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VECTOR VALUED GROUPOIDS INDUCED BY VARIETIES OF SEMIGROUPS
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Abstract. Vector valued groupoids induced by semigroups are
considered in [3]. Here we consider vector valued groupoids in-
duced by (nontrivial) varieties of semigroups.

Preliminaries. First we state some definitions and results
concerning vector valued groupoids induced by semigroups, consi-
dered in [3].

Let $=(S;+) be a semigroup, and Q a nonempty subset of S.
Define a collection of subsets (Q |a 2 1) of S by: @, =Q,
Qu+1
f:Qn + Qm a mapping from Qn into Qm' then the ordered pair (Q;f)
is’called an (S;n,m)-groupoid. Then, a nonempty subset P of Q is

said to be a subgroupoid of (Q;f) if f(P )=P , and P is called
a strong subgroupcid of (Q;f) iff

= {xy IxEQa, veQ}. If n and m are positive integers and

(¥Va;€P,b,€0) (£(a,+..0tay) =by«.o.oby ==> by,... /by EP)

If (Q;f) is an (S;n,m)-groupoid and (Q’;£’) is an (8';n,m)-
groupoid, then a mapping $:Q + Q' is said to be a homomorphism
from (Q;f) into (Q’';£f’) if for every ai,bjEQ the equation
f(a1-...-an] = byceea-by implies f'(¢(a,}*.,_*¢{an)) =
=¢(b1}*...*¢{bm). where 8’=(5";*). If, moreover, ¢ is bijective
and ¢

is a homomorphism then ¢ is called an isomorphism.
We state now some results, proved in [3].

(i) A nonempty intersection of strong subgroupoids is a
strong subgroupoid as well, but a nonempty intersection of sub-
groupoids is not negesseraly a subgroupoid.

(ii) A bijective homomorphism is not necesseraly an iso-
morphism.

(iii) A homomorphic image of a subgroupoid is a subgroupoid,
but a homomorphic image of a strong subgroupcid is not necessa-
rily a strong subgroupoid.
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(iv) A complete nonempty homomorphic inverse image of a
strong subgroupoid is a strong subgroupoid, but this is not true,
in general, for subgroupoids. ’

Assume now that | is a nontrivial variety of semigroups.
(By "a nontrivial" we mean that |/ contains objects with more
than one element.) If Q is a nonempty set then we denote by \(Q)
a free semigroup in \/ with a basis Q. Every (V(Q);n,m)=-groupoid
is called a (V;n,m)-groupoid. Here, we will write VP(Q) instead
of Qp.

All mentioned "positive" properties for semigroup (n,m)-
groupoids are, certainly, true for (Y{;n,m)-groupoids; neverthe-
less, some properties hold in the class of (V;n,m)-groupoids,
which do not hold in the general case. Below we state some pro-
perties of this kind.

(i’) A nonempty intersection of subgroupoids of a (V;n,m)-
groupoid (Q;f) is a subgroupoid as well. If P is a subgroupoid
of (Q;f) and if P is not a strong one, then the strong subgrou-
peid generated by P coincides with Q.

(ii’) A bijective homomorphism is an isomorphism. (When we
say that ¢:(Q;f) + (Q';f’) is a homomorphism then we assume that
both (Q;f) and (Q';f’) are (V;n,m)-groupoids.)

The corresponding "negative" properties stated in (iii) and
(iv) remains "negative", in general, in the class of ({;n,m)-
groupoids as well.

It is given (in Pr. 2.6) a description of the set of varie-
ties | for which every subgroupoid of a (\;n,m)-groupoid is a
strong subgroupoid too.

In the last part of the paper, some connections between
(Win,m)-groupoids and (V;n,m)-groupoids are described, where |
is a nontrivial subvariety of V.

Consider some examples.
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Example 1. If V=Sem is the variety of all semigroups then a
(Vin,m)-groupoid is a usual (n,m)-groupoid ([2]).

Example 2. The class of fully commutative groupoids ([4])
is obtained in the case when \=Comsem is the variety of commuta-
tive semigroups.

Example 3. Let V=s1 be the variety of semilattices, i.e.
idempotent and commutative semigroups, and let Q be a nonempty
set. As it is well known, the semigroup S1(Q) can be interpre-
ted as the semigroup F(Q) of all finite nonempty subsets of Q,
where the operation is the usual (set theoretical) union. Then
an (S1;n,m)-groupoid can be considered as a mapping f:X + Y=f(X)
from {X€F(Q) |1 <|X| <n} into {YEF(Q) |1 <|Y| <m}. (|A| denotes
the cardinal number of the set A.)

Example 4. Let V=RB be the variety of rectangular bands,
i.e. idempotent semigroups satisfying the law xyz =xz. Then,
V,(B) =BxB, for every a 22, where an element a€Q is identified
by the pair (a,a) (=a-a). If 1<n,m < 2 then an (RB;n,m)-groupo-
id is the same as an (n,m)-groupoid, according to Ex. 1. If
nz23, m=2, then the class of (RB;n,m)-groupoids coincides with
the class of all (n,m)-groupoids which satisfy all the identi-

ties of the form
flxz ...z y) = flxu ...u _ y).

We also note that in the first three examples there are not
any distinctions between subgroupoids and strong subgroupoids,
but, if m=23, Q is the unique strong subgroupoid of an (RB;n,m)-
groupoid (Q;f).

1. Contents in V(Q). Further on we assume that |/ is a given

nontrivial variety of semigroups, and Q is a given nonempty set.

ment ueVP{Q}.

First, let us make some remarks.
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(1) Let a_,a_ ,... be a sequence of different elements of
Q, and ik' jv positive integers. Then
a; VEE cwead@y  =oHn w8l e Tl
i1 iz ip Iy Ja Jq
is an equality in V(Q) iff

X, X e e X =X, X «ensX
j"I 12 ip J4 jz jq

is an identity in V.

(ii) Let ueVp(Q), where p2 1. We define a family [u;pj of
subsets of Q as follows.

aA€[u;p] iff there exist a1,a2,...,apEQ such that

.,a_}. (We note that {a ,,...,a_}

u=a‘-a2-...-ap and A={a,,a p

Rk
has the usual meaning, i.e. as{a‘,...,apl <=> ("j) a=aj.)

Clearly we have
ueVp(Q} => [u;p) # % & 0< |a]l <p
for every A€[u;p].

(iii) If ueVp(Q) then [u;p] is a family of finite subsets
of Q, and thus for every L€[u;p] there is at least one minimal
element M€[u;p].

Suppose that M’ and M" are two different minimal elements
of [u;p], and let

u = a1-a2-...-ap = b1-b2°..-'bp#

where M'={a1,...,a i M“={b1,...,bp}. Assume that ijM‘ and that
|M"] >2. Choose an element brem", such that br#bj. Define
c1,...,cpeQ by:
b Lfd A3
(o blifi=j
r

Then we have U=C,+CyteeeCy and M={c,,...,c_} is a proper subset
of M", which is impossible. So, if M™\M’ #§ then [M"| =1. We ob-
tain symmetrically that |M’| =1. Therefore, we have u=aP=bP, whe-
re a,beéQ, a#b; furthermore, u =cP for every ce€Q.
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In such a way we proved the following

Proposition 1.1. For every positive integer p and every

ueVp(Q) the set [u;p] either contains least element M or every
one element subset of Q is its minimal element. X

The last statement suggests the following definition of a
p-contents c¢_(u) of an element u€lY _(Q). First we put c_(u) =M
if M is the least element of [u;p], and c¢_(u)=f iff |Q| 22 and
all one element subsets of Q are minimal members in [u;p].

2. Subgroupoids. We assume here that (Q;f) is a given
(V;n,m)-groupoid.

Proposition 2.1. If {Pi | ie1} is a family of subgroupoids
of (Q;f) and if P =."'I{Pi | ieI} # @, then P is a subgroupoid of
(Q;£).

Proof. Let a1,...,aneP;;Pi, and let f(a1'---'ﬂn]=u9meQ)-
If cm(u)=ﬂ, then we have u=a™ for every a€P, and thus it re-

mains the case when ¢ (u) #@. The fact that Py is a subgroupoid

implies that there exist b bi €P; such that u=bi -...-bi .
m

e . 2
If M =cm[u) then we have u = Cqte-vtCphs where A={c1,...,an <

E{bi """bi } and therefore McP. X
1 m
Corollary 2.2. Every nonempty subset B of Q generates a

uniquely determined subgroupoid <B> of (Q;f). X
Now we are going to give a suitable description of <B>.

Proposition 2.3. Let B be a nonempty subset of Q and define

a sequence (Bn| a2 0) of subsets of Q as follows:

B,=B, B , =B U [Ll{cm(f(u}] lueVn{Bu)}}.
Then

<B> = U {Buluz 0}l. X

Consider now some connections between subgroupoids and

strong subgroupoids.
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Proposition 2.4. Let P be a subgroupoid of Q which is not a
strong one. If R is a strong subgroupoid of (Q;f) such that
PER<Q, then R = Q. :

Proof. The assumption that P is a subgroupoid but not a
strong subgroupoid implies that there exists a uevn(Q) and

b"""bm' c1,...,cmEQ such that
£(u) = byseeccby = Cyeevercyy
where bjeP, ckeR and there is some i such that cieR\P. Let d
be an arbitrary element of Q and define a sequence d1,...,dm by
Cp if k # i
d =
k a dif k=41

Then we have f(u)
Q=R. X

d1""°dm' which implies that d=di€R, i.e.

If B is a nonempty subset of Q then we denote by <B>_ the
strong subgroupoid of (Q;f) generated by B. (The existence of
<B>_ follows from the fact that a nonempty intersection of
strong subgroupoids is a strong subgroupoid as well.)

Corollary 2.5. For every nonempty subset B of Q we have
<B>_ ={B)or <B>_ = Q. X

Now we will describe the set of varieties | of semigroups
for which there are not any differences between subgroupoids and
strong subgroupoids.

and any element u€y (Q) | [usm] |S1. In other words, if ai,bjEQ
are such that s,

U= A, ceeecl ® b oasochy
then (b ,...,b ) is a permutation of (a,,...,ap ).

Proposition 2.6. The following two conditions are equivalent

(a) V is m-regular.
(b) For every (V;n,m)-groupoid (Q;f) each subgroupoid of
(Q;f) is a strong subgroupoid of (Q;f) as well.
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Proof. Let | be m-reqgular and let P be a subgroupoid of a
(Vsn,m) -groupoid (Q;f). Let u€y (P) and f(u)=a,-.a,....-a , whe-
re a,€0Q. The fact that P is a subgroupoid of (Q;f) implies that
f(u)=b1-...-bm, for some b.€P. Thus, we have a‘-...-am=b1-...-bm,
and from m-regularity of | we obtain that a1,...,amEP. Hence, P
is a strong subgroupoid of (Q;f).

Assume now that |/ is not m-regular. Let Q be a set with at
least m elements. The assumption that | is not m-regular implies
that there exist ai'bjeo such that A={a‘,...,am}g{b“...,bm}
and a,+...:a = b -...:b_in V).

Define a (V;n,m)-groupoid (Q;f) by f(u)=a,-....a for eve-
ry u€V (Q). Then A is a subgroupoid of (Q;f), but it is not a
strong one. X

Certainly, Pr. 2.6 does not mean that if |/ is not m-regular
then the set of strong subgroupoids of a ({;n,m)-groupoid (Q;f)
is a proper subset of the set of subgroupoids of (Q;f). As an
illustration, consider the following

Example 2.7. Let m 2 3 and let | = RB be the variety of
rectangular bands. Let Q be an arbitrary set and f:Vn{Q} + Vm{Q)
be defined by £(u)=a™ (=a where a is a fixed element of Q).
Then every subgroupoid of (Q;f) is a strong subgroupoid as well.
(Namely, P is a subgroupoid of (Q;f) iff a€P.)

3. Homomorphisms and congruences. First we note that in the

case of (\;n,m)-groupoids the definition of a homomorphism can
be restate as follows.

Proposition 3.1. If (Q;f) and (Q’;£f’) are (V;n,m)-groupoids
then a mapping ¢:Q + Q' is a homomorphism iff

ok = Zl'e (3.1)
Proof. We have only to explain what are the meanings of

¢ hn in (3.1). First, the mapping ¢:Q + Q' induces a unique
homomorphism §:Y(Q) + V(Q’) such that ${VG(Q))=VG{Q’). for every
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a 2 1, Then we denote by ¢G:VG(Q} + VG{Q’) the corresponding
restriction of ¢. X

Proposition 3.2. If a:Q + Q' is a bijective homomorphism
then it is an isomorphism.

Proof. If ¢:Q + Q' is bijective, then § is an isomorphism
1

and ¢G:VB(Q} + V“(Q’) is bijective as well, and (¢—1)“=(¢ul_ .

Then we have
-1

(¢ }mf'

1

(¢~
£(67 ). x

‘ -1 _ -1 -1
Yl E ) (6 )71 = (67" 0 £(s )

We mentioned in Preliminaries that a homomorphic image of a
subgroupoid is a subgroupoid, and that a complete inverse homo-
morphic image of a strong subgroupoid is a strong subgroupoid.
The converse assertions are not true generally, as it show the
following examples.

Example 3.3. Let (Q;f) be a (V;n,m)-groupoid containing a
subgroupoid P which is not a strong one, and let g be the res-
triction of £ on P. Then P is a strong subgroupoid of (P;g) and
the embedding mapping from P into Q is a homomorphism such that
P is a homomorphic image of a strong subgroupoid of (P;g), but P
is not strong in (Q;f).

Example 3.4. Let V be the variety of commutative semigroups
which satisfies the identity x?=y2?, where x,y are different va-
riables. If Q={a,b,c} and Q'={«,8} then

V., (@) = {a*,a®b,a%c,b3c}, V.(Q) = {a?,ab,ac,bc},
V, ")
Define (V;4,2)-groupoids (Q;f) and (Q’;£') by

{a®,a38}, Vz(Q')= {a?,a8).

f(u) = be, £rigar) = a2,
for every u€V, (Q), u’eV, (Q’).
Then the mappings

(a b c)

o _ abec
$ = «a B B v = )

G a a
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are homomorphisms from (Q;f) into (Q’;f’). The set A’={al} is a
subgroupoid of (Q';f’), but a={al=¢""(a’) is not a subgroupoid
of (Q;f). Furthermore, A={a} is a generating subset of (Q;f),

and ¢, ¢y are different homomorphisms which extend the mapping

a — o from A into Q’.

It is natural to define congruences as follows. Let (Q;f)
be a (V;n,m)-groupcid and p an equivalence on Q. We say that p
> (Q';£'), where (Q’;£') is a (V;n,m)-groupoid, such that p=ker¢,
i.e. apb <=> ¢(a) = ¢(b).

Let (Q;f), (Q';£f'), ¢,0 be as above. Then P'=¢(Q) is a
subgroupoid of (Q’;f’) and ¢ induces a unique surjective homo-
morphism ¢:(Q;£) +» (P’;g"), where g’ is the restriction of £r
on P’. Moreover, we have kery=p=ker$. Thus, we can assume that
¢ is surjective. Then §:a » ¢(a) is bijective mapping from Q=Q/p
onte Q'=¢(Q), where

a = {beg | arb} = {beg |[¢(a) = ¢(b)}.
This implies that if we define T:V (Q) »V_(Q) by

F(a. - «a )=b. . . - [ , 5 =
£(@,+...03)=b,...°B <=> £’ (¢(a,) .. .00 (a))) .23
=¢ (by ... 9(b )
then we obtain a (V;n,m)-groupoid (Q;F) such that §:a + ¢(a)
is an isomorphism from (Q;E) onto (Q';£f’).
Now we will give another characterization of congruences.

Proposition 3.5. Let (Q;f) be a (V;n,m)-groupoid and ¢ an

eguivalence on Q such’ that

£(a,eeceta )= coiiby, £(c, ueutc )=d co..0d in (Q3F)  (3.3)

and

dy0eeetd =T teltcy in V@ (3.4)
implies

b,ceeoby =d -...od in V@), (3.5)

where 0=Q/p, a={b€Q |apb}.
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Then p is a congruence on (Q;f). Conversely, if p is a
congruence on (Q;f) then.every implication (3.3)&(3.4) => (3.5)
holds.

Proof. Assume that ¢:(Q;f) = (Q';£") is a surjective homo-
morphism such that o=ker¢, and denote by ¥ the corresponding
isomorphism from (Q;%) into (Q’;£f’).

If (3.3) holds in (Q;f) then we have (in (Q’;f’)):
f'(¢(a.]'-.-'¢(an}) = ¢(b1)-.---¢(bm).
f’{¢(c,)‘...-¢(cn))

#(d,}-...-¢{dm}
and therefore

£(@,-..008)=64+...-B,  E(Cyr...ec)=@, ...
in (Q;%). Assuming that (3.4) is satisfied, we obtain (3.5).

Conversely, assume that p is an equivalence on Q such that
every implication (3.3)&(3.4) => (3.5) holds.

If a,,++.,2 €0 and f[a,-...-an)=b1-...-bm in (Q;f), then
we define ¥(a,-...-a ) by

F(@,-..o'3) = B,*...°B.

n m

It follows from (3.3)&(3.4) => (3.5) that T is well defined,
i.e. we obtain a (V;n,m)-groupoid (Q;%). Clearly, ¥:a — a is
a homomorphism from (Q;f) onto (Q;Ff) and p=ker? , i.e. p is a
congruence. X

(We remark that the above definition and Pr. 3.5 imply that

the well known isomorphism theorems ([1]) holds.)

4. Induced (W;n,m)-groupoids. We assume here that W is a
nontrivial subvariety of a variety \. Note that W (Q)eV for any

nonempty set Q, which implies that there is a uniquely determi-
ned homomorphism w:Y(Q) + W(Q) with the property n(a)=a for all
a€Q. Moreover, for each positive integer p, = (Y (Q}}=NP(Q) and
this implies that = induces a surjective mapping np:Vp(Q! o
-+ -

Wy, (@)
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(Vin,m) -groupoid (Q;f) iff the following diagram commutes:
V(@ —E— v (o)
n m

m w
i n m
*

Wo (@ —2— Wy (@)

An obvious consequence from this definition is
Proposition 4.1. If (Q;f) is a (V;n,m)-groupoid then there
exists at most one (l;n,m)-groupoid (Q;g) which is induced by

(Q;£). such a (W;n,m)-groupoid (Q;g) do exist iff (Q;f) satis-
fies the following condition:

(v, veV(Q)) (v (u) = 7w (v) => = f(u) =n _£(v)). X (4.1)

If a (V;n,m)-groupoid (Q;f) satisfies (4.1) then we say

(Vu.veV(Q})(ﬂn(u) =¥ () m=> £lu) = g(v)). (4.1")

Proposition 4.2. A (W;n,m)-groupoid (Q;g) is induced by at
least one W-(Y;n,m)-groupoid (Q;f).

Proof. If u€} (Q) then n " () GV (Q), ﬂ "(g(u))e V Q).

If £:V (Q) » V (Q) is such that for every xEV (Q) we have
f(x)@n (gn (%)) then we obtain a ({;n, m}-groupoid (Q;£) which
induces (Q.q) Certainly, we can define f in such a way that it
satisfies (4.1’). Namely, let h:l_(Q) -+ V (Q) be such that
h(u]ewm g(u) for every uew (Q). Now, if we define f: Vn[Q) +
> Vo(Q) by f=hn_, then we will obtain a |-(V;n,m)-groupoid (Q;f)
which induces (Q;g). X

The following statements are also clear.

Proposition 4.3. Let (Q;g) be a (W;n,m)-groupoid which is
induced by a (V;n,m)-groupcid (Q;f). Then:
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(a) If P is a suhgroupbid of (Q;f) then P is a subgroupoid
of (Q;g9).

(b) If p is a congruence on (Q;f) then p is a congruence
on (Q;g). X

Proposition 4.4. Let (Q;f) and (Q';f’) be (V;n,m)~groupoids
and let (Q;g), (Q':;g’) be (W;n,m)-groupoids such that (Q;g) is
induced by (Q;f) and (Q’';g’) is induced by (Q';f'). If ¢:Q + Q'
is a homomorphism from (Q;f) into (Q’;£f’) then it is a homo--
morphism from (Q;g) into (Q’;g’) as well. X

The following example shows that Pr. 4.3 (a), in general,
does not hold for strong subgroupoids.

Example 4.5. Let Q={a,b} and let £:Q + Q° be defined by
f(a)=f(b)=(a,a,a). Define a mapping g:RB(Q)=Q + RB4(Q) by
gl(a)=g(blsa. Then (Q;f) is a (Sem;l,3)-groupoid and (Q;g) is a
(RB;l,B}-groupoid induced by (Q;f). A={al is a strong subgrou-
poid of (Q;f), but A is not a strong subgroupoid of (Q;g).
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BEKTOPCKO BPEIHOCHM I'PYIIOMIM MHIVIMPAHW Of MHOI'VOEPASHJA O TIJVIFYIH
-, 9ynoHa ® C. MapkOBCKH
PesurmMe

BeKTOPCKO BPENHOCHHTE TIDYMOHOM MHOYUHPaAHH Ol MNONYyrpPyNH ce
pasrzenysaaT BO TpPYOOT [3]. OBge ce pasrjegyBaaT HCTHTe Ipamama
KaKko M BO NPeTXONHO CINOMEeHaTHOT TPYyL CO TOa WTO MNONYrpylnHTe Cce
on JaneHo MHoryo6pasue on mnonyrpynu. Ce mokaxyBa neka HEKOH pe-
SY/ATATH WTO He BaxaT BO OMUTHOT CJAyvyaj BaxaT BO Baka H3BpWeHaTa
pecTpHkKuMja.
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