + (a%y,2%y)}, which proves (3).

According to a well known property of Cauchy inequality the
equality holds if and only if x=0 or A*Ay=0 or ix=A*Ay, for some
A€C. According to Lémma 2.3 b) a*ay=0 is equivalent to Ay=0. Ac~-
cording to Lemma 2.3 a)-OKGP(A). Hence, Ay=0 if and only if y=0.
This proves the last statement in theorem.
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Corollary 2.5. If a={an}:€!.z and a,=a, then it holds
£ 1aa 1?2 s (£ la_l?) £ 1a%a_|2. (5)
n=o 0 n=0 " n=o n
The equality holds if and only if a =0 for all n=2,3,... .

Proof. For x=y=a the relation (5) follows from (3) directly.
The equality holds if and only if a=0 or Aa=A*ara, for some )€C.
But Aa=A*Aa is equivalent to a1+(x-1)a°=o and ak+1+(x-2)ak+ak_1=0,
k=1,2,... . As a,=a, we conclude A=l and O=a,=a,=... . Obviously,
this contains the case a=0, which proves the last statement of
the corollary.
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NPYMEHA HA UMOT ONEPATOPM HAR HEPABEHCTBA BO t* MPOCTOPOT
M. Boporosau

Pesunume

Bo OBOj TPYR Ce AOKaXaHH HEKOJIKY HepaBeHCTPa BO KOMNJIEKCHHOT
npocTop 4?. THe ce MOGHEHH CO KOpHCTeme Ha mHdT onepaToOpH H MU~
PepeHunjanuun onepaTropH BO L2. Opxe pesyJITATH NPeTCTaByPaaT reHe-
panusanuja ¥ nonofpysama Ha pesyiaraTHTe on (1}, xoumTO Cce HaAGpPO-
jyBaaT BO BOBEROT HA TPYROB.
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